

Industrial Automation Headquarters

Delta Electronics, Inc. Taoyuan Technology Center No.18, Xinglong Rd., Taoyuan City, Taoyuan County 33068, Taiwan TEL: 886-3-362-6301 / FAX: 886-3-371-6301

Asia

Delta Electronics (Jiangsu) Ltd. Wujiang Plant 3 1688 Jiangxing East Road, Wujiang Economic Development Zone Wujiang City, Jiang Su Province, P.R.C. 215200 TEL: 86-512-6340-3008 / FAX: 86-769-6340-7290

Delta Greentech (China) Co., Ltd. 238 Min-Xia Road, Pudong District, ShangHai, P.R.C. 201209 TEL: 86-21-58635678 / FAX: 86-21-58630003

Delta Electronics (Japan), Inc. Tokyo Office 2-1-14 Minato-ku Shibadaimon, Tokyo 105-0012, Japan TEL: 81-3-5733-1111 / FAX: 81-3-5733-1211

Delta Electronics (Korea), Inc. 1511, Byucksan Digital Valley 6-cha, Gasan-dong, Geumcheon-gu, Seoul, Korea, 153-704 TEL: 82-2-515-5303 / FAX: 82-2-515-5302

Delta Electronics Int'l (S) Pte Ltd. 4 Kaki Bukit Ave 1, #05-05, Singapore 417939 TEL: 65-6747-5155 / FAX: 65-6744-9228

Delta Electronics (India) Pvt. Ltd. Plot No 43 Sector 35, HSIIDC Gurgaon, PIN 122001, Haryana, India TEL : 91-124-4874900 / FAX : 91-124-4874945

Americas Delta Products Corporation (USA) Raleigh Office P.O. Box 12173,5101 Davis Drive, Research Triangle Park, NC 27709, U.S.A. TEL: 1-919-767-3800 / FAX: 1-919-767-8080

Delta Greentech (Brasil) S.A. Sao Paulo Office Rua Itapeva, 26 - 3° andar Edificio Itapeva One-Bela Vista 01332-000-São Paulo-SP-Brazil TEL: 55 11 3568-3855 / FAX: 55 11 3568-3865

Europe

Deltronics (The Netherlands) B.V. Eindhoven Office De Witbogt 20, 5652 AG Eindhoven, The Netherlands TEL : +31-40-2592850 / FAX : +31-40-2592851

*We reserve the right to change the information in this manual without prior notice.

5012614202 2014-12

CHE2

0 H2000 Õ Ita T leav Se ٦. K **P**S 0 àd C ທ **P** σ Manual Т 0 atio 5 **Field** Oriente 0 Control Drive

Delta Heavy Load Application Field Oriented Control Drive CH2000 Series User Manual

PLEASE READ PRIOR TO INSTALLATION FOR SAFETY.

- AC input power must be disconnected before any wiring to the AC motor drive is made.
- ☑ Even if the power has been turned off, a charge may still remain in the DC-link capacitors with hazardous voltages before the POWER LED is OFF. Please do not touch the internal circuit and components.
- ☑ There are highly sensitive MOS components on the printed circuit boards. These components are especially sensitive to static electricity. Please do not touch these components or the circuit boards before taking anti-static measures. Never reassemble internal components or wiring.
- Ground the AC motor drive using the ground terminal. The grounding method must comply with the laws of the country where the AC motor drive is to be installed.
- ☑ DO NOT install the AC motor drive in a place subjected to high temperature, direct sunlight and inflammables.

- ☑ Never connect the AC motor drive output terminals U/T1, V/T2 and W/T3 directly to the AC mains circuit power supply.
- ☑ Only qualified persons are allowed to install, wire and maintain the AC motor drives.
- ☑ Even if the 3-phase AC motor is stop, a charge may still remain in the main circuit terminals of the AC motor drive with hazardous voltages.
- ☑ If the AC motor drive is stored in no charge condition for more than 3 months, the ambient temperature should not be higher than 30 ℃. Storage longer than one year is not recommended, it could result in the degradation of the electrolytic capacitors.
- Pay attention to the following when transporting and installing this package (including wooden crate, wood stave and carton box)
 - 1. If you need to sterilize, deform the wooden crate or carton box, please do not use steamed smoking sterilization or you will damage the VFD.
 - 2. Please use other ways to sterilize or deform.
 - 3. You may use high temperature to sterilize or deform. Leave the packaging materials in an environment of over 56℃ for 30 minutes.
 - 4. It is strictly forbidden to use steamed smoking sterilization. The warranty does not covered VFD damaged by steamed smoking sterilization.

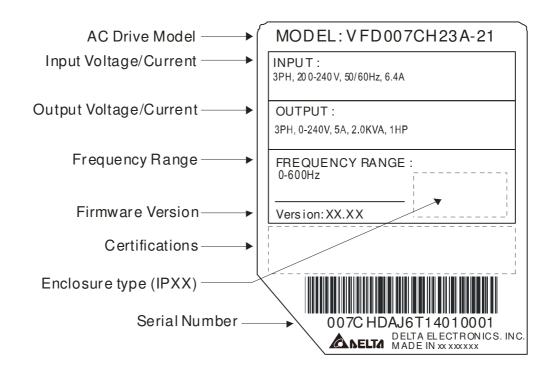
The content of this manual may be revised without prior notice. Please consult our distributors or download the most updated version at http://www.delta.com.tw/industrialautomation

Table of Contents

CHAPTER 1 INTRODUCTION	1-1
1-1 Receiving and Inspection	1-1
1-2 Nameplate Information	1-1
1-3 Model Name	1-2
1-4 Serial Number	1-2
1-5 RFI Jumper	
1-6 Dimensions	1-7
CHAPTER 2 INSTALLATION	2-1
2-1 Minimum Mounting Clearance and Installation	2-1
2-2 Minimum Mounting Clearance	2-2
CHAPTER 3 UNPACKING	
3-1 Unpacking	3-1
3-2 The Lifting Hook	
CHAPTER 4 WIRING	
4-1 Wiring	
4-2 System Wiring Diagram	4-6
CHAPTER 5 MAIN CIRCUIT TERMINALS	5-1
5-1 Main Circuit Diagram	5-1
5-2 Main Circuit Terminals	5-5
CHPATER 6 CONTROL TERMINALS	6-1
6-1 Specifications of Control Terminal	6-3
6-2 Analog input terminals (AVI, ACI, AUI, ACM)	
6-3 Remove the Terminal Block	6-7
CHAPTER 7 OPTIONAL ACCESSORIES	7-1
7-1 All Brake Resistors and Brake Units Used in AC Motor Drives	7-2
7-2 Non-fuse Circuit Breaker	
7-3 Fuse Specification Chart	7-6
7-4 AC/DC Reactor	7-7
7-5 Zero Phase Reactor	7-10
7-6 EMI Filter	7-12
7-7 Digital Keypad	
7-8 Panel Mounting	
7-9 Conduit Box Kit	
7-10 Fan Kit	7-28

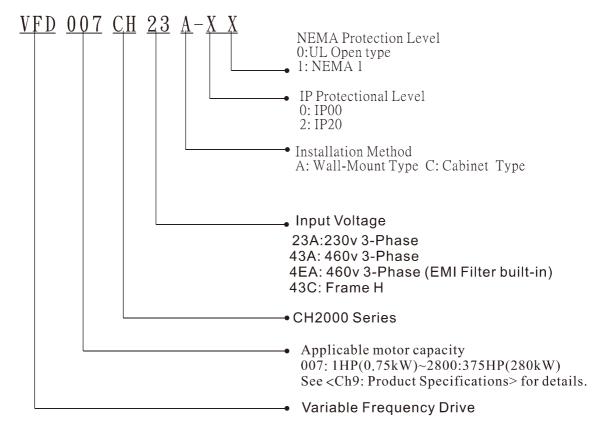
7-11 Flange Mounting Kit	7-43
7-12 USB/RS-485 Communication Interface IFD6530	7-56
CHAPTER 8 OPTION CARDS	8-1
8-1 Removed Key Cover	8-2
8-2 Screws Specification for Option Card Terminals	8-5
8-3 EMC-D42A	8-10
8-4 EMC-D611A	8-10
8-5 EMC-R6AA	8-10
8-6 EMC-BPS01	8-11
8-7 EMC-PG01/02L	
8-8 EMC-PG01/02O	
8-9 EMC-PG01/02U	
8-10 EMC-PG01R	
8-11 CMC-MOD01	
8-12 CMC-PD01	
8-13 CMC-DN01	
8-14 CMC-EIP01	
8-15 EMC-COP01	8-36
CHAPTER 9 SPECIFICATION	9-1
9-1 230V Series	9-1
9-2 460V Series	
9-3 Environment for Operation, Storage and Transportation	
9-4 Specification for Operation Temperature and Protection Level	
9-5 Derating of ambient tempeture and altitude	9-6
CHAPTER 10 DIGITAL KEYPAD	10-1
10-1 Descriptions of Digital Keypad	10-2
10-2 Function of Digital Keypad KPC-CC01	10-5
10-3 TPEditor Installation Instruction	10-23
10-4 Digital Keypad KPC-CC01 Fault Codes Descriptions	10-36
CHAPTER 11 SUMMARPY OF PARAMETERS SETTINGS	
CHAPTER 11 SUMMARPY OF PARAMETERS SETTINGS CHAPTER 12 DESCRIPTION OF PARAMETER SETTINGS	11-1
	11-1 12-1
CHAPTER 12 DESCRIPTION OF PARAMETER SETTINGS	11-1 12-1 13-1
CHAPTER 12 DESCRIPTION OF PARAMETER SETTINGS	11-1 12-1 13-1 14-1
CHAPTER 12 DESCRIPTION OF PARAMETER SETTINGS CHAPTER 13 WARNING CODES CHAPTER 14 FAULT CODES AND DESCRIPTIONS	11-1 12-1 13-1 14-1 15-1

CHAPTER 18 SUGGESTIONS AND ERROR CORRECTIONS FOR STANDA	ARD AC MOTOR DRIVES
CHAPTER 19 EMC STANDARD INSTALLATION GUIDE	19-1
CHAPTER 20 SAFETY TORQUE OFF FUNCTION	20-1
APPENENDIX A. PUBLICATION HISTORY	A-1

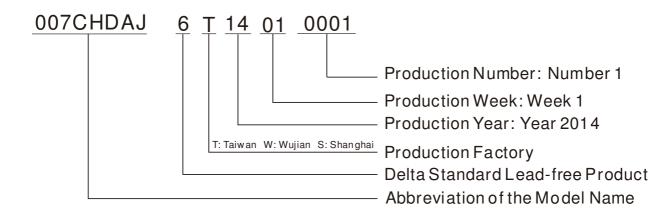

Application Control BD V1.20; Keypad V1.04;

Chapter 1 Introduction

1-1 Receiving and Inspection


After receiving the AC motor drive, please check for the following:

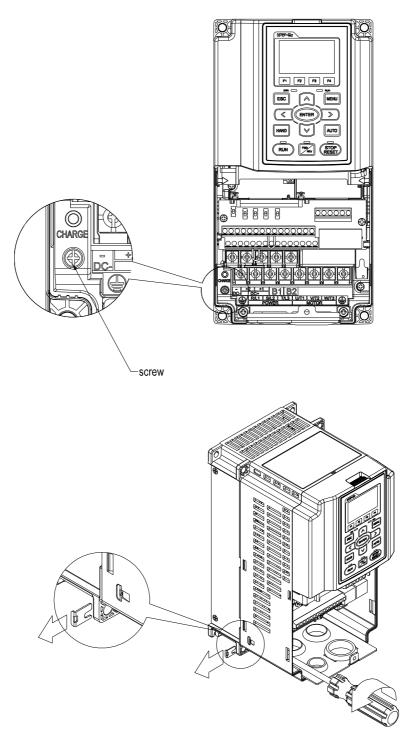
- 1. Please inspect the unit after unpacking to assure it was not damaged during shipment. Make sure that the part number printed on the package corresponds with the part number indicated on the nameplate.
- 2. Make sure that the voltage for the wiring lie within the range as indicated on the nameplate. Please install the AC motor drive according to this manual.
- 3. Before applying the power, please make sure that all the devices, including power, motor, control board and digital keypad, are connected correctly.
- 4. When wiring the AC motor drive, please make sure that the wiring of input terminals "R/L1, S/L2, T/L3" and output terminals"U/T1, V/T2, W/T3" are correct to prevent drive damage.
- 5. When power is applied, select the language and set parameter groups via the digital keypad (KPC-CC01). When executes trial run, please begin with a low speed and then gradually increases the speed untill the desired speed is reached.



1-2 Nameplate Information

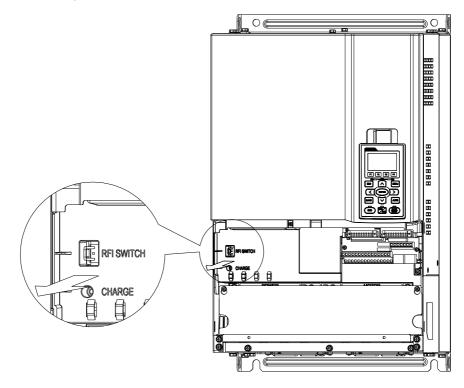
1-3 Model Name

1-4 Serial Number


1-5 RFI Jumper

RFI Jumper: The AC motor drive may emit the electrical noise. The RFI jumper is used to suppress the interference (Radio Frequency Interference) on the power line.

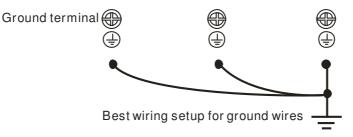
Frame A~C


Screw Torque: 8~10kg-cm(6.9-8.7 lb -in.)

Loosen the screws and remove the MOV-PLATE. Fasten the screws back to the original position after MOV-PLATE is removed.

Frame D0~H

Remove the MOV-PLATE by hands, no screws need to be loosen.



Isolating main power from ground:

When the power distribution system of the Power Regenerative Unit is a floating ground system (IT) or an asymmetric ground system (TN), the RFI short short-circuit cable must be cut off. Cutting off the short-circuit cable cuts off the internal RFI capacitor (filter capacitor) between the system's frame and the central circuits to avoid damaging the central circuits and (according to IEC 61800-3) reduce the ground leakage current.

Important points regarding ground connection

- ☑ To ensure the safety of personnel, proper operation, and to reduce electromagnetic radiation, the
 Power Regenerative Unit must be properly grounded during installation.
- $\ensuremath{\boxtimes}$ The diameter of the cables must meet the size specified by safety regulations.
- ☑ The shielded cable must be connected to the ground of the Power Regenerative Unit to meet safety regulations.
- ☑ The shielded cable can only be used as the ground for equipment when the aforementioned points are met.
- ☑ When installing multiple sets of Power Regenerative Units, do not connect the grounds of the Power Regenerative Units in series. As shown below

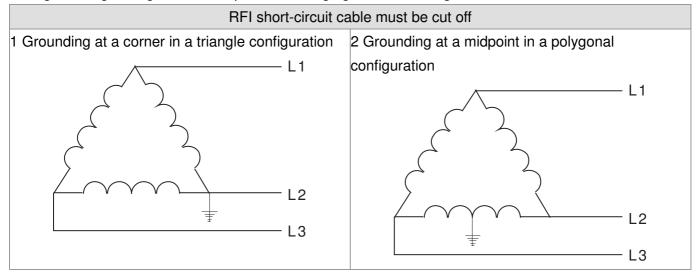
Pay particular attention to the following points:

- After turning on the main power, do not cut the RFI short-circuit cable while the power is on.
- ☑ Make sure the main power is turned off before cutting the RFI short-circuit cable.
- ☑ Cutting the RFI short-circuit cable will also cut off the conductivity of the capacitor. Gap discharge may occur once the transient voltage exceeds 1000V.

If the RFI short-circuit cable is cut, there will no longer be reliable electrical isolation. In other words, all controlled input and outputs can only be seen as low-voltage terminals with basic electrical isolation. Also, when the internal RFI capacitor is cut off, the Power Regenerative Unit will no longer be electromagnetic compatible.

- \square The RFI short-circuit cable may not be cut off if the main power is a grounded power system.
- ☑ The RFI short-circuit cable may not be cut off while conducting high voltage tests. When conducting a high voltage test to the entire facility, the main power and the motor must be disconnected if leakage current is too high.

Floating Ground System(IT Systems)

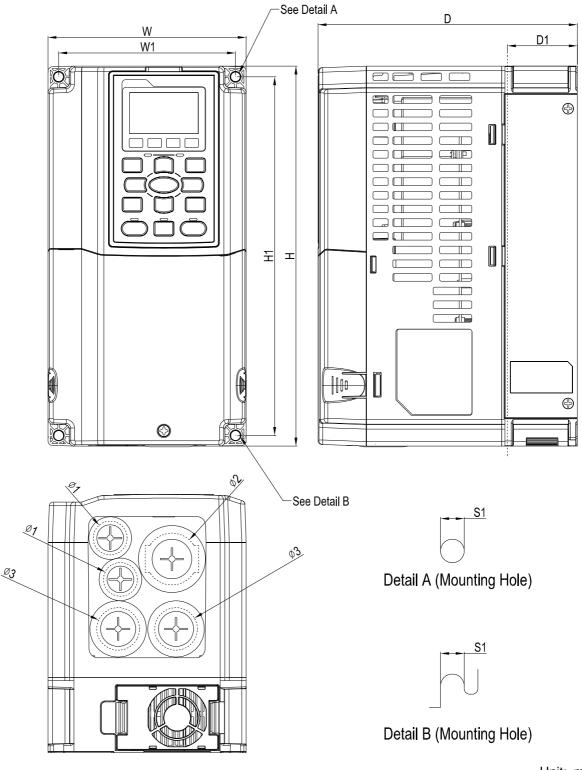

A floating ground system is also called IT system, ungrounded system, or high impedance/resistance (greater than 30Ω) grounding system.

- $\ensuremath{\boxtimes}$ Disconnect the ground cable from the internal EMC filter.
- ☑ In situations where EMC is required, check whether there is excess electromagnetic radiation affecting nearby low-voltage circuits. In some situations, the adapter and cable naturally provide enough suppression. If in doubt, install an extra electrostatic shielded cable on the power supply side between the main circuit and the control terminals to increase security.
- ☑ Do not install an external RFI/EMC filter, the EMC filter will pass through a filter capacitor, thus connecting power input to ground. This is very dangerous and can easily damage the Power Regenerative Unit.

Asymmetric Ground System(Corner Grounded TN Systems)

Caution: Do not cut the RFI short-circuit cable while the input terminal of the Power Regenerative Unit carries power.

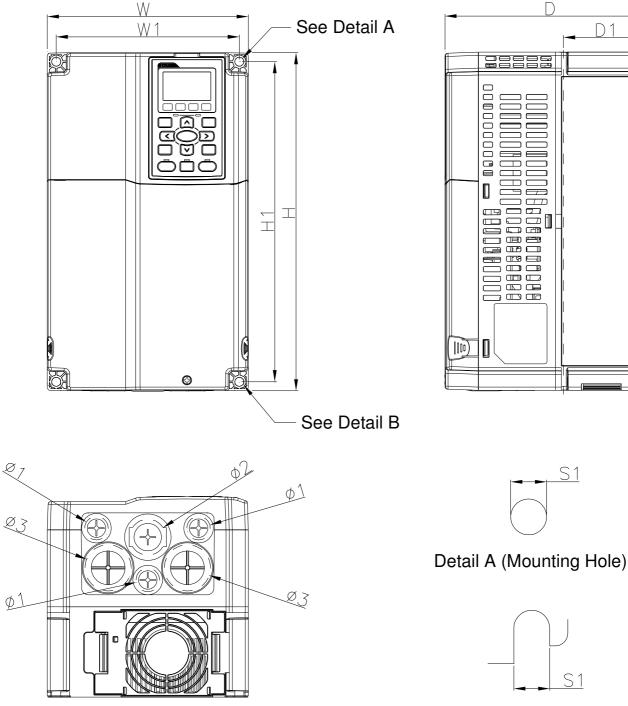
In the following four situations, the RFI short-circuit cable must be cut off. This is to prevent the system from grounding through the RFI capacitor, damaging the Power Regenerative Unit.


Chapter 1 Introduction

1-6 Dimensions

Frame A

VFD007CH23A-21, VFD015CH23A-21, VFD022CH23A-21, VFD037CH23A-21, VFD055CH43A-21, VFD007CH43A-21, VFD015CH43A-21, VFD022CH43A-21, VFD037CH43A-21, VFD055CH43A-21, VFD007CH4EA-21, VFD015CH4EA-21, VFD022CH4EA-21, VFD037CH4EA-21, VFD055CH4EA-21


Unit:	mm	[inch]

Frame	W	Н	D	W1	H1	D1*	S1	Φ1	Ф2	Ф3
A1	130.0	250.0	170.0	116.0	236.0	45.8	6.2	22.2	34.0	28.0
	[5.12]	[9.84]	[6.69]	[4.57]	[9.29]	[1.80]	[0.24]	[0.87]	[1.34]	[1.10]
										ao mountino

Chapter 1 Introduction

Frame B

VFD055CH23A-21, VFD075CH23A-21, VFD110CH23A-21, VFD075CH43A-21, VFD110CH43A-21, VFD150CH43A-21, VFD075CH4EA-21, VFD110CH4EA-21, VFD150CH4EA-21

Detail B (Mounting Hole)

S 1

S1

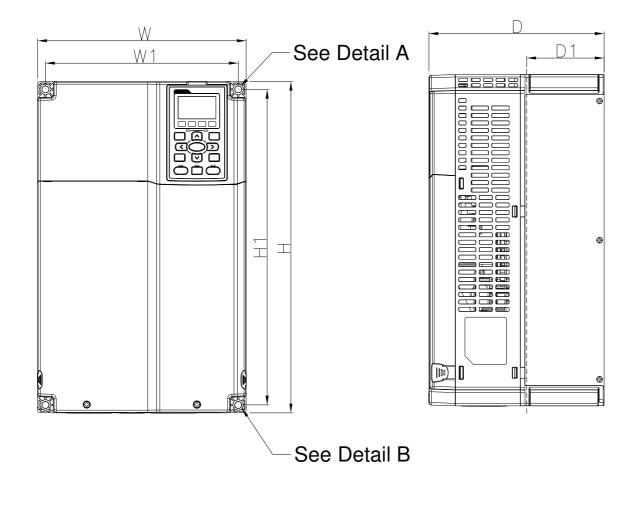
 \square

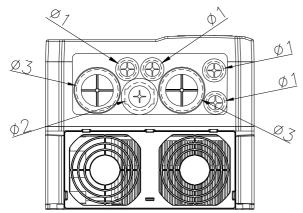
D1

A

Θ

Unit: mm [inch]


Frame	W	Н	D	W1	H1	D1*	S1	Φ1	Ф2	Ф3
B1	190.0	320.0	190.0	173.0	303.0	77.9	8.5	22.2	34.0	43.8
Ы	[7.48]	[12.60]	[7.48]	[6.81]	[11.93]	[3.07]	[0.33]	[0.87]	[1.34]	[1.72]


Frame C

VFD150CH23A-21, VFD185CH23A-21,

VFD185CH43A-21, VFD220CH43A-21, VFD300CH43A-21,

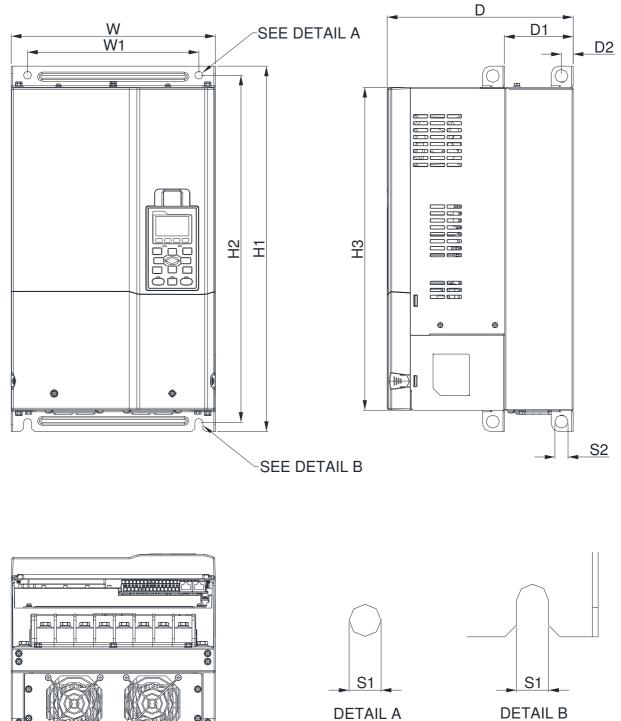
VFD185CH4EA-21, VFD220CH4EA-21, VFD300CH4EA-21

Detail A (Mounting Hole)

Detail B (Mounting Hole)

Unit: mm [inch]

Frame	W	Н	D	W1	H1	D1*	S1	Ф1	Ф2	Ф3
C1	250.0	400.0	210.0	231.0	381.0	92.9	8.5	22.2	34.0	50.0
	[9.84]	[15.75]	[8.27]	[9.09]	[15.00]	[3.66]	[0.33]	[0.87]	[1.34]	[1.97]


Chapter 1 Introduction

Frame D0

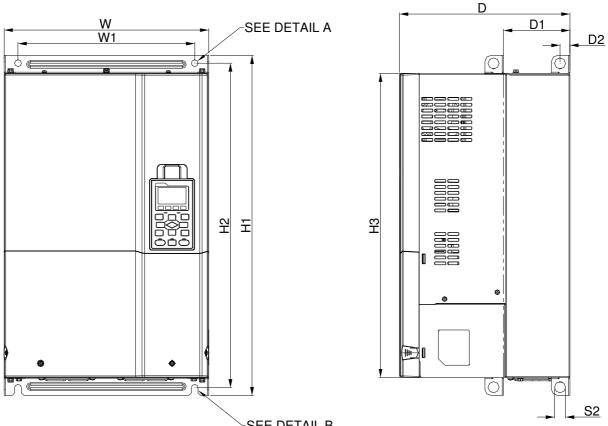
D0: VFD370CH43S-21

×

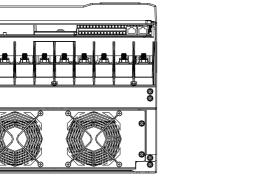
ର୍

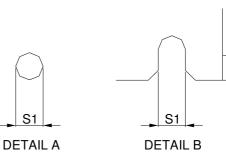
DETAIL A (MOUNTING HOLE)

Unit: mm [inch]


(MOUNTING HOLE)

Frame	W	H1	D	W1	H2	H3	D1*	D2	S1	S2
D0-1	280.0	500.0	255.0	235.0	475.0	442.0	94.2	16.0	11.0	18.0
D0-1	[11.02]	[19.69]	[10.04]	[9.25]	[18.70]	[17.40]	[3.71]	[0.63]	[0.43]	[0.71]

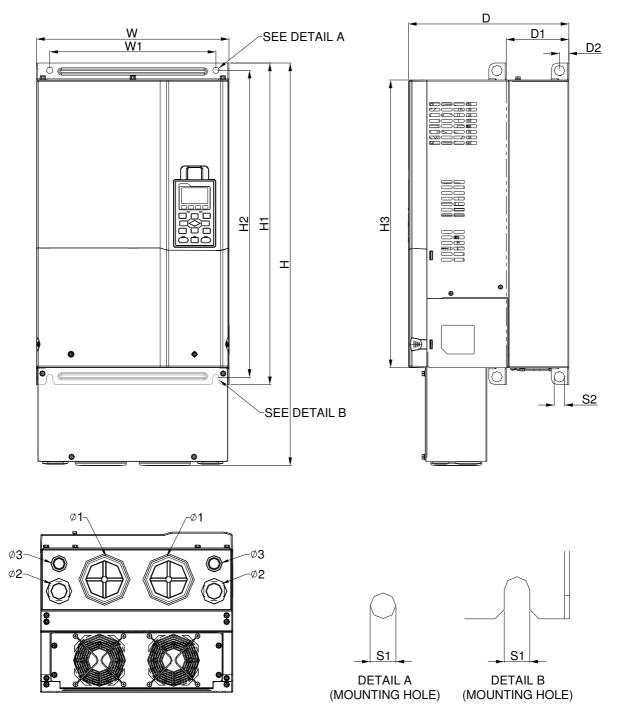

Frame D


D1: VFD220CH23A-00, VFD300CH23A-00, VFD370CH23A-00, VFD370CH43A-00, VFD450CH43A-00,

VFD550CH43A-00, VFD750CH43A-00

SEE DETAIL B

(MOUNTING HOLE)

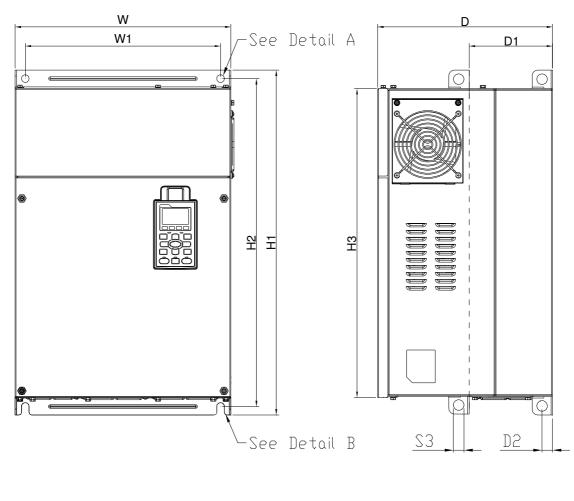

(MOUNTING HOLE)

Unit: mm [inch]

	Frame	W	Н	D	W1	H1	H2	H3	D1*	D2	S1	S2	Φ1	Ф2	Ф3
F	D1	330.0	-	275.0	285.0	550.0	525.0	492.0	107.2	16.0	11.0	18.0			
		[12.99]		[10.83]	[11.22]	[21.65]	[20.67]	[19.37]	[4.22]	[0.63]	[0.43]	[0.71]	-	-	-

Frame D

D2: VFD220CH23A-21, VFD300CH23A-21, VFD370CH23A-21, VFD370CH43A-21, VFD450CH43A-21, VFD550CH43A-21, VFD750CH43A-21

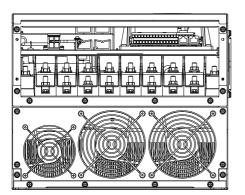


Unit: mm [inch]

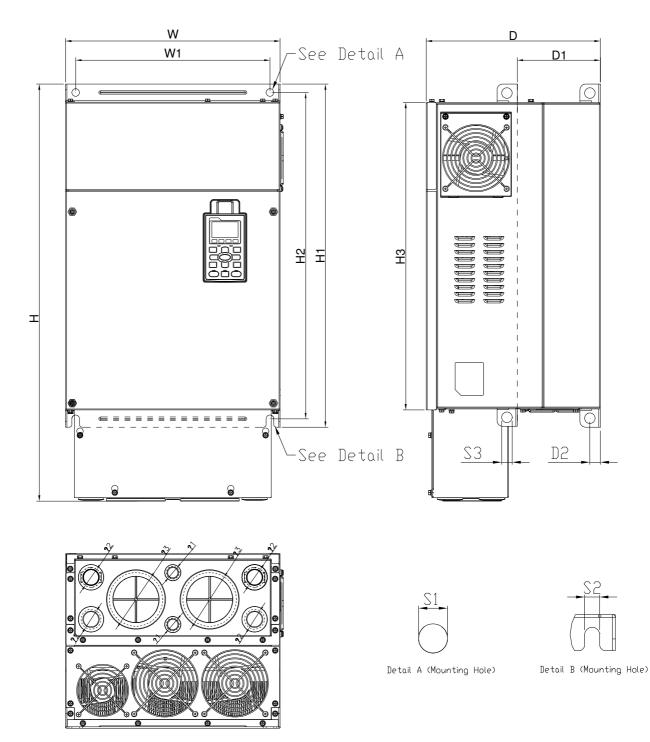
Frar	ne W	Н	D	W1	H1	H2	H3	D1*	D2	S1	S2	Φ1	Ф2	Ф3
D2	330.0	688.3	275.0	285.0	550.0	525.0	492.0	107.2	16.0	11.0	18.0	76.2	34.0	22.0
D2	[12.99]	[27.10]	[10.83]	[11.22]	[21.65]	[20.67]	[19.37]	[4.22]	[0.63]	[0.43]	[0.71]	[3.00]	[1.34]	[0.87]

Frame E

E1: VFD450CH23A-00, VFD550CH23A-00, VFD900CH43A-00, VFD1100CH43A-00



Detail B (Mounting Hole)

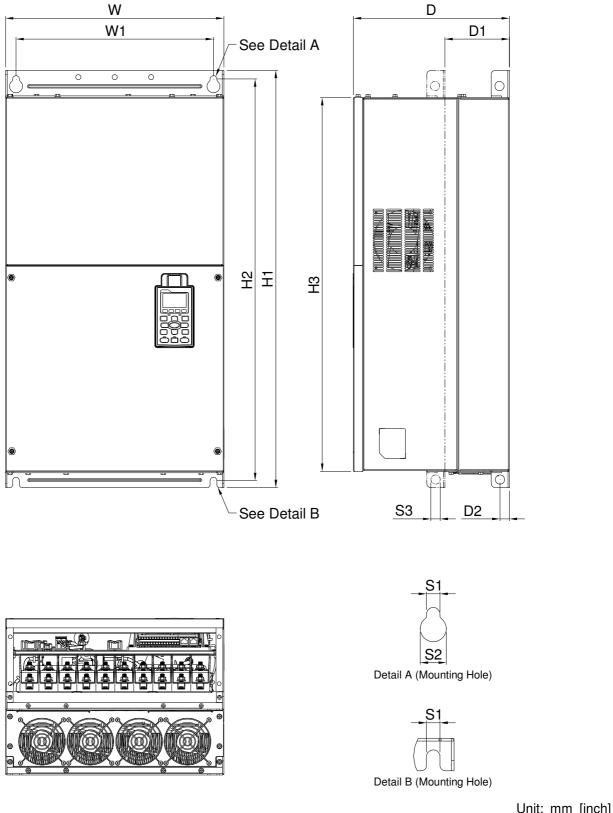


Unit:	mm	[inch]

F	rame	W	Н	D	W1	H1	H2	H3	D1*	D2	S1, S2	S3	Φ1	Ф2	ФЗ
	E1	370.0		300.0	335.0	589	560.0	528.0	143.0	18.0	13.0	18.0	-	-	-
		[14.57]	-	[11.81]	[13.19	[23.19]	[22.05]	[20.80]	[5.63]	[0.71]	[0.51]	[0.71]			

Frame E

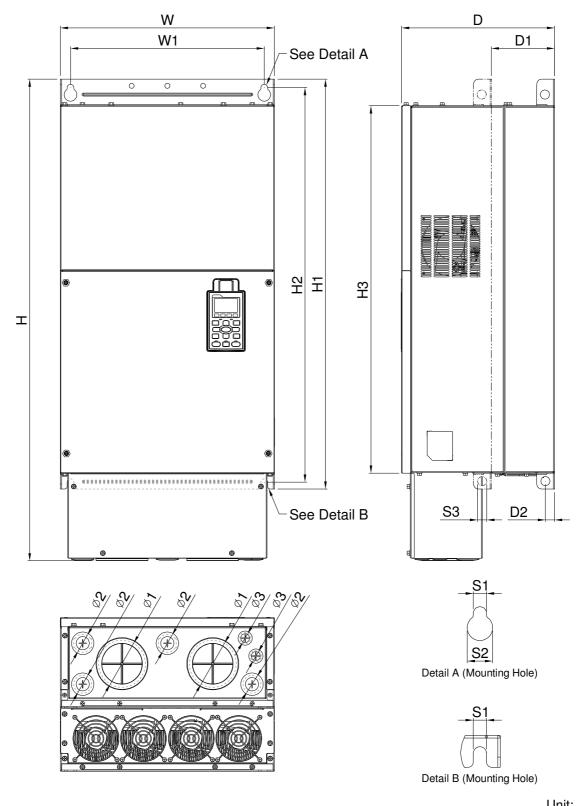
E2: VFD450CH23A-21, VFD550CH23A-21, VFD900CH43A-21, VFD1100CH43A-21



Unit:	mm	[inch]

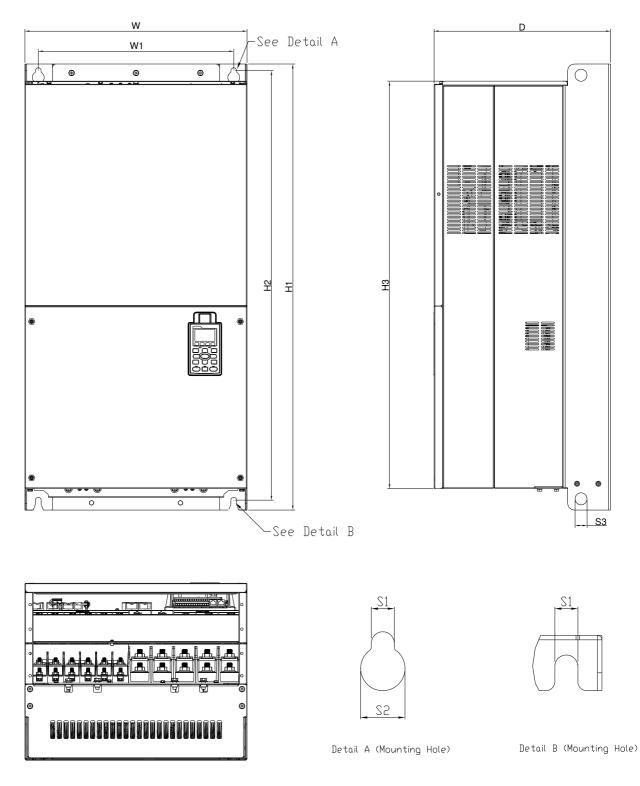
Frame	W	Н	D	W1	H1	H2	H3	D1*	D2	S1, S2	S3	Φ1	Ф2	ФЗ
E2	370.0	715.8	300.0	335.0	589	560.0	528.0	143.0	18.0	13.0	18.0	22.0	34.0	92.0
E2	[14.57]	[28.18]	[11.81]	[13.19	[23.19]	[22.05]	[20.80]	[5.63]	[0.71]	[0.51]	[0.71]	[0.87]	[1.34]	[3.62]

Frame F


F1: VFD750CH23A-00, VFD1320CH43A-00

Frame	W	Н	D	W1	H1	H2	HЗ	D1*	D2	S1	S2	S3
F1	420.0 [16.54]	-	300.0 [11.81]	380.0 [14.96]	800.0 [31.50]	770.0 [30.32]	717.0 [28.23]	124.0 [4.88]	18.0 [0.71]	13.0 [0.51]	25.0 [0.98]	18.0 [0.71]

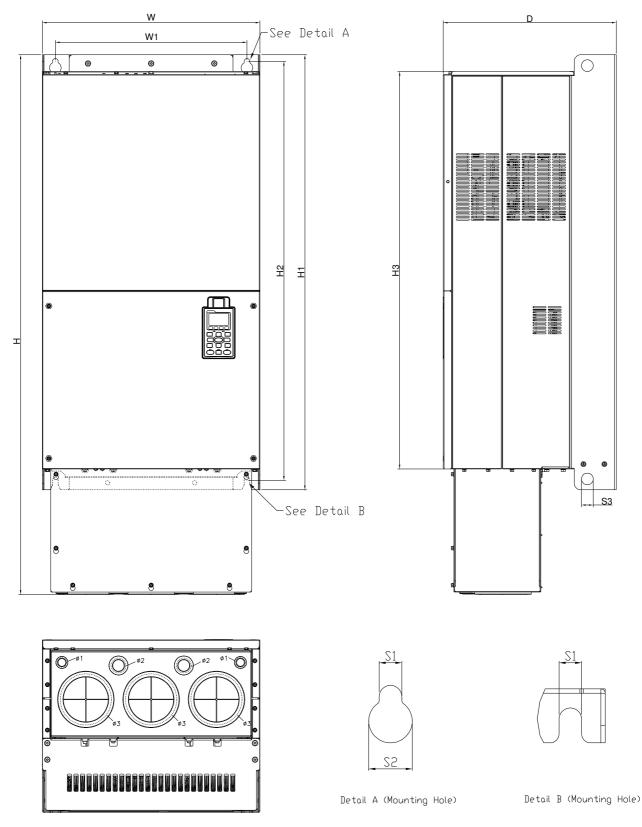
Frame F


F2: VFD750CH23A-21, VFD1320CH43A-21

											Unit:	mm [inch]
Frame	W	Н	D	W1	H1	H2	H3	D1*	D2	S1	S2	S3
F2	420.0 [16.54]	940.0 [37.00]	300.0 [11.81]	380.0 [14.96]	800.0 [31.50]	770.0 [30.32]	717.0 [28.23]	124.0 [4.88]	18.0 [0.71]	13.0 [0.51]	25.0 [0.98]	18.0 [0.71]
Frame	Φ1	Ф2	Ф3									
F2	92.0 [3.62]	35.0 [1.38]	22.0 [0.87]									

Frame G

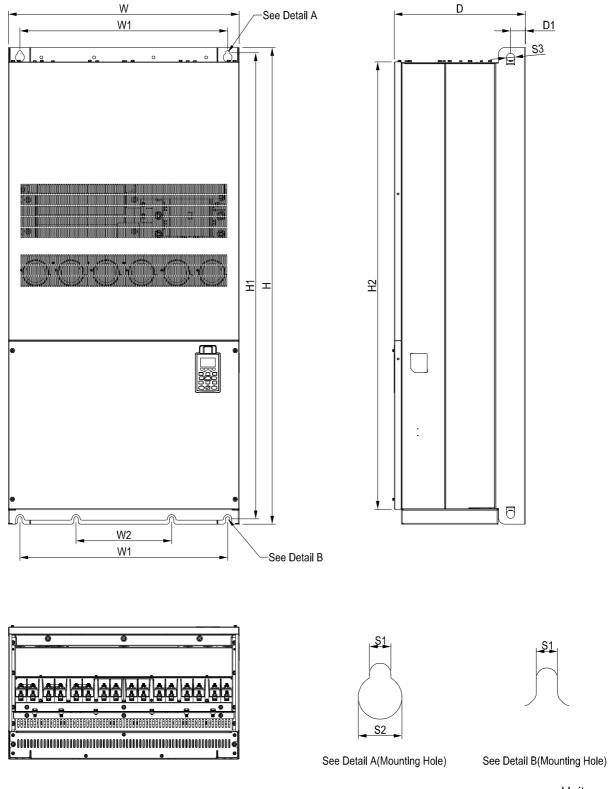
G1: VFD1600CH43A-00, VFD1850CH43A-00, VFD2200CH43A-00



Unit:	mm	[inch]
Onit.		luioui

Frame	W	Н	D	W1	H1	H2	H3	S1	S2	S3	Φ1	Ф2	Ф3
0.1	500.0		397.0	440.0	1000.0	963.0	913.6	13.0	26.5	27.0			
G1	[19.69]	-	[15.63]	[217.32]	[39.37]	[37.91]	[35.97]	[0.51]	[1.04]	[1.06]	-	-	-

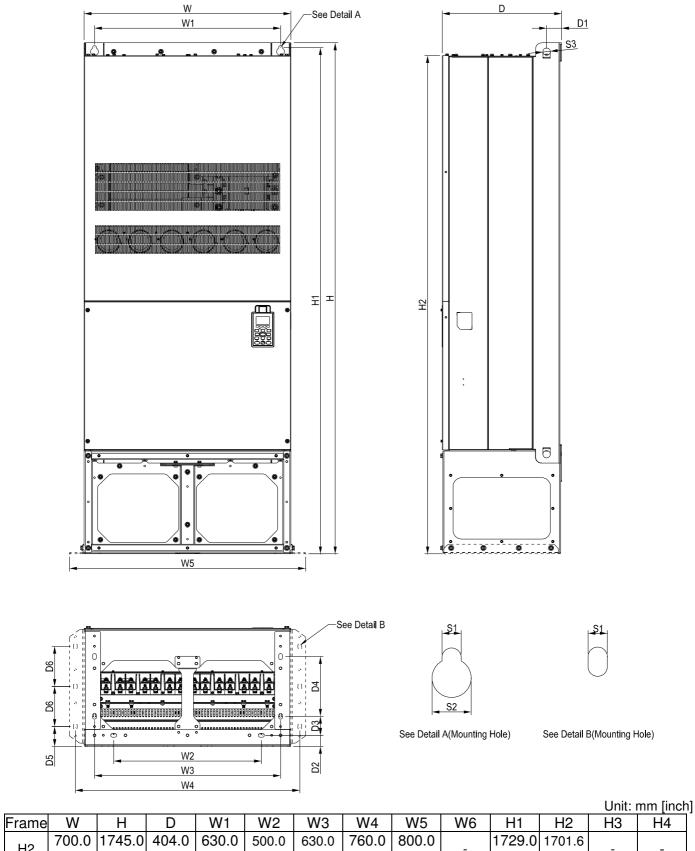
Frame G


G2: VFD1600CH43A-21, VFD1850CH43A-21, VFD2200CH43A-21

Unit: mm [inch]

Fra	ame	W	Н	D	W1	H1	H2	H3	S1	S2	S3	Φ1	Ф2	ФЗ
								913.6		26.5	27.0	22.0	34.0	117.5
Ċ	3 2	[19.69]	[48.83]	[15.63]	[217.32]	[39.37]	[37.91]	[35.97]	[0.51]	[1.04]	[1.06]	[0.87]	[1.34]	[4.63]

Frame H H1: VFD2800CH43A-00


Unit: mm [inch]

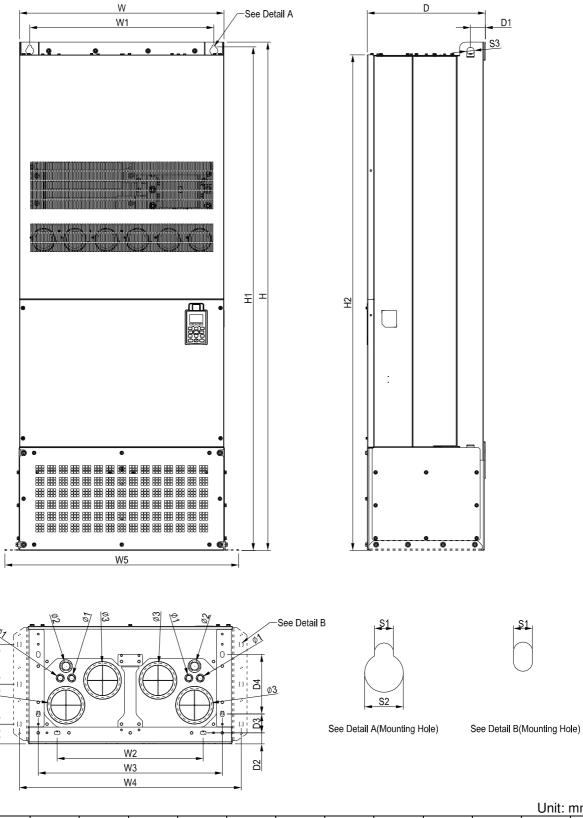
Frame	W	Н	D	W1	W2	W3	W4	W5	W6	H1	H2	H3	H4
H1	700.0 [27.56]	1435.0 [56.5]	398.0 [15.67]	630.0 [24.8]	290.0 [11.42]	-	-	-	-		1346.6 [53.02]		-
Frame	H5	D1	D2	D3	D4	D5	D6	S1	S2	S3	Ф1	Ф2	ФЗ
H1	-	45.0 [1.77]	-	-	-	-	-	13.0 [0.51]	26.5 [1.04]	25.0 [0.98]	-	-	-

Chapter 1 Introduction

Frame H

H2: VFD2800CH43C-00

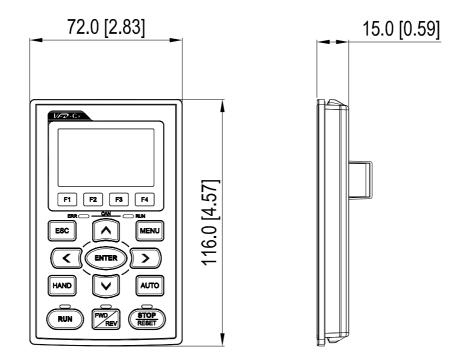
Frame	W	Н	D	W1	W2	W3	W4	W5	W6	H1	H2	H3	H4
H2		1745.0 [68.70]			500.0 [19.69]	630.0 [24.8]	760.0 [29.92]	800.0 [31.5]	-	1729.0 [68.07]		-	-
Frame	H5	D1	D2	D3	D4	D5	D6	S1	S2	S3	Φ1	Ф2	ФЗ
H2	-	51.0 [2.01]	38.0 [1.50]	65.0 [2.56]	204.0 [8.03]	68.0 [2.68]	137.0 [5.39]	13.0 [0.51]	26.5 [1.04]	25.0 [0.98]	-	-	-


Frame H H3: VFD2800CH43C-21

80

90

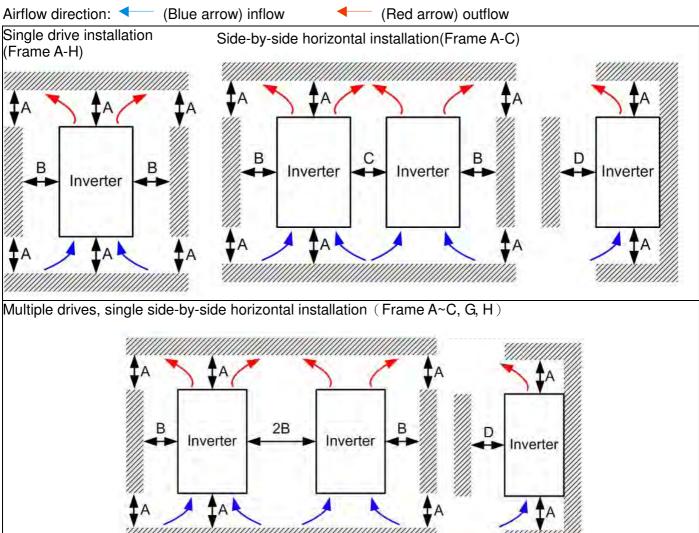
D5

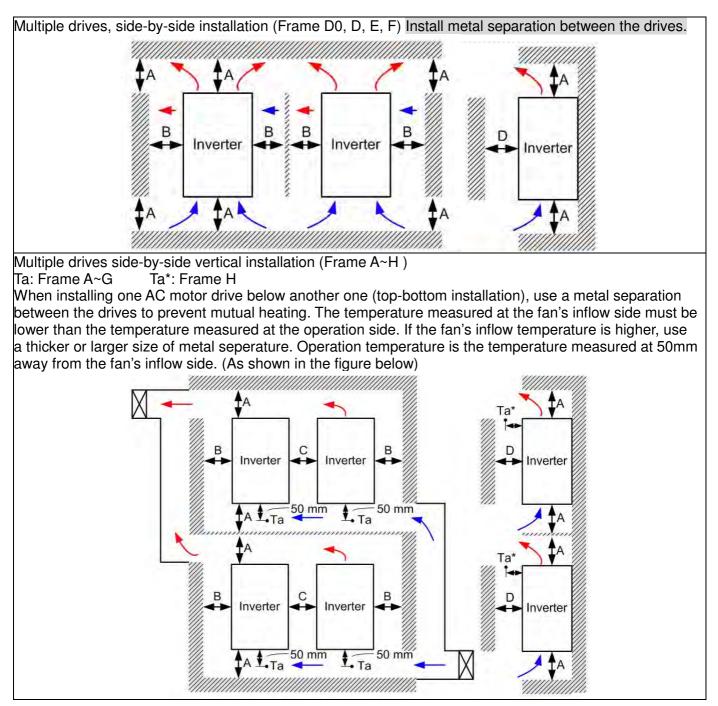

ø3

												Unit: ı	mm [inch]
Frame	W	Н	D	W1	W2	W3	W4	W5	W6	H1	H2	H3	H4
НЗ	700.0	1745.0	404.0	630.0	500.0	630.0	760.0	800.0	_	1729.0	1701.6	_	_
ПЭ	[27.56]	[68.70]	[15.91]	[24.8]	[19.69]	[24.8]	[29.92]	[31.5]	-	[68.07]	[66.99]	-	-
Frame	H5	D1	D2	D3	D4	D5	D6	S1	S2	S3	Ф1	Ф2	ФЗ
Цр	-	51.0	38.0	65.0	204.0	68.0	137.0	13.0	26.5	25.0	22.0	34.0	117.5
H3		[2.01]	[1.50]	[2.56]	[8.03]	[2.68]	[5.39]	[0.51]	[1.04]	[0.98]	[0.87]	[1.34]	[4.63]

Chapter 1 Introduction

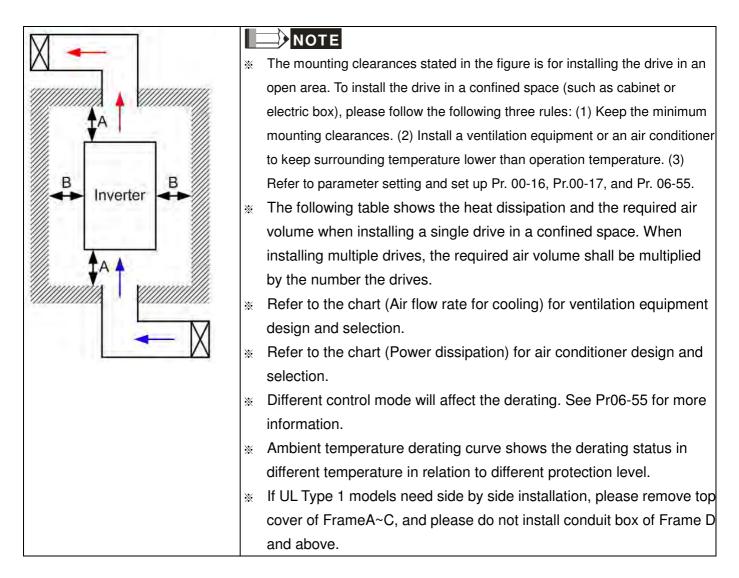
Digital Keypad KPC-CC01


Chapter 2 Installation


2-1 Minimum Mounting Clearance and Installation

- ☑ Prevent fiber particles, scraps of paper, shredded wood saw dust, metal particles, etc. from adhereing to the heat sink
- Install the AC motor drive in a metal cabinet. When installing one drive below another one, use a metal separation between the AC motor drives to prevent mutual heating and to prevent the risk of fire accident.
- Install the AC motor drive in Pollution Degree 2 environments only: normallyl only nonconductive pollution occurs and temporary conductivity caused by condensation is expected.

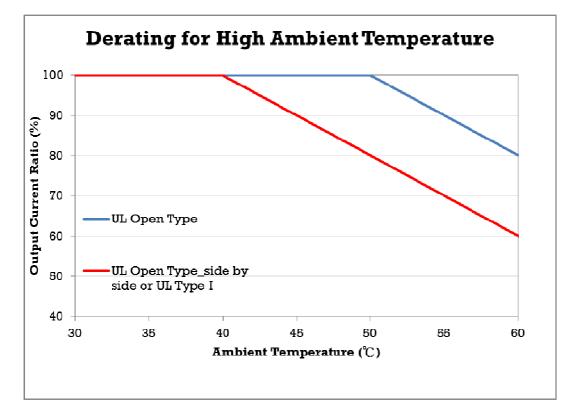
The appearances shown in the following figures are for reference only.


2-2 Minimum mounting clearance

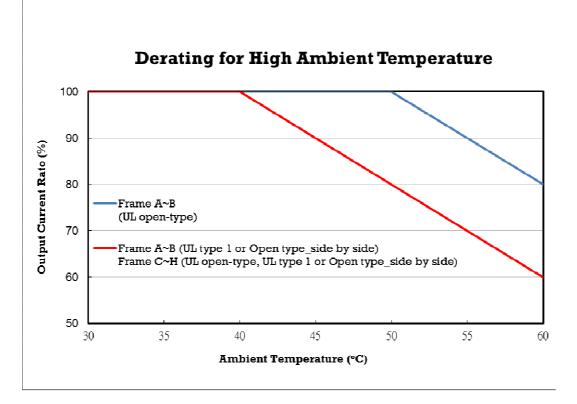
Frame	A (mm)	B (mm)	C (mm)	D (mm)						
A~C	60	30	10	0						
D0~F	100	100 50 - 0								
G	200	100	-	0						
Н	350									
Frame A	VFD007CH43A/4E		3A/4EA-21, VFD02	21, VFD037CH23A-21, 22CH43A/4EA-21,						
Frame B			1,VFD110CH23A-2 3A/4EA-21, VFD15							
Frame C	VFD150CH23A-21,VFD185CH23A-21, VFD185CH43A/4EA-21, VFD220CH43A/4EA-21,VFD300CH43A/4EA-21									
Frame D0	VFD370CH43S-21									

Lromo II	VFD220CH23A-00/21, VFD300CH23A-00/21, VFD370CH23A-00/21, VFD370CH43A-00/21, VFD450CH43A-00/21, VFD550CH43A-00/21, VFD550CH43A-00/21, VFD750CH43A-00/21
Frame E	VFD450CH23A-00/21, VFD550CH23A-00/21, VFD900CH43A-00/21, VFD1100CH43A-00/21
Frame F	VFD750CH23A-00/21, VFD1320CH43A-00/21
Frame G	VFD1600CH43A-00/21, VFD1850CH43A-00/21, VFD2200CH43A-00/21
Frame H	VFD2800CH43A-00, VFD2800CH43C-00, VFD2800CH43C-21

1. The minimum mounting clearances stated in the table above applies to AC motor drives frame A to D. A drive fails to follow the minimum mounting clearances may cause the fan to malfunction and heat dissipation problem.

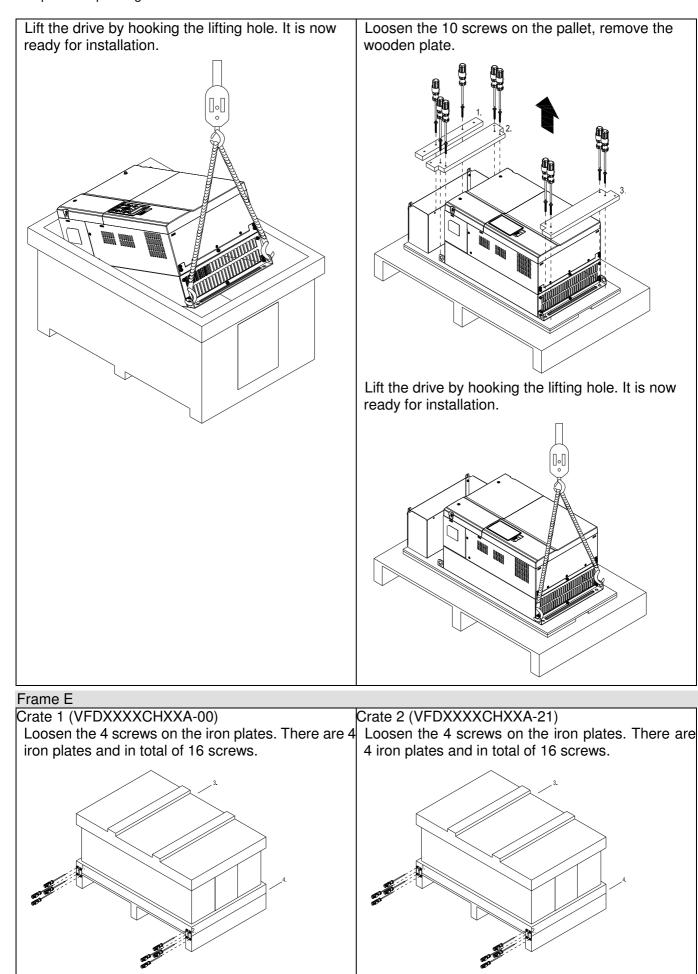


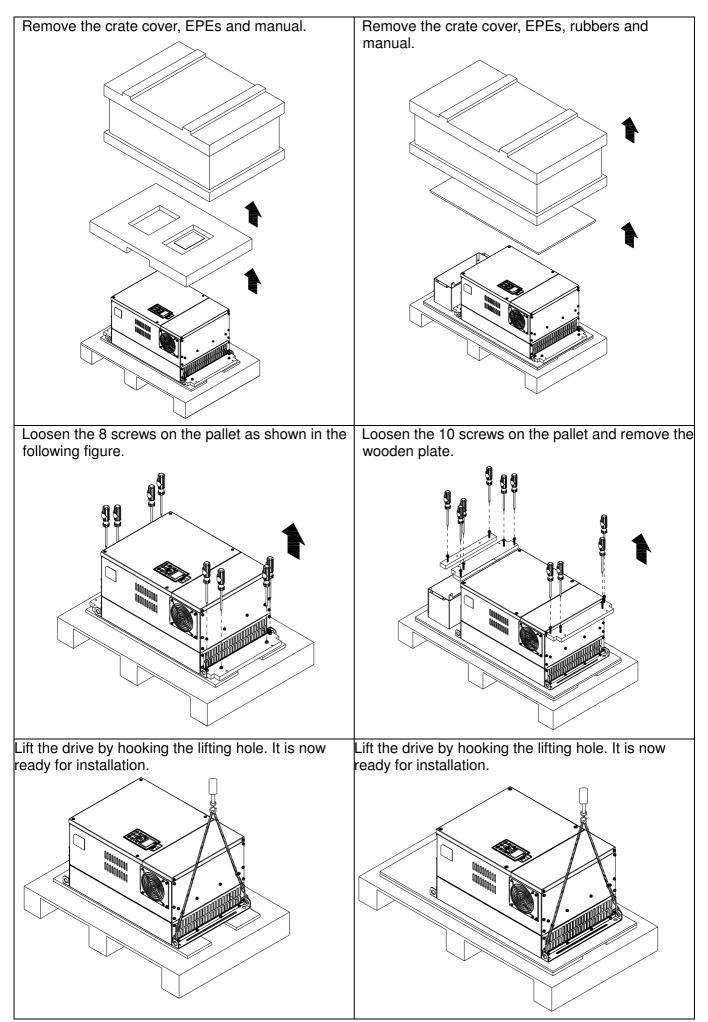
Air flow rate for cooling								Power Dissipation			
	Flow	Flow Rate (cfm)		Flow Rate (m ³		/hr)	Power Dissipatior		ו (watt)		
Model No.	External	Internal	Total	External	Internal	Total	Loss External (Heat sink)	Internal	Total		
VFD007CH23A-21	-	-	-	-	-	-	38	27	65		
VFD015CH23A-21	14	-	14	24	-	24	59	31	90		
VFD022CH23A-21	14	-	14	24	-	24	80	36	116		
VFD037CH23A-21	10	-	10	17	-	17	127	46	173		
VFD055CH23A-21	40	14	54	68	24	92	223	67	290		
VFD075CH23A-21	66	14	80	112	24	136	306	86	392		
VFD110CH23A-21	58	14	72	99	24	136	432	121	553		
VFD150CH23A-21	166	12	178	282	20	302	499	161	660		
VFD185CH23A-21	166	12	178	282	20	302	589	184	773		
VFD220CH23A-21	179	30	209	304	51	355	737	216	953		
VFD300CH23A-21	179	30	209	304	51	355	1001	186	1187		
VFD370CH23A-00/23A-21	179	30	209	304	51	355	1064	220	1284		
VFD450CH23A-00/23A-21	228	73	301	387	124	511	1238	267	1505		
VFD550CH23A-00/23A-21	246	73	319	418	124	542	1505	308	1813		
VFD750CH23A-00/23A-21	224	112	346	381	190	571	1758	369	2127		
VFD007CH43A/4EA-21	-	-	-	-	-	-	43	25	68		
VFD015CH43A/4EA-21	14	-	14	24	-	24	59	29	88		
VFD022CH43A/4EA-21	14	-	14	24	-	24	76	33	109		
VFD037CH43A/4EA-21	10	-	10	17	-	17	118	42	160		
VFD055CH43A/4EA-21	14	-	14	24	-	24	152	46	198		
VFD075CH43A/4EA-21	40	14	54	68	24	92	260	76	336		
VFD110CH43A/4EA-21	58	14	72	99	24	124	348	93	441		
VFD150CH43A/4EA-21	58	14	72	99	24	124	469	122	591		
VFD185CH43A/4EA-21	99	21	120	168	36	204	445	138	583		
VFD220CH43A/4EA-21	99	21	120	168	36	204	509	158	667		
VFD300CH43A/4EA-21	99	21	120	168	36	204	655	211	866		
VFD370CH43S-21	179	30	209	304	51	355	809	184	993		
VFD370CH43A/4EA-21	147	30	177	248	21	269	863	184	1047		
VFD450CH43A-00/43A-21	179	30	209	304	51	355	1162	218	1380		
VFD550CH43A-00/43A-21	186	30	216	316	51	367	1384	257	1641		
VFD750CH43A-00/43A-21	186	30	216	316	51	367	1878	334	2212		
VFD900CH43A-00/43A-21	257	73	330	437	124	561	1878	399	2277		
VFD1100CH43A-00/43A-21	223	73	296	379	124	503	2336	491	2827		
VFD1320CH43A-00/43A-21	224	112	336	381	190	571	2680	579	3259		
VFD1600CH43A-00/43A-21			454			771			4179		
VFD1850CH43A-00/43A-21			454	1		771			5011		


Air flow	Power Dissipation					
VFD2200CH43A-00/43A-21	454		771			6168
VFD2800CH43A-00/43C-00/43C-21	769		1307			7059
 The required airflow shown in ch space. When installing the multiple drive required air volume for single dri 	es, the required air vo	- lume should be t	he	s s c V n V d b d d o F e c v	The heat diss shown in the s for installing ingle drive in confined space When installing nultiple drive rolume of heat lissipation sho be the heat lissipated for lrive X the nu of the drives. Heat dissipation cach model is calculated by roltage, current lefault carrient	chart g n a ce. ng the s, at nould r single umber ion for s rated ent and

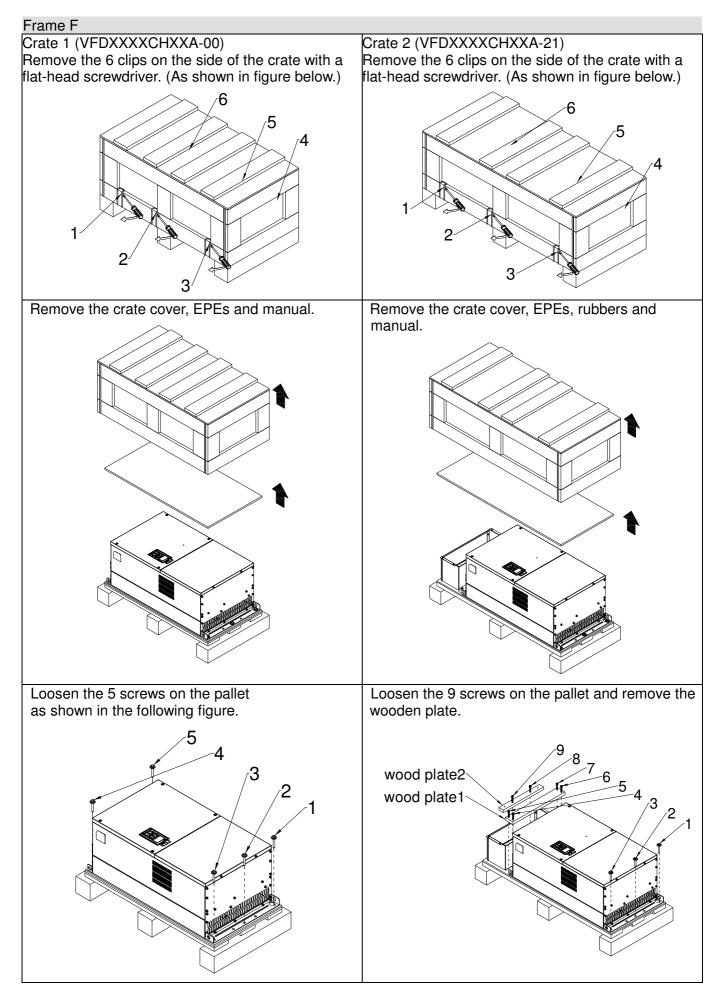
Normal control Ambient temperature derating curve

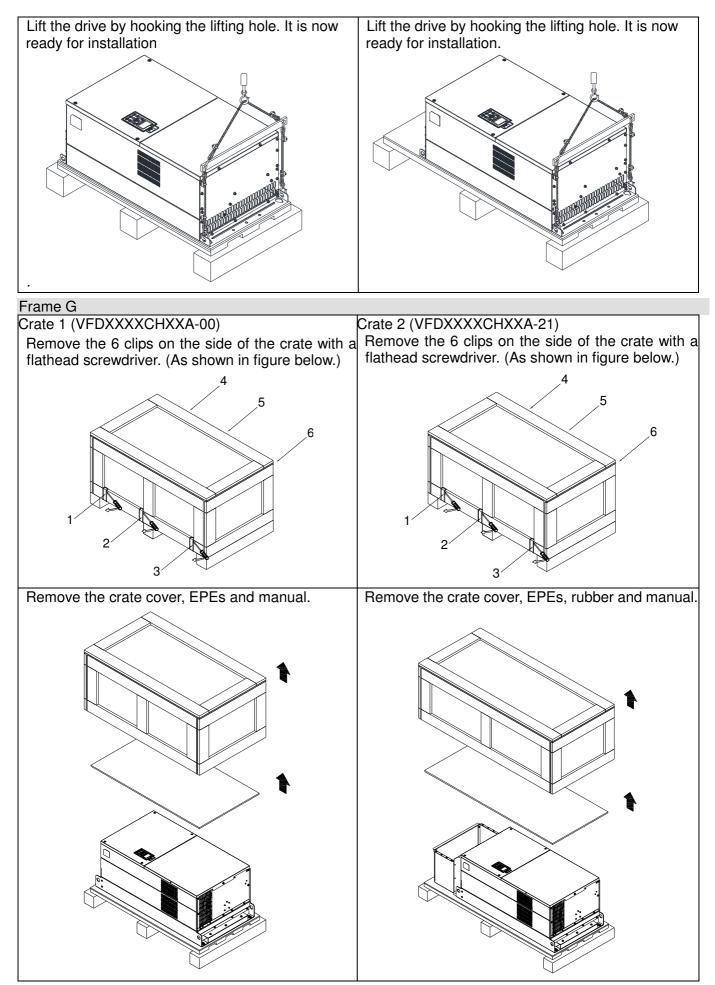
Advanced control Ambient temperature derating curve

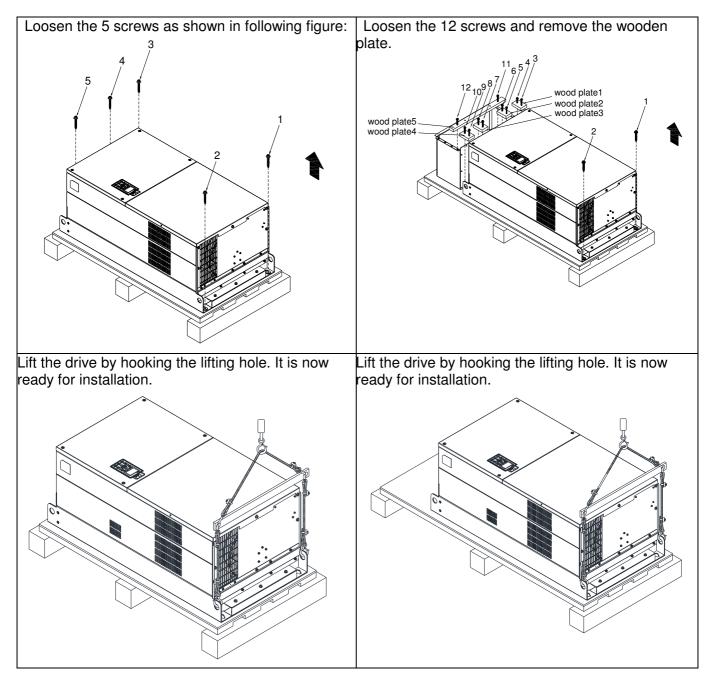

Chapter 3 Unpacking


The AC motor drive should be kept in the shipping carton or crate before installation. In order to retain the warranty coverage, the AC motor drive should be stored properly when it is not to be used for an extended period of time.

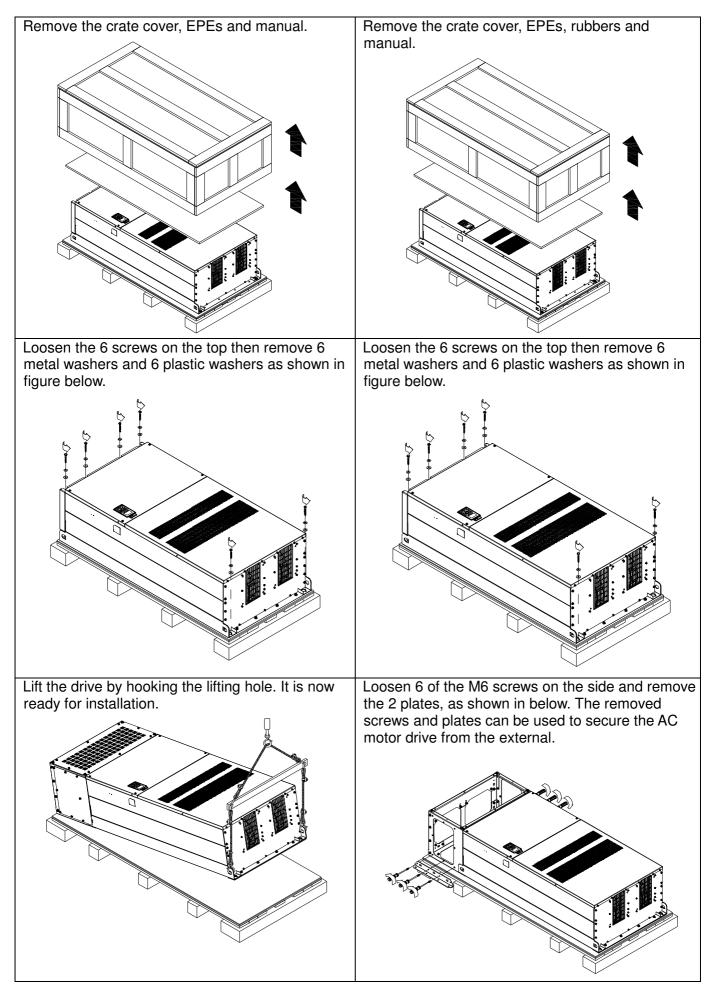
3-1 Unpacking

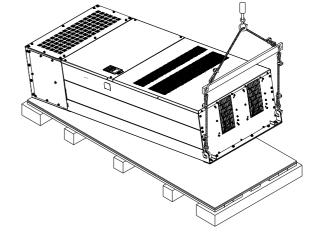

The AC motor drive is packed in the crate. Follows the following step for unpack:


Frame D Crate 1 (VFDXXXCHXXA-00) Crate 2 (VFDXXXCHXXA-21) Loosen the 12 cover screws to open the crate. Loosen the 4 screws on the iron plates. There are 4 iron plates and in total of 16 screws. Remove the EPEs and manual. Remove the crate cover, EPEs, rubber and manual. Loosen the 8 screws that fastened on the pallet and remove the wooden plate.

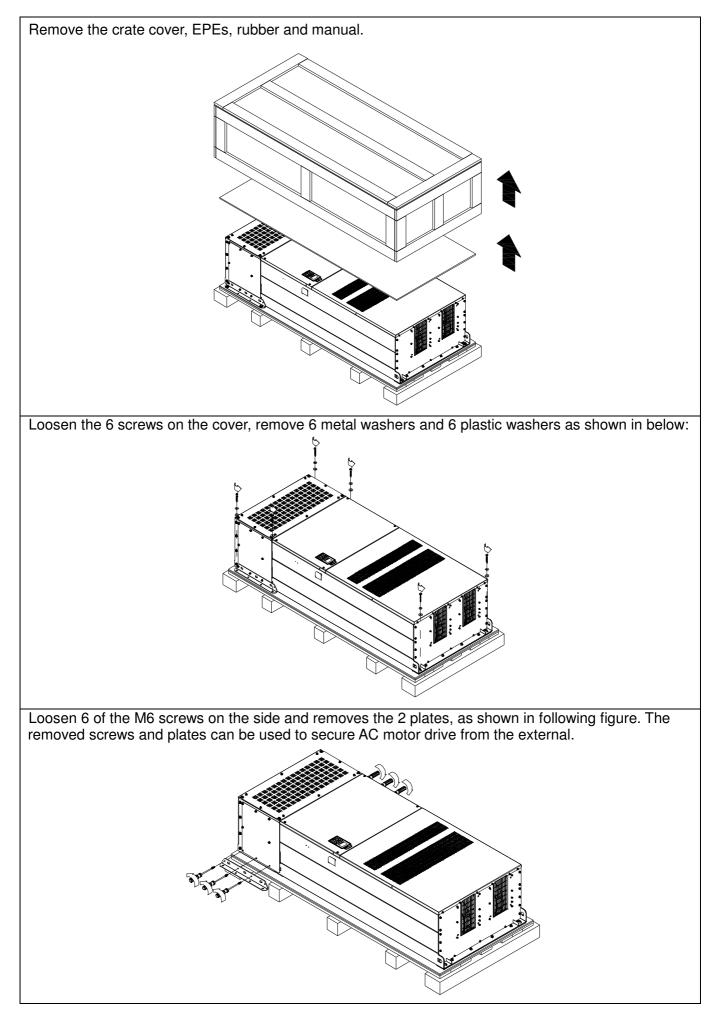


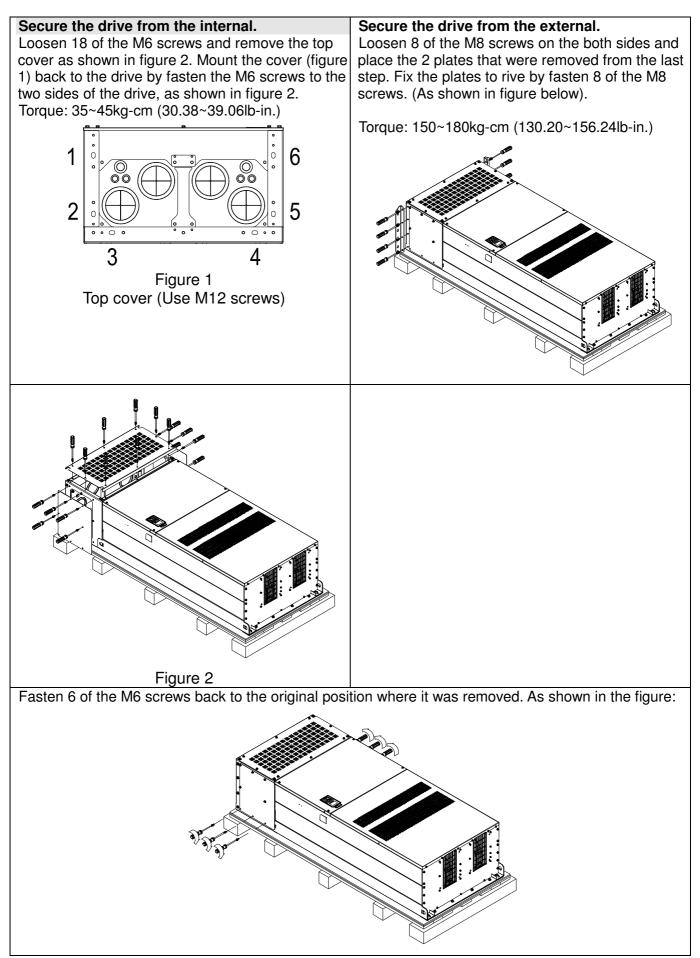
Chapter 3 Unpacking

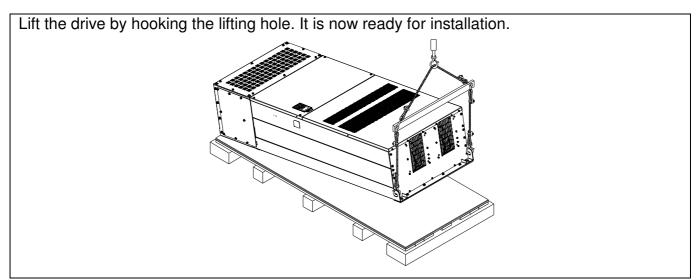



Chapter 3 Unpacking

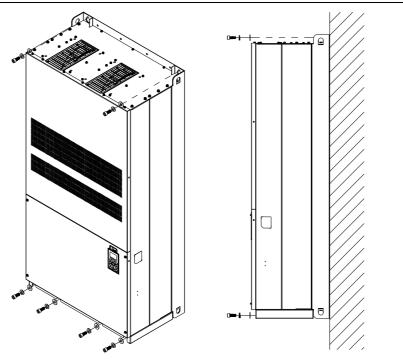
Frame H Crate 1 (VFDXXXXCHXXA-00) Remove the 8 clips on the side of the crate with a flathead screwdriver. (As shown in figure below.) Image: Crate 2 (VFDXXXCHXXC-00) Remove the 8 clips on the side of the crate with a flathead screwdriver. (As shown in figure below.) Image: Crate 2 (VFDXXXCHXXC-00) Remove the 8 clips on the side of the crate with a flathead screwdriver. (As shown in figure below.) Image: Crate 2 (VFDXXXCHXXC-00) Remove the 8 clips on the side of the crate with a flathead screwdriver. (As shown in figure below.) Image: Crate 2 (VFDXXXCHXC-00) Remove the 8 clips on the side of the crate with a flathead screwdriver. (As shown in figure below.) Image: Crate 2 (VFDXXXCHXC-00) Image: Crate 2 (VFDXXXCHXC-00) Remove the 8 clips on the side of the crate with a flathead screwdriver. (As shown in figure below.) Image: Crate 2 (VFDXXXCHXCHXC-00) Image: Crate 2 (VFDXXXCHXCHXC-00) Image: Crate 2 (VFDXXXCHXC-00) Image: Crate 2 (VFDXXXCHXCHXC-00) Image: Crate 2 (VFDXXXCHXCHXC-00) Image: Crate 2 (VFDXXXCHXC-00) Image: Crate 2 (VFDXXXCHXCHXC-00)



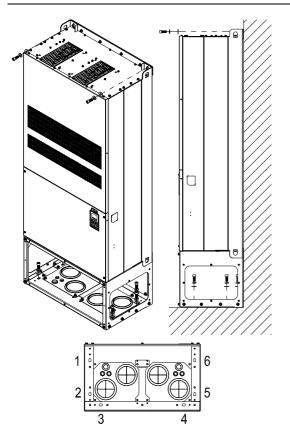

Secure the drive from the external. (Skip to the next step if this situation does not apply to you.) Loosen 8 of M8 screws on the both sides and place the 2 plates that were removed from the last step. Fix the plates to AC motor drive by fasten 8 of the M8 screws. (As shown in below) Torque: 150~180kg-cm (130.20~156.24lb-in.) Lift the drive by hooking the lifting hole. It is now ready for installation.



Crate 3 (VFDXXXXCHXXC-21) Use flathead screwdriver to remove the clips on the side of the crate, 8 clips in total.

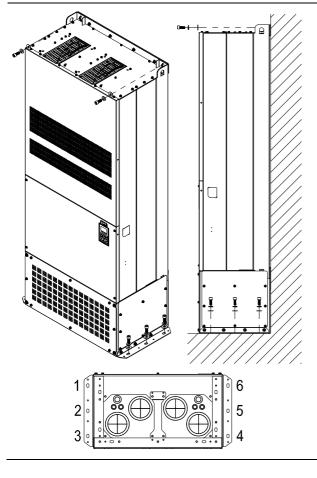


Frame H Secure the drive


(VFDXXXXCHXXA-00)

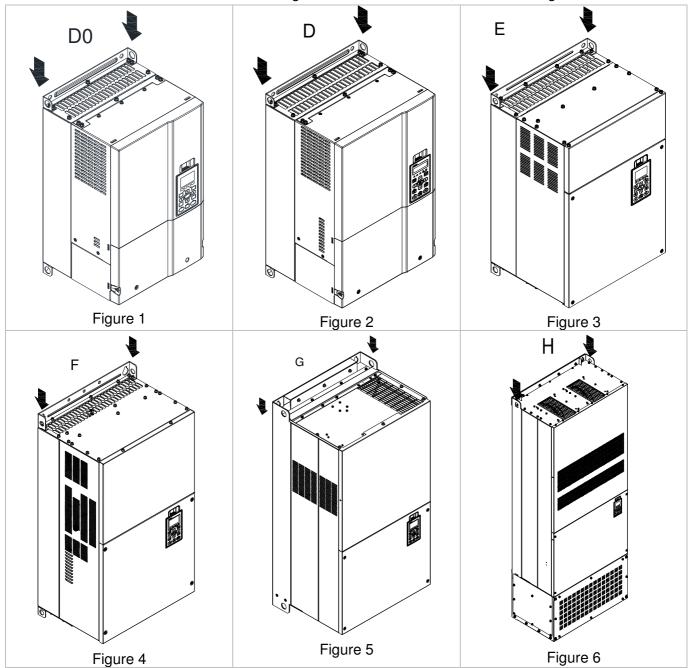
Screw: M12*6

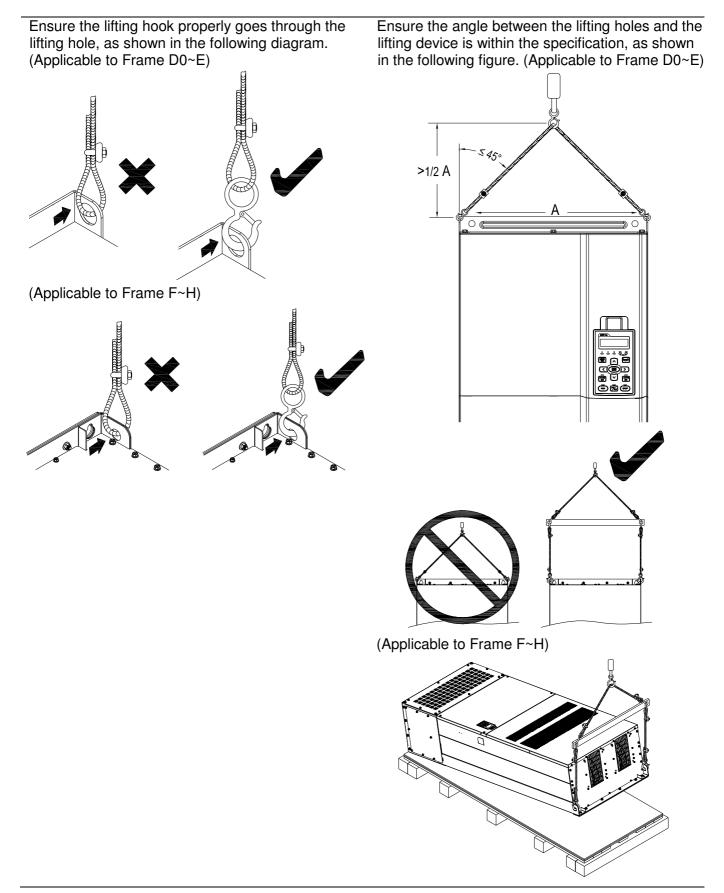
Torque: 340-420kg-cm [295.1-364.6lb-in.]


VFDXXXXCHXXC-00

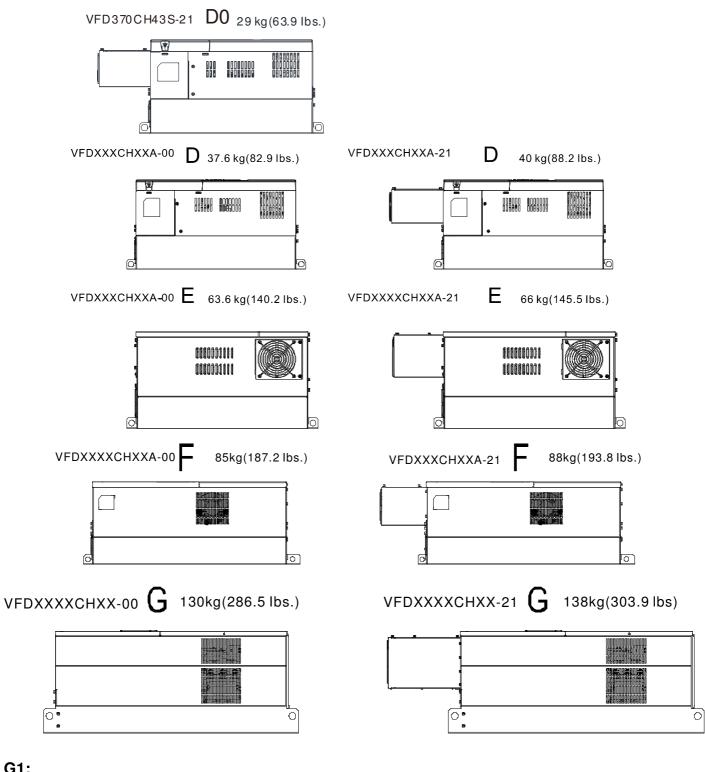
Secure the drive from the internal.

Screw: M12*8 Torque: 340-420kg-cm [295.1-364.6lb-in.]


VFDXXXXCHXXC-21

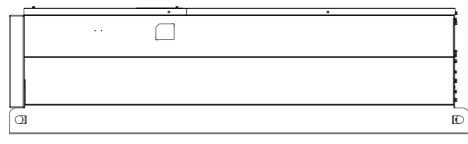


Secure the drive from the external. Screw: M12*8 Torque: 340-420kg-cm [295.1-364.6lb-in.]

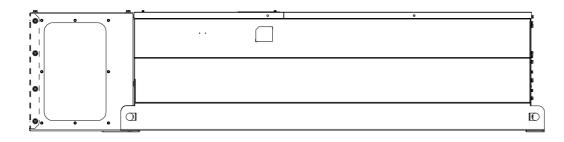

3-2 The Lifting Hook

The arrows indicate the location of the lifting holes of frame D0 to H, as shown in figure below:

Weight



G1:

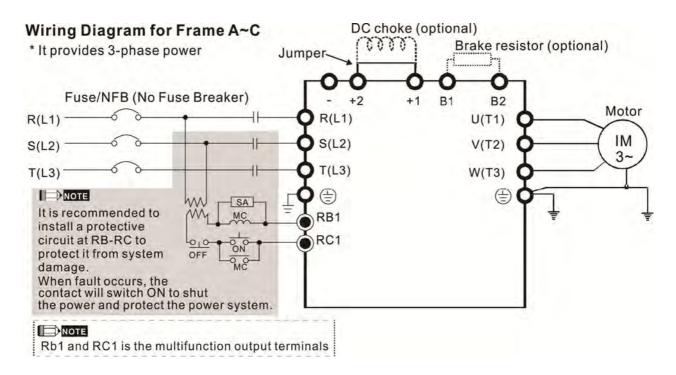

VFD1600CH43A-00 VFD1850CH43A-00 VFD2200CH43A-00 G2: VFD1600CH43A-21 VFD1850CH43A-21 VFD2200CH43A-21

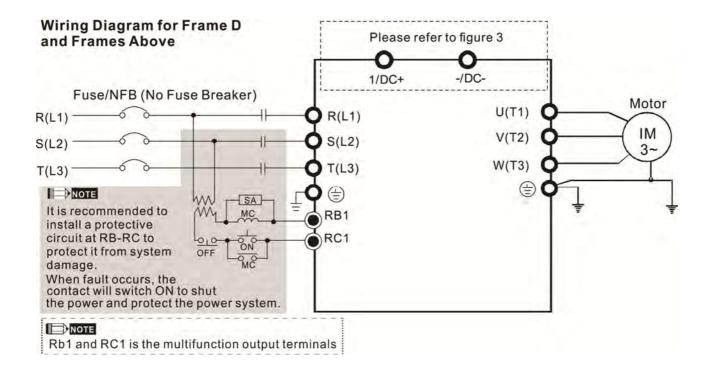
Η

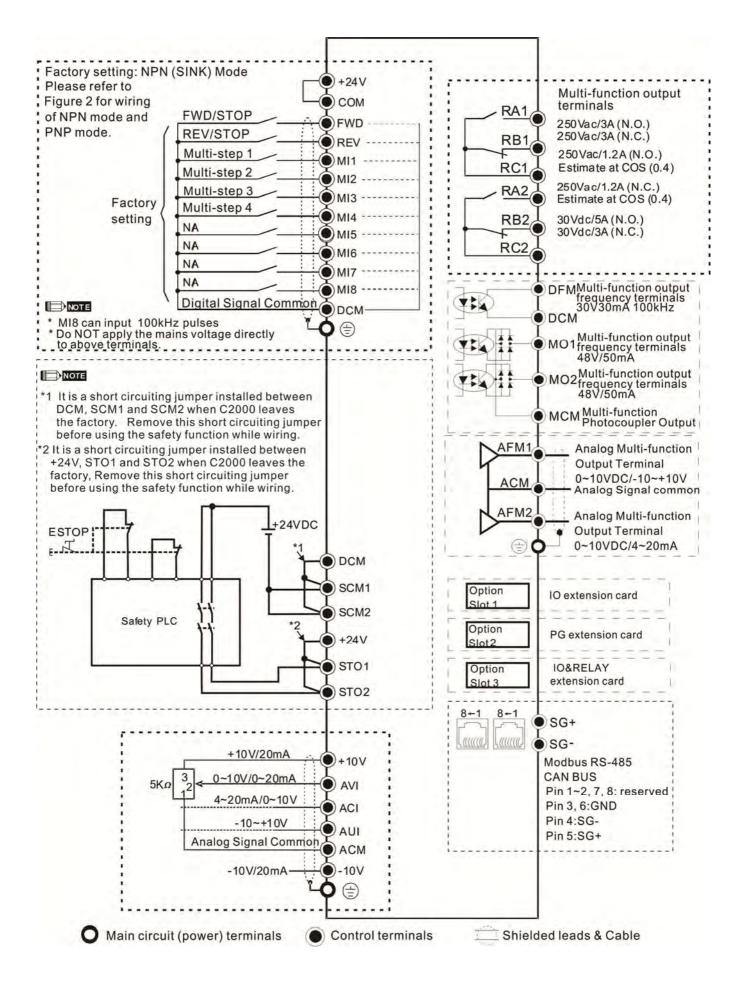
H1: VFD2800CH43A-00 235kg (518.1lbs)

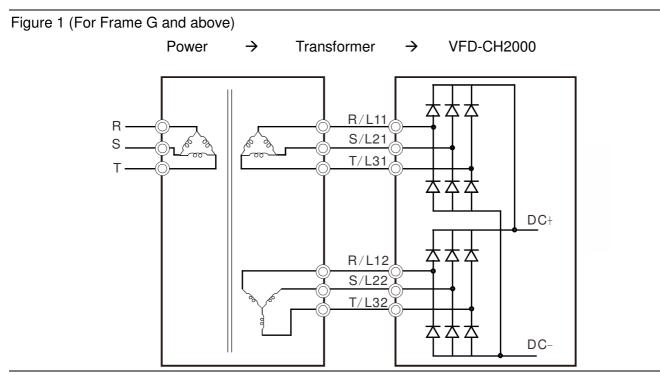
H2: VFD2800CH43C-00 257kg (566.6lbs)

H3: VFD2800CH43C-21 263kg (579.8lbs)


Chapter 4 Wiring


After removing the front cover, examine if the power and control terminals are clearly noted. Please read following precautions before wiring.


- ☑ Make sure that power is only applied to the R/L1, S/L2, T/L3 terminals. Failure to comply may result in damage to the equipments. The voltage and current should lie within the range as indicated on the nameplate (Chapter 1-1).
- ☑ All the units must be grounded directly to a common ground terminal to prevent lightning strike or electric shock.
- ☑ Please make sure to fasten the screw of the main circuit terminals to prevent sparks which is made by the loose screws due to vibration


DANGER	N	It is crucial to turn off the AC motor drive power before any wiring installation are made. A charge may still remain in the DC bus capacitors with hazardous voltages even if the power has been turned off therefore it is suggested for users to measure the remaining voltage before wiring. For your personnel saftery, please do not perform any wiring before the voltage drops to a safe level < 25 Vdc. Wiring installation with remaninig voltage condition may caus sparks and short circuit. Only qualified personnel familiar with AC motor drives is allowed to perform installation, wiring and commissioning. Make sure the power is turned off before wiring to prevent electric shock.
CAUTION	R	 When wiring, please choose the wires with specification that complys with local regulation for your personnel safety. Check following items after finishing the wiring: Are all connections correct? Any loosen wires? Any short-circuits between the terminals or to ground?

4-1 Wiring

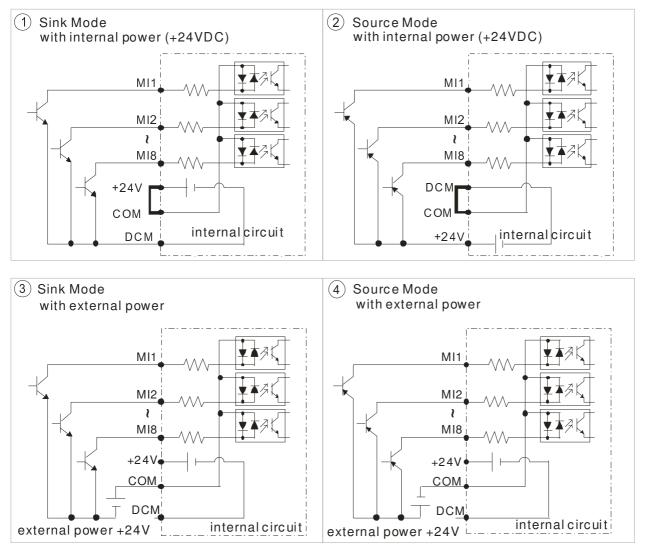
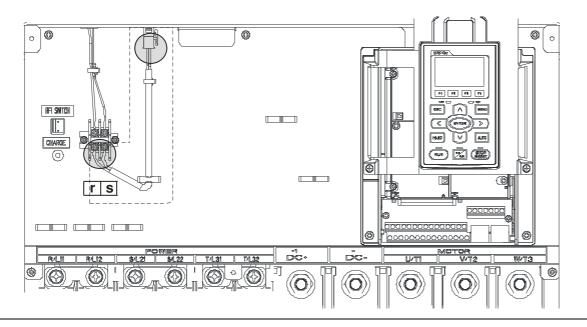


Figure 2

Figure 3

Function of DC Link

- ☑ Applicable to Frame E~H
- ☑ Operation Instruction
 - 1. When RST power is off, please disconnect terminal r and terminal s. (As circled in dotted line, uninstall the gray section and properly store cable r and cable s. Cable r and cable s are not available in optional accessories, do not dispose them.)

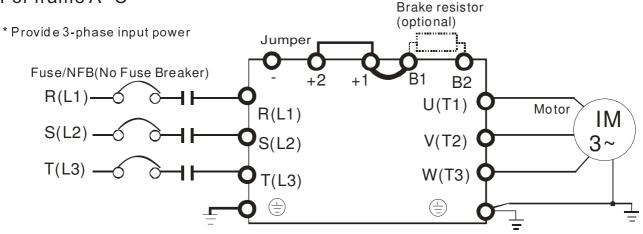

After terminal r and terminal s are cleared, user may now connect new power source to terminal r and terminal s. Please connect 220Vac for 220V model and 440 Vac for 440V model.

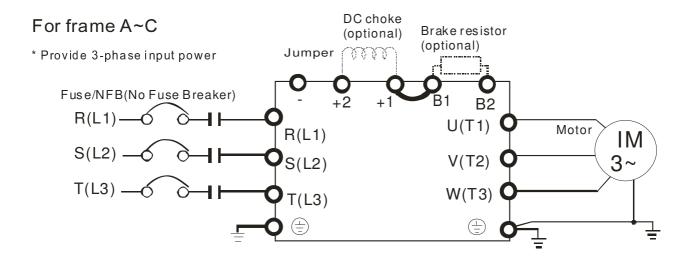
When the drive power is on, if terminal r and terminal s are not connected to new power source (220 Vac for 220V model and 440Vac for 440 V model), the digital keypad will display an error message "ryF".

2. When DC Link is used as a DC Bus connection (RST power is applied), it is not required to remove terminal r and terminal s.

Common DC Bus can only be applied to the drives with same power range. If in your case the drives are in different power range, please contact with us (Delta Industrial Automation Business Unit).

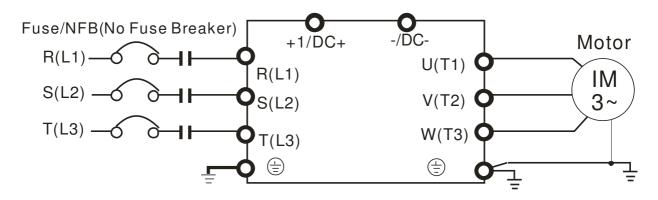
4-2 System Wiring Diagram


Power input terminal

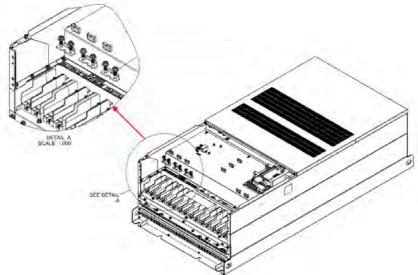

Power input terminal		
	Power input terminal	Please supply power according to the rated power specifications indicated in the manual (refer to 9 Specifications Table).
NFB or fuse	NFB or fuse	There may be a large inrush current during power on. Refer to 7-2 NFB to select a suitable NFB or fuse.
	Electromagnetic contactor	Switching ON/OFF the primary side of the electromagnetic contactor can turn the integrate elevator device ON/OFF, but frequent switching a cause of machine failure. Do not switch ON/OF more than once an hour. Do not use the electromagnetic contactor as the power switch for the integrated elevator drive; doing so will shorten the life of the integrated elevator drive.
EMI filter EMI filter R/L1 S/L2 T/L3 E + B1 B1 B2	AC reactor (input terminal)	When the main power supply capacity is greater than 500kVA, or when it switches into the phase capacitor, the instantaneous peak voltage and current generated will destroy the internal circuit of the integrated elevator drive. It is recommended to install an input side AC reactor in the integrated elevator drive. This will also improve the power factor and reduce power harmonics. The wiring distance should be within 10m. Please refer to 7-4.
U/T1 V/T2 W/T3 \textcircled{E} E	Zero-phase reactor	Used to reduce radiated interference, especially in environments with audio devices, and reduce input and output side interference. The effective range is AM band to 10MHz. Please refer to Appendix 7-5.
AC reactor	EMI filter	Can be used to reduce electromagnetic interference.
(output terminal)	Brake resistor	Used to shorten deceleration time of the motor. Please refer to 7-1.
	AC reactor (output terminal)	The wiring length of the motor will affect the size of the reflected wave on the motor end. It is recommended to install an AC reactor when the motor wiring length is greater than 20 meters. Refer to 7-4.

Chapter 5 Main Circuit Terminals

5-1 Main Circuit Diagram


For frame A~C

For frame D0 and above D0

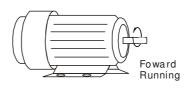

* Provide 3-phase input power

For Frame G and above Power Transformer **VFD-CH2000** \rightarrow \rightarrow 本本本 R/L11 R S/L21) S ġ 00 T/L31 Т DC+ Λ R/L12 S/L22 <u>T/L32</u> Д Д \sim DC-

Please remove short circuit plate of FRAME G and H if 12 pulse is implemented

Before implementing 12 pulse, consult Delta for more detail

Terminals	Descriptions
R/L1, S/L2, T/L3	AC line input terminals 3-phase
U/T1, V/T2, W/T3	AC drive output terminals for connecting 3-phase induction motor
	Applicable to frame A~C
+1, +2	Connections for DC reactor to improve the power factor. It needs to remove the
	jumper for installation.
	Connections for brake unit (VFDB series)
	(for 230V models: \leq 22kW, built-in brake unit)
+1/DC+, -/DC-	(for 460V models: \leq 30kW, built-in brake unit)
	Common DC Bus
B1, B2	Connections for brake resistor (optional)
	Earth connection, please comply with local regulations.

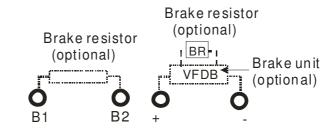


Main power terminals

- ☑ Do not connect 3-phase model to one-phase power. R/L1, S/L2 and T/L3 has no phase-sequence requirement, it can be used upon random selection.
- ☑ It is recommend to add a magnetic contactor (MC) to the power input wiring to cut off power quickly and reduce malfunction when activating the protection function of the AC motor drive. Both ends of the MC should have an R-C surge absorber.
- ☑ Fasten the screws in the main circuit terminal to prevent sparks condition made by the loose screws due to vibration.
- Please use voltage and current within the specification.
- When using a general GFCI (Ground Fault Circuit Interrupter), select a current sensor with sensitivity of 200mA or above and not less than 0.1-second operation time to avoid nuisance tripping.
- ☑ Please use the shield wire or tube for the power wiring and ground the two ends of the shield wire or tube.
- ☑ Do NOT run/stop AC motor drives by turning the power ON/OFF. Run/stop AC motor drives by RUN/STOP command via control terminals or keypad. If you still need to run/stop AC motor drives by turning power ON/OFF, it is recommended to do so only ONCE per hour.

Output terminals for main circuit

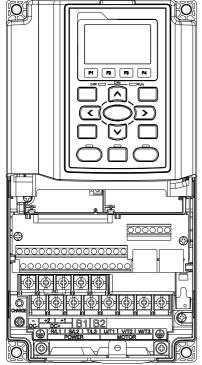
- When it needs to install the filter at the output side of terminals U/T1, V/T2, W/T3 on the AC motor drive. Please use inductance filter. Do not use phase-compensation capacitors or L-C (Inductance-Capacitance) or R-C (Resistance-Capacitance), unless approved by Delta.
- DO NOT connect phase-compensation capacitors or surge absorbers at the output terminals of AC motor drives.
- \square Use well-insulated motor, suitable for inverter operation.
- ☑ Note down the rated data and the torque force of the wiring when the output terminal is below 75°C. This information provides the right wiring method to wire terminals (It corresponds to the terminals of the motor wire and non-motor wire).
- ☑ When the AC drive output terminals U/T1, V/T2, and W/T3 are connected to the motor terminals U/T1, V/T2, and W/T3, respectively, the motor will rotate counterclockwise (as viewed on the shaft end of the motor) when a forward operation command is received. To permanently reverse the direction of motor rotation, switch over any of the two motor leads



Terminals for connecting DC reactor, external brake resistor, external brake resistor and DC circuit

☑ This is the terminals used to connect the DC reactor to improve the power factor. For the factory setting, it connects the short-circuit object. Please remove this short-circuit object before connecting to the DC reactor.

Connect a brake resistor or brake unit in applications with frequent deceleration ramps, short deceleration time, too low brake torque or requiring increased brake torque.

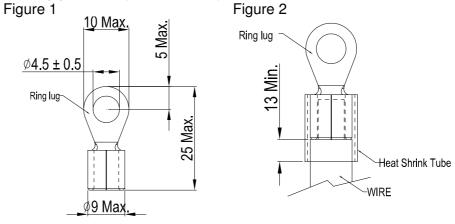


- ☑ The external brake resistor of Frame A, B and C should connect to the terminals (B1, B2) of AC motor drives.
- ☑ For those models without built-in brake resistor, please connect external brake unit and brake resistor (both of them are optional) to increase brake torque.
- ☑ When the terminals +1, +2 and are not used, please leave the terminals open.
- DO NOT connect [+1, -], [+2, -], [+1/DC+, -/DC-] or brake resistor directly to prevent drive damage.
- DC+ and DC- are connected by common DC bus, please refer to Chapter
 5-1(Main Circuit Terminal) for the wiring terminal specification and the wire gauge information.
- ☑ Please refer to the VFDB manual for more information on wire gauge when installing the brake unit.

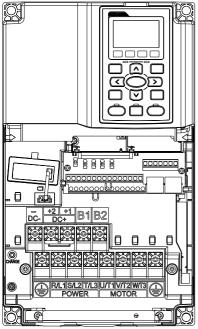
5-2 Main Circuit Terminals

. . .

Frame A



Main circuit terminals:			
R/L1, S/L2, T/L3, U/T1, V/T2, W/T3,	⊕, B1,	B2, +1,	+2


Models	Max. Wire Gauge	Min. Wire Gauge	Torque (±10%)	
VFD007CH23A-21		14 AWG (2.1mm ²)		
VFD015CH23A-21		12 AWG (3.3mm ²)		
VFD022CH23A-21		10 AWG (5.3mm ²)		
VFD037CH23A-21		8 AWG (8.4mm ²)		
VFD007CH43A-21		14 AWG (2.1mm ²)		
VFD007CH4EA-21		14 AWG (2.1mm ²)	M4	
VFD015CH43A-21	8 AWG (8.4mm ²)	14 AWG (2.1mm ²)	20kg-cm	
VFD015CH4EA-21		14 AWG (2.1mm ²)	(17.4 lb-in.)	
VFD022CH43A-21		14 AWG (2.1mm ²)	(1.96Nm)	
VFD022CH4EA-21		14 AWG (2.1mm ²)		
VFD037CH43A-21		10 AWG (5.3mm ²)		
VFD037CH4EA-21		10 AWG (5.3mm ²)		
VFD055CH43A-21		10 AWG (5.3mm ²)		
VFD055CH4EA-21		10 AWG (5.3mm ²)		
UL installations mus	st use 600V, 7	75℃ or 90℃ wire. Us	e copper wire	
only.				

1. Figure 1 shows the terminal specification.

2. Figure 2 shows the specification of insulated heat shrink tubing that comply with UL (600V, YDPU2).

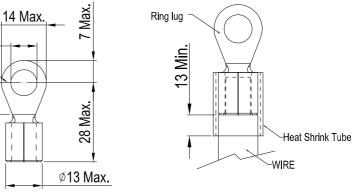
Frame B

Main c	ircuit	termi	nals:					
R/L1, S	S/L2,	T/L3,	U/T1,	V/T2,	W/T3,	⊕, B1,	, B2, + ⁻	1, +2,

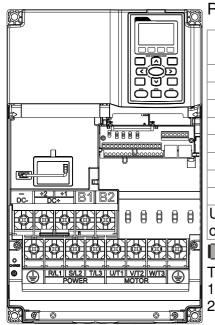
Models	Max. Wire Gauge	Min. Wire Gauge	Torque (±10%)		
VFD055CH23A-21		8 AWG (8.4mm ²)			
VFD075CH23A-21		6 AWG (13.3mm ²)			
VFD110CH23A-21		4 AWG (21.2mm ²)	NAC		
VFD075CH43A-21	4 AWG (21.2mm ²)	8 AWG (8.4mm ²)	M5		
VFD075CH4EA-21		10 AWG (5.3mm ²)	35kg-cm (30.4 lb-in.)		
VFD110CH43A-21		8 AWG (8.4mm ²)	(30.4 lb-ll1.) (3.434Nm)		
VFD110CH4EA-21		8 AWG (8.4mm ²)	(3.4341111)		
VFD150CH43A-21		6 AWG (13.3mm ²)			
VFD150CH4EA-21		8 AWG (8.4mm ²)			
UL installations must use 600V, 75°C or 90°C wire. Use copper wire					
only.					

Terminal D+ [+2 & +1]: Torque: 45 kg-cm [39.0lb-in.] (4.415Nm) (±10%)

- 1. Figure 1 shows the terminal specification.
- 2. Figure 2 shows the specification of insulated heat shrink tubing that comply with UL (600V, YDPU2).

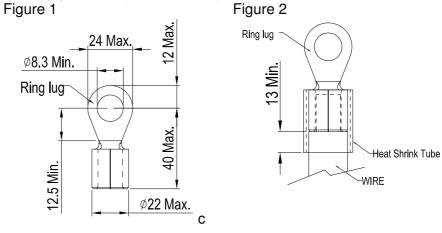

Figure 1

Ø5.2 Min.

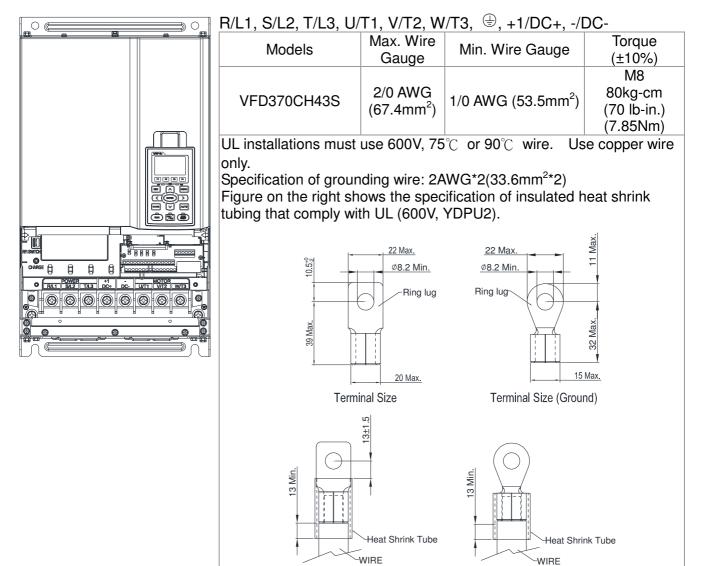

7.5 Min

Ring lug

Frame C


Main circuit terminals:	
R/L1, S/L2, T/L3, U/T1, V/T2, W/T3,	⊕, B1, B2, +1, +2, -

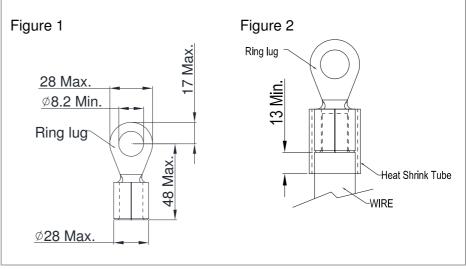
Models	Max. Wire Gauge	Min. Wire Gauge	Torque (±10%)		
VFD150CH23A	g_	1 AWG (42.4mm ²)	(
VFD185CH23A		1/0 AWG (53.5mm ²)			
VFD185CH43A		4 AWG (21.2mm ²)	M8		
VFD185CH43E	1/0 AWG	6 AWG (13.3mm ²)	80kg-cm		
VFD220CH43A	(53.5mm²)	4 AWG (21.2mm ²)	(69.4 lb-in.)		
VFD220CH43E		4 AWG (21.2mm ²)	(7.85Nm)		
VFD300CH43A		2 AWG (33.6mm ²)			
VFD300CH43E		3 AWG (26.7mm ²)			
UL installations must use 600V, 75°C or 90°C wire. Use copper wire					
only.					


Terminal D+ [+2 & +1]: Torque: 90 kg-cm [78.2lb-in.] (8.83Nm) (\pm 10%) 1. Figure 1 shows the terminal specification.

- 2. Figure 2 shows the specification of insulated heat shrink tubing that comply with UL (600V, YDPU2).

Frame D0

Main circuit terminals:



Frame D

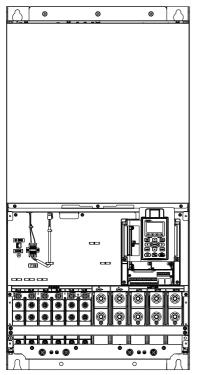
Main circuit terminals:

VFD220CH23A-21 1/0 AWG(53.5mm ²) (173 lb-in	$V_{L1}, S_{L2}, T_{L3}, S_{L1}, T_{L3}, S_{L1}, V_{L1}, V_{L1}, S_{L2}, V_{L1}, S_{L2}, T_{L3}, S_{L2}, T_{L3}, S_{L3}, S_{L$					
VFD300CH23A-00 4/0 AWG (107mm²) VFD370CH23A-00 300MCM (152mm²) VFD370CH43A-00 1/0 AWG (53.5mm²) VFD450CH43A-00 2/0 AWG (67.4mm²) VFD750CH43A-00 3/0 AWG (85mm²) VFD750CH43A-00 3/0 AWG (85mm²) VFD750CH43A-00 3/0 AWG (85mm²) VFD750CH43A-00 3/0 AWG (85mm²) VFD300CH23A-21 1/0 AWG(53.5mm²) VFD370CH23A-21 3/0 AWG (85mm²) VFD370CH43A-21 4/0 AWG. VFD450CH43A-21 4/0 AWG. VFD550CH43A-21 2/0 AWG (53.5mm²) VFD550CH43A-21 2/0 AWG (67.4mm²)	Models		Min. Wire Gauge			
VFD370CH23A-00 300MCM 250MCM (127mm²) VFD370CH43A-00 1/0 AWG (53.5mm²) 1/0 AWG (53.5mm²) VFD450CH43A-00 2/0 AWG (67.4mm²) 3/0 AWG (85mm²) VFD750CH43A-00 300MCM (152mm²) M8 VFD750CH43A-00 300MCM (152mm²) M8 VFD750CH43A-00 300MCM (152mm²) M8 VFD220CH23A-21 1/0 AWG(53.5mm²) M8 VFD300CH23A-21 3/0 AWG (85mm²) (173 lb-in (19.62Nm²) VFD370CH23A-21 4/0 AWG. (107mm²) 1/0 AWG (53.5mm²) VFD450CH43A-21 4/0 AWG. (107mm²) 1/0 AWG (53.5mm²) VFD550CH43A-21 2/0 AWG (67.4mm²) 2/0 AWG (67.4mm²)	VFD220CH23A-00		1/0 AWG(53.5mm ²)			
VFD370CH43A-00 300MCM (152mm²) 1/0 AWG (53.5mm²) VFD450CH43A-00 2/0 AWG (67.4mm²) 3/0 AWG (85mm²) VFD550CH43A-00 3/0 AWG (85mm²) M8 VFD750CH43A-00 300MCM (152mm²) M8 VFD750CH43A-00 300MCM (152mm²) M8 VFD750CH43A-01 3/0 AWG (85mm²) M8 VFD220CH23A-21 1/0 AWG(53.5mm²) (173 lb-in VFD370CH23A-21 4/0 AWG. (107mm²) 1/0 AWG (53.5mm²) (19.62Nm²) VFD370CH43A-21 4/0 AWG. (107mm²) 1/0 AWG (53.5mm²) (19.62Nm²) VFD450CH43A-21 4/0 AWG. (107mm²) 1/0 AWG (53.5mm²) (19.62Nm²) VFD550CH43A-21 4/0 AWG. (107mm²) 1/0 AWG (53.5mm²) (19.62Nm²)	VFD300CH23A-00		4/0 AWG (107mm ²)			
VFD370CH43A-00 (152mm²) 1/0 AWG (53.5mm²) VFD450CH43A-00 2/0 AWG (67.4mm²) M8 VFD550CH43A-00 3/0 AWG (85mm²) M8 VFD750CH43A-00 300MCM (152mm²) M8 VFD220CH23A-21 1/0 AWG (53.5mm²) 1/3 lb-in VFD370CH23A-21 4/0 AWG. 3/0 AWG (85mm²) (173 lb-in VFD370CH23A-21 4/0 AWG. 1/0 AWG (53.5mm²) (19.62Nm²) VFD370CH43A-21 4/0 AWG. 1/0 AWG (53.5mm²) 1/0 AWG (53.5mm²) VFD450CH43A-21 4/0 AWG. 1/0 AWG (53.5mm²) 2/0 AWG (67.4mm²)	VFD370CH23A-00	2001001	250MCM (127mm ²)			
VFD450CH43A-00 2/0 AWG (67.4mm ⁻) VFD550CH43A-00 3/0 AWG (85mm ²) VFD750CH43A-00 300MCM (152mm ²) VFD220CH23A-21 1/0 AWG(53.5mm ²) VFD370CH23A-21 3/0 AWG (85mm ²) VFD370CH23A-21 4/0 AWG. VFD370CH43A-21 4/0 AWG. VFD450CH43A-21 1/0 AWG (53.5mm ²) VFD550CH43A-21 2/0 AWG (67.4mm ²)	VFD370CH43A-00		1/0 AWG (53.5mm ²)			
VFD750CH43A-00 300MCM (152mm²) 200kg-cn VFD220CH23A-21 1/0 AWG(53.5mm²) (173 lb-in VFD300CH23A-21 3/0 AWG (85mm²) (19.62Nm²) VFD370CH23A-21 4/0 AWG. 1/0 AWG (53.5mm²) (19.62Nm²) VFD370CH43A-21 4/0 AWG. 1/0 AWG (53.5mm²) (19.62Nm²) VFD450CH43A-21 4/0 AWG. 1/0 AWG (53.5mm²) (19.62Nm²) VFD550CH43A-21 4/0 AWG. 2/0 AWG (67.4mm²) (19.62Nm²)	VFD450CH43A-00	(152mm)	2/0 AWG (67.4mm ²)	M8		
VFD220CH23A-21 1/0 AWG(53.5mm²) (173 lb-in VFD300CH23A-21 3/0 AWG (85mm²) (19.62Nm²) VFD370CH23A-21 4/0 AWG. 1/0 AWG (53.5mm²) (19.62Nm²) VFD370CH43A-21 4/0 AWG. 1/0 AWG (53.5mm²) (19.62Nm²) VFD450CH43A-21 4/0 AWG. 1/0 AWG (53.5mm²) 1/0 AWG (53.5mm²) VFD550CH43A-21 2/0 AWG (67.4mm²) 2/0 AWG (67.4mm²)	VFD550CH43A-00		3/0 AWG (85mm ²)			
VFD300CH23A-21 3/0 AWG (85mm ²) (19.62Nm VFD370CH23A-21 4/0 AWG. 1/0 AWG (107mm ²) (19.62Nm VFD370CH43A-21 4/0 AWG. 1/0 AWG (53.5mm ²) (19.62Nm VFD450CH43A-21 4/0 AWG. 1/0 AWG (53.5mm ²) (19.62Nm VFD450CH43A-21 4/0 AWG. 1/0 AWG (53.5mm ²) (19.62Nm VFD550CH43A-21 4/0 AWG. 1/0 AWG (53.5mm ²) (19.62Nm	VFD750CH43A-00		300MCM (152mm ²)	200kg-cm		
VFD370CH23A-21 4/0 AWG. VFD370CH43A-21 4/0 AWG. VFD450CH43A-21 1/0 AWG (53.5mm²) VFD550CH43A-21 1/0 AWG (67.4mm²)	VFD220CH23A-21		1/0 AWG(53.5mm ²)	(173 lb-in.)		
VFD370CH43A-21 4/0 AWG. (107mm ²) 1/0 AWG (53.5mm ²) VFD450CH43A-21 1/0 AWG (53.5mm ²) 1/0 AWG (53.5mm ²) VFD550CH43A-21 2/0 AWG (67.4mm ²)	VFD300CH23A-21		3/0 AWG (85mm ²)	(19.62Nm)		
VFD370CH43A-21 1/0 AWG (53.5mm²) VFD450CH43A-21 1/0 AWG (53.5mm²) VFD550CH43A-21 2/0 AWG (67.4mm²)	VFD370CH23A-21		4/0 AWG (107mm ²)			
VFD450CH43A-21 1/0 AWG (53.5mm ⁻) VFD550CH43A-21 2/0 AWG (67.4mm ²)	VFD370CH43A-21		1/0 AWG (53.5mm ²)			
	VFD450CH43A-21	(10/1111)	· · · · · · · · · · · · · · · · · · ·			
VFD750CH43A-21 4/0 AWG (107mm ²)	VFD550CH43A-21		2/0 AWG (67.4mm ²)			
	VFD750CH43A-21		4/0 AWG (107mm ²)			

- 1. UL installations must use 600V, 75°C or 90 °C wires. Use copper wire only.
- 2. Figure 1 shows the terminal specification.
- 3. Figure 2 shows the specification of insulated heat shrink tubing that comply with UL (600V, YDPU2).

Chapter 5 Main Circuit Terminals

Frame E 0

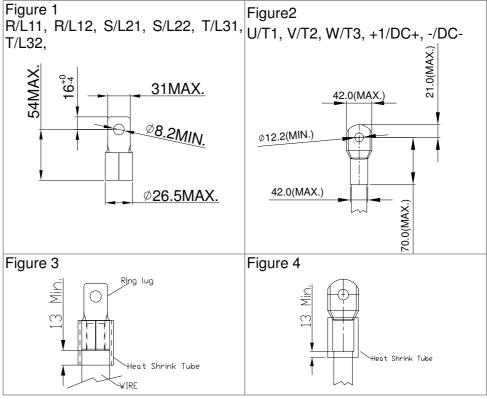

____Main circuit terminals: _____R/L1, S/L2, T/L3, U/T1, V/T2, W/T3, ⊕, +1/DC+, -/DC-

	, ,		-
Models	Max. Wire Gauge	Min. Wire Gauge	Torque (±10%)
VFD220CH23A-00 VFD300CH23A-00 VFD370CH23A-00 VFD370CH23A-00 VFD450CH43A-00 VFD550CH43A-00 VFD750CH43A-00 VFD220CH23A-21 VFD300CH23A-21 VFD370CH23A-21 VFD370CH23A-21 VFD370CH43A-21 VFD550CH43A-21 VFD550CH43A-21 VFD750CH43A-21 1. UL installation wire only. 2. Specification c Torque: M8 18 Figure 2. 3. Figure 1 show 4. Figure 3 show comply with U Figure 1	Gauge 300MCM*2 (152mm ² *2) 4/0 AWG*2 (107mm ² *2) s must use 60 of grounding w 0kg-cm (156 s the specifications s the specifications	1/0 AWG(53.5mm²) 4/0 AWG (107mm²) 250MCM (127mm²) 1/0 AWG (53.5mm²) 2/0 AWG (67.4mm²) 3/0 AWG (85mm²) 1/0 AWG (53.5mm²) 3/0 AWG (85mm²) 4/0 AWG (107mm²) 1/0 AWG (53.5mm²) 1/0 AWG (53.5mm²) 1/0 AWG (53.5mm²) 2/0 AWG (67.4mm²) 4/0 AWG (107mm²) 1/0 AWG (53.5mm²) 2/0 AWG (67.4mm²) 4/0 AWG (107mm²) 00V, 75°C or 90 °C wires. wire ⊕: 300MCM [152 mm b-in.) (17.64Nm) (±10%) ation for ring lug. ation of insulated heat sh	(±10%) M8 200kg-cm (173 lb-in.) (19.62Nm) Use copper n ²] , as shown in rink tubing that
ZOMAX.	<u>81MAX.</u> 8. <i>2MIN</i> . 26.5MAX.	17.0MAX.	28.0MAX. Ø <u>8.2MIN.</u>
Figure 3	13 Min.	Ring lug Heat Shrink Tube WIRE	

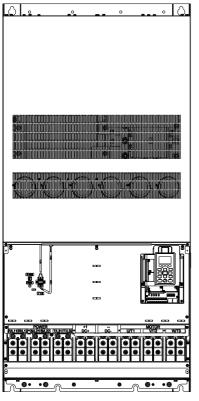
Main circuit terminals: 0 R/L1, S/L2, T/L3, U/T1, V/T2, W/T3, +1/DC+, -/DC-Max. Wire Torque Models Min. Wire Gauge (±10%) Gauge VFD750CH23A-00 300MCM*2 (152mm²*2) 300MCM*2 M8 $(152 \text{mm}^{2} \times 2)$ 4/0 AWG*2 (107mm²*2) VFD1320CH43A-00 200kg-cm (173 lb-in.) 4/0 AWG*2 (107mm²*2) VFD750CH23A-21 4/0 AWG*2 (19.62Nm) $(107 \text{mm}^{2}*2)$ 3/0AWG*2 (85mm²*2) VFD1320CH43A-21 1. VFD750CH23A-00/21 installations must use 90°C wire. 2. For other model, UL installations must use 600V, 75°C or 90°C wire. Use copper wire only. Specification of grounding wire (=) : 300MCM*2 [152 mm²*2] 3. Torque: M8 200kg-cm (173 lb-in.) (19.62Nm) (±10%) 4. Figure 1 shows the specification for ring lug. 5. Figure 2 shows the specification of insulated heat shrink tubing that comply with UL (600C, YDPU2). Figure 1 Figure 2 Ring lug 6^{+}_{-4} 31MAX. Ø8.2MIN. 13 Min. 70MAX Heat Shrink Tube Ø26.5MAX. WIRE

Frame G

Main c	ircuit te	rmina	ls:		
R/L11,	R/L12, S	S/L21,	S/L22,	T/L31,	T/L32


Models	Max. Wire Gauge	Min. Wire Gauge	Torque (±10%)
VFD1600CH43A-00		300MCM*2 (152mm ² *2)	
VFD1850CH43A-00	300MCM*4	2/0AWG*4 (67.4mm ² *4)	M8
VFD2200CH43A-00		3/0AWG*4 (85mm ² *4)	200kg-cm
VFD1600CH43A-21		4/0 AWG*2 (107mm ² *2)	(173 lb-in.)
VFD1850CH43A-21		1/0AWG*4 (53.5mm ² *4)	(19.62Nm)
VFD2200CH43A-21		2/0AWG*4 (67.4mm ² *4)	

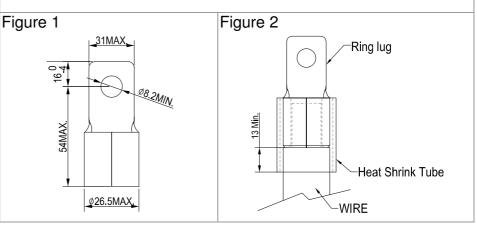
Main circuit terminals:


U/T1, V/T2, W/T3, +1/DC+, -/DC-

Models	Max. Wire Gauge	Min. Wire Gauge	Torque (±10%)
VFD1600CH43A-00	l	300MCM*2 (152mm ² *2)	
VFD1850CH43A-00		400MCM*2 (203mm ² *2)	M12
VFD2200CH43A-00			408kg-cm
VFD1600CH43A-21	(253mm ² *2)	4/0 AWG*2 (107mm ² *2)	(354lb-in.)
VFD1850CH43A-21		300MCM*2 (152mm ² *2)	(40Nm)
VFD2200CH43A-21		400MCM*2 (203mm ² *2)	

- UL installations must use 600V, 75℃ or 90℃ wire. Use copper wire only.
- Use 600V, 90°C wire for VFD2200C43A when the surrounding temperature is over 45°C.
- 3. Figure 1 and Figure 2 show the specification for using ring lug.
- Specification for grounding wire⁽≡): 300MCM*4 [152 mm²*2] Torque: M8 200kg-cm (173 lb-in.) (19.62Nm) (±10%), as shown in Figure 1
- 5. Figure 3 and Figure 4 shows the specification of insulated heat shrink tubing that comply with UL (600C, YDPU2).

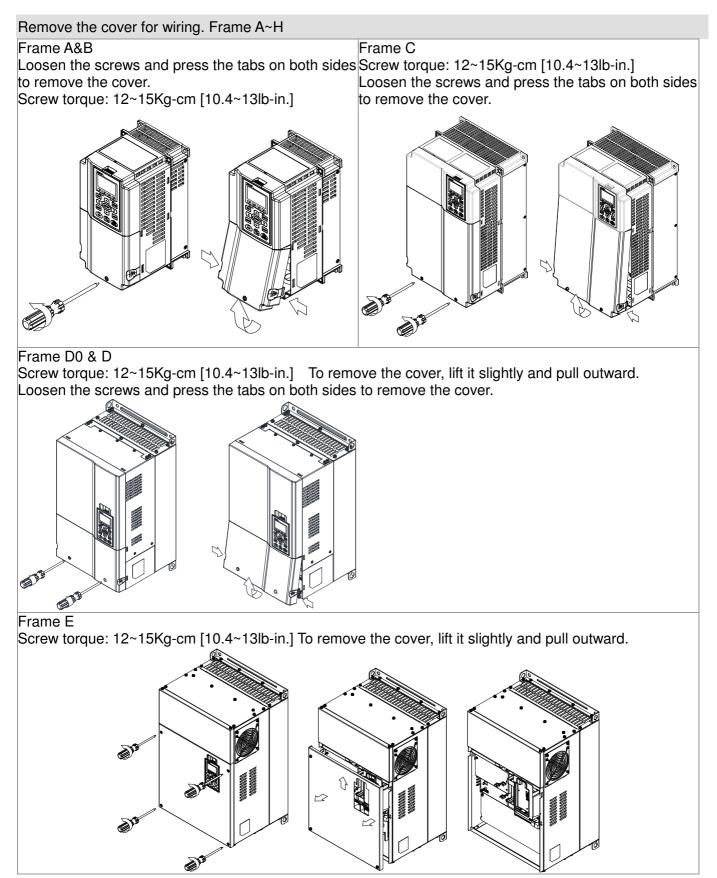
Frame H

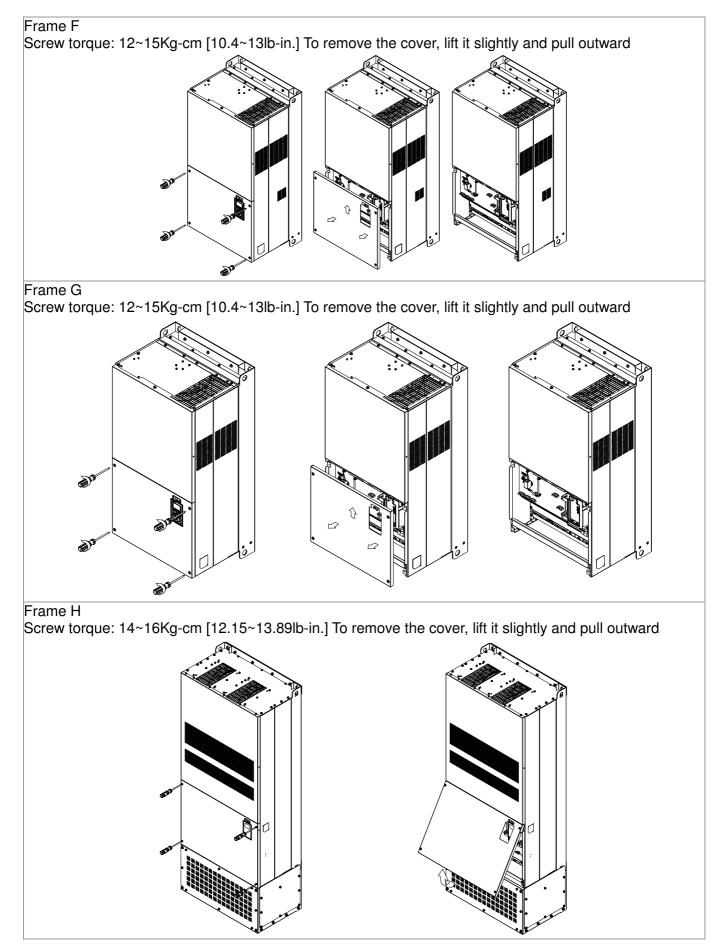


Main circuit terminals:

R/11,R12,S/21,S/22,T/31,T/32, U/T1,V/T2, W/T3, +1/DC+, -/DC-

Models	Max. Wire Gauge	Min. Wire Gauge	Torque (±10%)
VFD2800CH43A-00		4/0 AWG*4 (107mm ² *4)	M8 200kg-cm (173 lb-in.)
VFD2800CH43C-00	300MCM*4 (152mm ² *4)	3/0 AWG*4 (85mm ² *4)	
VFD2800CH43C-21	(10211111 1)	3/0 AWG*4 (85mm ² *4)	(19.62Nm)


- 1. UL installations must use 600V, 75° C or 90° C wire. Use copper wire only.
- 2. Figure 1 shows the specification for using the ring lug.
- 3. Specification of grounding wire ^(⊕) : 300MCM*4 [152 mm²*4], Torque: M8 200kg-cm (173 lb-in.) (19.62Nm) (±10%), as shown in figure 1.
- Figure 2 shows the specification of heat shrink tubing that comply with UL (600C, YDPU2).



Chapter 6 Control Terminals

Please remove the top cover before wiring the multi-function input and output terminals,

The drive appearances shown in the figures are for reference only, a real drive may look different.

6-1 Specifications of Control Terminal

0-10V AFM1 AFM2 AVI ACI 485 -10-10V 0-20mA 0-20mA 0-10V 120	RC2 RB2 RA2 RC1 RB1 RA1
AFM1 +10V AVI ACI MO1 MO2 STO1 STO2 +24V +24V COM FWD MI1	
	$\Theta \Theta \Theta \Theta$
AFM2-10V AUI ACM MCM DFM SCM1SCM2 DCM DCM REV MI2 MI	4 MI6 MI8 SG+ SG-

Removable Terminal Block

Wire Gauge: 26~16AWG $(\,0.1281\text{-}1.318\text{mm}^2\,)$,

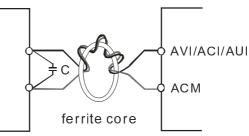
Torque: (A) 5kg-cm [4.31lb-in.] (0.49Nm) (As shown in figure above)

(B) 8kg-cm [6.94lb-in.] (0.78Nm) (As shown in figure above)

Wiring precautions:

- Reserves 5mm and properly install the wire into the terminal; fasten the installation by a slotted screwdriver. If the wire is stripped, sort the wire before install into the terminal.
- Flathead screwdriver: blade width 3.5mm, tip thickness 0.6mm
- In the figure above, the factory setting for S1-SCM is short circuit. The factory setting for +24V-COM is short circuit and SINK mode (NPN); please refer to Chapter 4 Wiring for more detail.

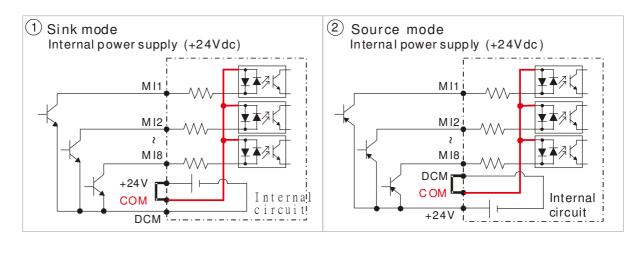
Terminals	Terminal Function	Factory Setting (NPN mode)
+24V	Digital control signal common	+24V±5% 200mA
	(Source)	
COM	Digital control signal common (Sink)	-
FWD	Forward-Stop command	FWD-DCM: ON→ forward running OFF→ deceleration to stop
REV	Reverse-Stop command	REV-DCM: ON→ reverse running OFF→ deceleration to stop
MI1 ~ MI8	Multi-function input 1~8	Refer to parameters 02-01~02-08 to program the multi-function inputs MI1~MI8. Source mode ON: the activation current is $3.3mA \ge 11Vdc$ OFF: cut-off voltage $\le 5Vdc$ Sink Mode ON: the activation current is $3.3mA \le 13Vdc$ OFF: cut-off voltage $\ge 19Vdc$
DFM	Digital frequency meter DFM DCM	Regard the pulse voltage as the output monitor signal Duty-cycle: 50% Min. load impedance: 1kΩ/100pf Max. current: 30mA Max. voltage: 30Vdc
DCM	Digital frequency signal common	, , , , , , , , , , , , , , , , , , ,
MO1	Multi-function Output 1 (photocoupler)	The AC motor drive releases various monitor signals, such as drive in operation, frequency attained and overload indication, via transistor (open collector).

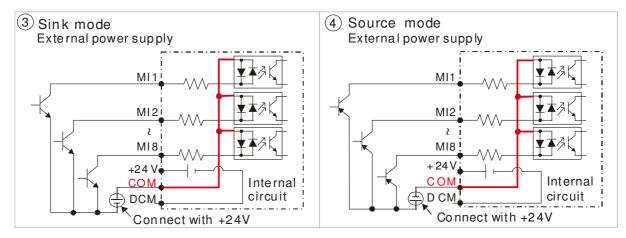

Terminals	Terminal Function	Factory Setting (NPN mode)
MO2	Multi-function Output 2 (photocoupler)	MO1 MO2 MCM
MCM	Multi-function Output Common	Max 48Vdc 50mA
RA1	Multi-function relay output 1 (N.O.) a	Resistive Load: 3A(N.O.)/3A(N.C.) 250VAC
RB1	Multi-function relay output 1 (N.C.) b	5A(N.O.)/3A(N.C.) 30VDC Inductive Load (COS 0.4):
RC1	Multi-function relay common	1.2A(N.O.)/1.2A(N.C.) 250VAC 2.0A(N.O.)/1.2A(N.C.) 30VDC
RA2	Multi-function relay output 2 (N.O.) a	
RB2	Multi-function relay output 2 (N.C.) b	It is used to output each monitor signal, such as drive is in operation, frequency attained or overload indication.
RC2	Multi-function relay common	
+10V	Potentiometer power supply	Analog frequency setting: +10Vdc 20mA
-10V	Potentiometer power supply	Analog frequency setting: -10Vdc 20mA
AVI	Analog voltage input	Impedance: 20kΩ Range: 0~20mA/4~20mA/0~10V =0~Max. Output Frequency (Pr.01-00) AVI switch, factory setting is 0~10V
ACI	Analog current input ACI ACI circuit ACI ACI circuit ACI ACI circuit	Impedance: 250Ω Range: 0~20mA/4~20mA/0~10V = 0 ~ Max. Output Frequency (Pr.01-00) ACI Switch, factory setting is 4~20mA
AUI	Auxiliary analog voltage input +10V AUI (-10V~+10V) ACM	Impedance: 20kΩ Range: -10~+10VDC=0 ~ Max. Output Frequency(Pr.01-00)

Terminals	Terminal Function	Factory Setting (NPN mode)
AFM1		0~10V Max. output current 2mA, Max. load 5kΩ -10~10V maximum output current 2mA, maximum load 5kΩ Output current: 2mA max Resolution: 0~10V corresponds to Max. operation frequency Range: 0~10V → -10~+10V AFM 1 Switch, factory setting is 0~10V
AFM2		0~10V Max. output current 2mA, Max. load 5kΩ 0~20mA Max. load 500Ω Output current: 20mA max Resolution: 0~10V corresponds to Max. operation frequency Range: 0~10V \rightarrow 4~20mA AFM 2 Switch, factory setting is 0~10V
ACM	Analog Signal Common	Common for analog terminals
STO1		
SCM1	Default setting is shorted	
STO2	Power removal safety function for E	
SCM2	WITEH 3101~30WH,3102~30W	2 is activated, the activation current is $3.3mA \ge 11Vdc$
SG+		
SG-	Modbus RS-485	
SGND		
RJ-45	PIN 1,2,7,8 : Reserved PIN PIN 4: SG- PIN 5: 5	3, 6: SGND SG+

NOTE: Wire size of analog control signals: 18 AWG (0.75 mm²) with shielded wire

6-2 Analog input terminals (AVI, ACI, AUI, ACM)


- Analog input signals are easily affected by external noise. Use shielded wiring and keep it as short as possible (<20m) with proper grounding. If the noise is inductive, connecting the shield to terminal ACM can bring improvement.
- ☑ If the analog input signals are affected by noise from the AC motor drive, please connect a capacitor and ferrite core as indicated in the following diagram.



Wind each wires 3 times or more around the core

Digital inputs (FWD, REV, MI1~MI8, COM)

- ☑ When using contacts or switches to control the digital inputs, please use high quality components to avoid contact bounce.
- ☑ The "COM" terminal is the common side of the photo-coupler. Any of wiring method, the "common point" of all photo-coupler must be the "COM".

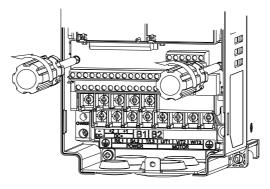
☑ When the photo-coupler is using internal power supply, the switch connection for Sink and Source as below:

MI-DCM: Sink mode MI-+24V: Source mode

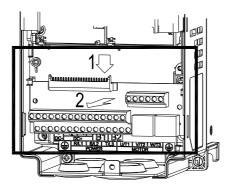
☑ When the photo-coupler is using external power supply, please remove the short circuit cable between the +24V and COM terminals. The connection mode is Sink mode or Source mode is according to the below:

The "+" of 24V connecting to "COM: Sink mode

The "-" of 24V connecting to COM: Source mode


Transistor outputs (MO1, MO2, MCM)

- $\ensuremath{\boxtimes}$ Make sure to connect the digital outputs to the right polarity.
- ☑ When connecting a relay to the digital outputs connect a surge absorber across the coil and check the polarity.


Chapter 6 Control Terminals

6-3 Remove the Terminal Block

1. Loosen the screws by screwdriver. (As shown in figure below).

2. Remove the control board by pulling it out for a distance 6~8 cm (as 1 in the figure) then lift the control board upward (as 2 in the figure).

Chapter 7 Optional Accessories

- 7-1 All Brake Resistors and Brake Units Used in AC Motor Drives
- 7-2 Non-fuse Circuit Breaker
- 7-3 Fuse Specification Chart
- 7-4 AC/DC Reactor
- 7-5 Zero Phase Reactor
- 7-6 EMI Filter
- 7-7 Digital Keypad
- 7-8 Panel Mounting
- 7-9 Conduit Box Kit
- 7-10 Fan Kit
- 7-11 Flange Mounting Kit
- 7-12 USB/RS-485 Communication Interface IF6530

The optional accessories listed in this chapter are available upon request. Installing additional accessories to your drive would substantially improve the drive's performance. Please select an applicable accessory according to your need or contact the local distributor for suggestion.

7-1 All Brake Resistors and Brake Units Used in AC Motor Drives

Appli Mo		* ¹ 125%Braking Torque 10%ED						* ² Max. Brake Torque		
HP	kW	Braking Torque (kg-m)	Brake Unit * ⁴ VFDB	* ³ Braking Resisto each Brake		Resistor value spec. for each AC motor Drive	Total Braking Current (A)	Min. Resistor Value (Ω)	Max. Total Braking Current (A)	Peak Power (kW)
1	0.7	0.5	-	BR080W20	00*1	80W200Ω	1.9	63.3	6	2.3
2	1.5	1.0	-	BR200W09	91*1	200W91Ω	4.2	47.5	8	3.0
3	2.2	1.5	-	BR300W07	70*1	300W70Ω	5.4	38.0	10	3.8
5	3.7	2.5	-	BR400W04	BR400W040*1		9.5	19.0	20	7.6
7.5	5.5	3.7	-	BR1K0W020*1		1000W20Ω	19	14.6	26	9.9
10	7.5	5.1	-	BR1K0W0	BR1K0W020*1		19	14.6	26	9.9
15	11	7.5	-	BR1K5W0	13*1	1500W13Ω	29	13.6	28	10.6
20	15	10.2	-	BR1K0W4P3*2	2 series	2000W8.6Ω	44	8.3	46	17.5
25	18	12.2	-	BR1K0W4P3*2	2 series	2000W8.6Ω	44	8.3	46	17.5
30	22	14.9	-	BR1K5W3P3*2	2 series	3000W6.6Ω	58	5.8	66	25.1
40	30	20.3	2015*2	BR1K0W5P1*2	2 series	4000W5.1Ω	75	4.8	80	30.4
50	37	25.1	2022*2	BR1K2W3P9*2	2 series	4800W3.9Ω	97	3.2	120	45.6
60	45	30.5	2022*2	BR1K5W3P3*2	2 series	6000W3.3Ω	118	3.2	120	45.6
75	55	37.2	2022*3	BR1K2W3P9*2	2 series	7200W2.6Ω	145	2.1	180	68.4
100	75	50.8	2022*4	BR1K2W3P9*2	2 series	9600W2Ω	190	1.6	240	91.2

460V

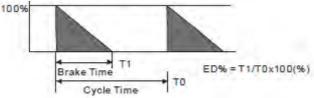
	cable otor	* ¹ 125%Braking Torque 10%ED							ax. Brake Toro	que
HP	kW	Braking Torque (kg-m)	Brake Unit * ⁴ VFDB	* ³ Braking Resistor series for each Brake Unit		Resistor value spec. for each AC motor Drive	Total Braking Current (A)	Min. Resistor Value (Ω)	Max. Total Braking Current (A)	Peak Power (kW)
1	0.7	0.5	-	BR080W7	'50*1	80W750Ω	1	190.0	4	3.0
2	1.5	1.0	-	BR200W3	860*1	200W360Ω	2.1	126.7	6	4.6
3	2.2	1.5	-	BR300W2	250*1	300W250Ω	3	108.6	7	5.3
5	3.7	2.5	-	BR400W1	50*1	400W150Ω	5.1	84.4	9	6.8
5.5 7.5	4.0 5.5	2.7 3.7	-	BR1K0W075*1		1000W75Ω	10.2	54.3	14	10.6
10	7.5	5.1	-	BR1K0W075*1		1000W75Ω	10.2	47.5	16	12.2
15	11	7.5	-	BR1K5W043*1		1500W43Ω	17.6	42.2	18	13.7
20	15	10.2	-	BR1K0W016*2	2 series	2000W32Ω	24	26.2	29	22.0
25	18	12.2	-	BR1K0W016*2	2 series	2000W32Ω	24	23.0	33	25.1
30	22	14.9	-	BR1K5W013*2	2 series	3000W26Ω	29	23.0	33	25.1
40	30	20.3	-	BR1K0W016*4	2 parallel, 2 series	4000W16Ω	47.5	14.1	54	41.0
50	37	25.1	4045*1	BR1K2W015*4	2 parallel, 2 series	4800W15Ω	50	12.7	60	45.6
60	45	30.5	4045*1	BR1K5W013*4	2 parallel, 2 series	6000W13Ω	59	12.7	60	45.6
75	55	37.2	4030*2	BR1K0W5P1*4	4 parallel	8000W10.2Ω	76	9.5	80	60.8
100	75	50.8	4045*2	BR1K2W015*4	2 parallel, 2 series	9600W7.5Ω	100	6.3	120	91.2
125	90	60.9	4045*2	BR1K5W013*4	2 parallel, 2 series	12000W6.5Ω	117	6.3	120	91.2
150	110	74.5	4110*1	BR1K2W015*10	5 parallel, 2 series	12000W6Ω	126	6.0	126	95.8

4	6	0	٧
–	U	U	v

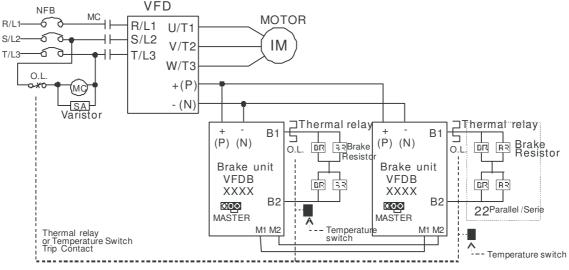
•••	cable tor	*1 125%Braking Torque 10%ED						* ² Max. Brake Torque		
ΗP	kW	Braking Torque (kg-m)	Brake Unit	* ³ Braking Resistor series for each Brake Unit		Resistor value spec. for each AC motor Drive	Total Braking Current (A)	Min. Resistor Value (Ω)	Max. Total Braking Current (A)	Peak Power (kW)
175	132	89.4	4160*1	BR1K5W012*12	6 parallel, 2 series	18000W4Ω	190	4.0	190	144.4
215	160	108.3	4160*1	BR1K5W012*12	6 parallel, 2 series	18000W4Ω	190	4.0	190	144.4
250	185	125.3	4185*1	BR1K5W012*14	7 parallel, 2 series	21000W3.4Ω	225	3.4	225	172.1
300	220	148.9	4110*2	BR1K2W015*10	5 parallel, 2 series	24000W3Ω	252	3.0	252	190.5
375 * ¹	280	189.6	4160*2	BR1K5W012*12	6 parallel, 2 series	36000W2Ω	380	2.0	380	288.8

Calculation for 125% brake toque: (kw)*125%*0.8; where 0.8 is motor efficiency.

Because there is a resistor limit of power consumption, the longest operation time for 10%ED is 10sec (on: 10sec/ off: 90sec). *² Please refer to the Brake Performance Curve for "Operation Duration & ED" vs. "Braking Current".

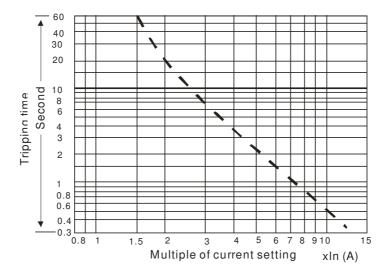

*³ For heat dissipation, a resistor of 400W or lower should be fixed to the frame and maintain the surface temperature below 50°C; a resistor of 1000W and above should maintain the surface temperature below 350°C.

^{*4} Please refer to VFDB series Braking Module Instruction for more detail on braking resistor.



1. Definition for Brake Usage ED%

Explanation: The definition of the brake usage ED (%) is for assurance of enough time for the brake unit and brake resistor to dissipate away heat generated by braking. When the brake resistor heats up, the resistance would increase with temperature, and brake torque would decrease accordingly. Recommended cycle time is one minute.


For safety concern, install an overload relay (O.L) between the brake unit and the brake resistor in conjunction with the magnetic contactor (MC) prior to the drive for abnormal protection. The purpose of installing the thermal overload relay is to protect the brake resistor from damage due to frequent brake, or due to brake unit keeping operating resulted from unusual high input voltage. Under such circumstance, just turn off the power to prevent damaging the brake resistor.

- When AC Drive is equipped with a DC reactor, please read user manual to know th wiring method of input circuit of brake unit +(P).
- Do Not connect input circuit -(N) to the neutral point of the power system.
- 2. If damage to the drive or other equipment is due to the fact that the brake resistors and brake modules in use are not provided by Delta, the warranty will be void.
- 3. Take into consideration the safety of the environment when installing the brake resistors. If the minimum resistance value is to be utilized, consult local dealers for the calculation of Watt figures.

- 4. When using more than 2 brake units, equivalent resistor value of parallel brake unit can't be less than the value in the column "Minimum Equivalent Resistor Value for Each AC Drive" (the right-most column in the table). Please read the wiring information in the user manual of brake unit thoroughly prior to operation
- 5. This chart is for normal usage; if the AC motor drive is applied for frequent braking, it is suggested to enlarge 2~3 times of the Watts.
- 6. Thermal Relay:

Thermal relay selection is basing on its overload capability. A standard braking capacity for C2000 is 10%ED (Tripping time=10s). The figure below is an example of 406V, 110kw AC motor drive. It requires the thermal relay to take 260% overload capacity in 10s (Host starting) and the braking current is 126A. In this case, user should select a rated 50A thermal relay. The property of each thermal relay may vary among different manufacturer, please carefully read specification.

7-2 Non-fuse Circuit Breaker

Comply with UL standard: Per UL 508, paragraph 45.8.4, part a. The rated current of the breaker shall be 2~4 times of the maximum rated input current of AC motor drive.

3-phase 230V					
Model	Recommended non-fuse breaker (A)				
VFD007CH23A-21	15				
VFD015CH23A-21	20				
VFD022CH23A-21	30				
VFD037CH23A-21	40				
VFD055CH23A-21	50				
VFD075CH23A-21	60				
VFD110CH23A-21	100				
VFD150CH23A-21	125				
VFD185CH23A-21	150				
VFD220CH23A-00/21	200				
VFD300CH23A-00/21	225				
VFD370CH23A-00/21	250				
VFD450CH23A-00/21	300				
VFD550CH23A-00/21	400				
VFD750CH23A-00/21	450				

3-phase 460V						
Model	Recommended non-fuse breaker(A)					
VFD007CH43A/4EA-21	5					
VFD015CH43A/4EA-21	10					
VFD022CH43A/4EA-21	15					
VFD037CH43A/4EA-21	20					
VFD055CH43A/4EA-21	20					
VFD075CH43A/4EA-21	30					
VFD110CH43A/4EA-21	40					
VFD150CH43A/4EA-21	50					
VFD185CH43A/4EA-21	60					
VFD220CH43A/4EA-21	75					
VFD300CH43A/4EA-21	100					
VFD370CH43A-00/21	125					
VFD370CH43S-21	150					
VFD450CH43A-00/21	175					
VFD550CH43A-00/21	250					
VFD750CH43A-00/21	300					
VFD900CH43A-00/21	300					
VFD1100CH43A-00/21	400					
VFD1320CH43A-00/21	500					
VFD1600CH43A-00/21	600					
VFD1850CH43A-00/21	600					
VFD2200CH43A-00/21	800					
VFD2800CH43A-00 VFD2800CH43C-00/21	1000					

7-3 Fuse Specification Chart

- Use only the fuses comply with UL certificated.
- Use only the fuses comply with local regulations.

230V Model	Input Current I(A)	Lin	e Fuse
	Super Heavy Duty	I (A)	Bussmann P/N
VFD007CH23A-21	6.4	15	JJN-15
VFD015CH23A-21	12	20	JJN-20
VFD022CH23A-21	16	30	JJN-30
VFD037CH23A-21	20	50	JJN-50
VFD055CH23A-21	28	50	JJN-50
VFD075CH23A-21	36	60	JJN-60
VFD110CH23A-21	52	110	JJN-110
VFD150CH23A-21	72	125	JJN-125
VFD185CH23A-21	83	150	JJN-150
VFD220CH23A-00/21	99	200	JJN-200
VFD300CH23A-00/21	124	225	JJN-225
VFD370CH23A-00/21	143	300	JJN-300
VFD450CH23A-00/21	171	300	JJN-300
VFD550CH23A-00/21	206	400	JJN-400
VFD750CH23A-00/21	245	500	JJN-500

460VModel	Input Current I(A)	Line Fuse		
400 11100001	Super Heavy Duty	I (A)	Bussmann P/N	
VFD007CH43A/4EA-21	4.3	10	JJS-10	
VFD015CH43A/4EA-21	5.9	10	JJS-10	
VFD022CH43A/4EA-21	8.7	15	JJS-15	
VFD037CH43A/4EA-21	14	20	JJS-20	
VFD055CH43A/4EA-21	17	40	JJS-40	
VFD075CH43A/4EA-21	20	40	JJS-40	
VFD110CH43A/4EA-21	26	50	JJS-50	
VFD150CH43A/4EA-21	35	70	JJS-70	
VFD185CH43A/4EA-21	40	80	JJS-80	
VFD220CH43A/4EA-21	47	100	JJS-100	
VFD300CH43A/4EA-21	63	150	JJS-150	
VFD370CH43A-00/21	74	150	JJS-150	
VFD370CH43S-21	74	150	JJS-150	
VFD450CH43A-00/21	101	175	JJS-175	
VFD550CH43A-00/21	114	250	JJS-250	
VFD750CH43A-00/21	157	300	JJS-300	
VFD900CH43A-00/21	167	300	JJS-300	
VFD1100CH43A-00/21	207	400	JJS-400	
VFD1320CH43A-00/21	240	500	JJS-500	
VFD1600CH43A-00/21	300	600	JJS-600	
VFD1850CH43A-00/21	380	600	JJS-600	
VFD2200CH43A-00/21	400	800	JJS-800	
VFD2800CH43A-00 VFD2800CH43C-00/21	494	1000	KTU-1000	

* Contact Delta Electronics or an authorized distributor for corresponding fuse of VFD4500C43A/E

7-4 AC/DC Reactor

When the AC Motor Drive is connected directly to a large-capacity power transformer (600kVA or above) or when a phase lead capacitor is switched, excess peak currents may occur in the power input circuit due to the load changes and the converter section may be damaged. To avoid this, it is recommend to use a serial connected AC input reactor (3%) at the AC Motor Drive mains input side to reduce the current and improve the input power efficiency.

AC Input/output Reactor

200V~230V/	50~60Hz
	00 00112

Туре	KW	HP	Rated Amps of AC Reactor (Arms)	Max. continuous Amps (Arms)	3% impedance (mH)	5% impedance (mH)	Built-in DC reactor	3% Input AC reactor Delta part #
007	0.75	1	5	10	2.205	3.676	Х	N/A
015	1.5	2	8	16	1.378	2.297	Х	N/A
022	2.2	3	11	22	1.002	1.671	Х	N/A
037	3.7	5	17	34	0.649	1.081	Х	N/A
055	5.5	7.5	25	50	0.441	0.735	Х	N/A
075	7.5	10	33	66	0.320	0.534	Х	DR033AP530
110	11	15	49	98	0.216	0.359	Х	DR049AP360
150	15	20	65	130	0.163	0.271	Х	DR065AP270
185	18.5	25	75	150	0.147	0.245	Х	N/A
220	22	30	90	180	0.123	0.204	0	N/A
300	30	40	120	240	0.092	0.153	0	N/A
370	37	50	146	292	0.076	0.126	0	N/A
450	45	60	180	360	0.061	0.102	0	N/A
550	55	75	215	430	0.051	0.085	0	N/A
750	75	100	255	510	0.043	0.072	0	N/A

380V~460V/ 50~60Hz

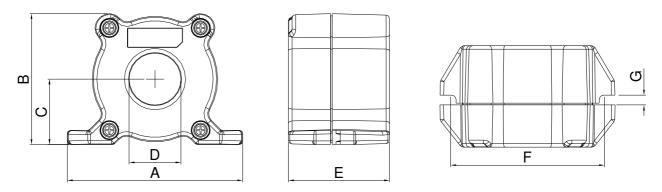
Туре	KW	HP	Rated Amps of AC Reactor (Arms)	Max. continuous Amps (Arms)	3% impedance (mH)	5% impedance (mH)	Built-in DC reactor	3% Input AC reactor Delta part #
007	0.75	1	3	6	7.045	11.741	Х	N/A
015	1.5	2	4	8	5.284	8.806	Х	N/A
022	2.2	3	6	12	3.522	5.871	Х	N/A
037	3.7	5	9	18	2.348	3.914	Х	N/A
055	5.5	7.5	12	24	1.761	2.935	Х	N/A
075	7.5	10	18	36	1.174	1.957	Х	DR018A0117
110	11	15	24	48	0.881	1.468	Х	DR024AP880
150	15	20	32	64	0.660	1.101	Х	DR032AP660
185	18.5	25	38	76	0.556	0.927	Х	N/A
220	22	30	45	90	0.470	0.783	Х	N/A
300	30	40	60	120	0.352	0.587	Х	N/A
370	37	50	73	146	0.290	0.483	0	N/A
450	45	60	91	182	0.232	0.387	0	N/A
550	55	75	110	220	0.192	0.320	0	N/A
750	75	100	150	300	0.141	0.235	0	N/A
900	90	125	180	360	0.117	0.196	0	N/A
1100	110	150	220	440	0.096	0.160	0	N/A
1320	132	175	250	500	0.085	0.141	0	N/A
1600	160	215	310	620	0.068	0.114	0	N/A
1850	185	250	370	740	0.057	0.095	0	N/A
2200	220	300	450	900	0.047	0.078	0	N/A
2800	280	375	550	1100	0.038	0.064	0	N/A

DC Reactor

200V~230V/ 50~60Hz

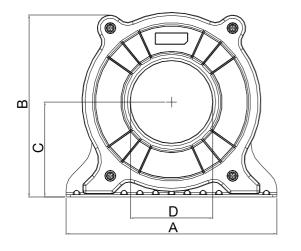
Туре	kW	HP	Rated Amps of AC Reactor	Max. continuous Amps	Inductance (mh)	Part NO.
007	0.75	1	5	10	5.093	N/A
015	1.5	2	8	16	3.183	N/A
022	2.2	3	11	22	2.315	N/A
037	3.7	5	17	34	1.497	N/A
055	5.5	7.5	25	50	1.019	N/A
075	7.5	10	33	66	0.740	N/A
110	11	15	49	98	0.499	N/A
150	15	20	65	130	0.376	N/A
185	18.5	25	75	150	0.340	N/A

380V~460V/ 50~60Hz

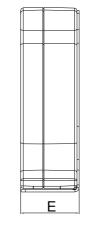

Туре	kW	HP	Rated Amps of AC Reactor	Max. continuous Amps	Inductance (mh)	Part NO.
007	0.75	1	3	6	16.269	N/A
015	1.5	2	4	8	12.201	N/A
022	2.2	3	6	12	8.135	N/A
037	3.7	5	9	18	5.423	N/A
055	5.5	7.5	12	24	4.067	N/A
075	7.5	10	18	36	2.712	N/A
110	11	15	24	48	2.033	N/A
150	15	20	32	64	1.525	N/A
185	18.5	25	38	76	1.284	N/A
220	22	30	45	90	1.084	N/A
300	30	40	60	120	0.813	N/A

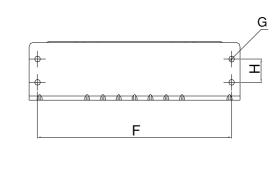
THD

Motor Drive Spec.		Without Built-	in DC Reactor		With Built in DC		
Motor Drive Opec.		Without Dulit			Reactor		
Reactor Spec.	20/ Innut		DC Reactor	DC Reactor	20/ Input		
	3% Input	DC Reactor	+ 3% Input	+ 5% Input	3% Input AC Reactor		
	AC Reactor		AC Reactor	AC Reactor	AC Reactor		
THD	44%	46%	34%	30%	34%		
Netz	THD may have some differences due to different installation conditions and						
Note:	environmen	t					

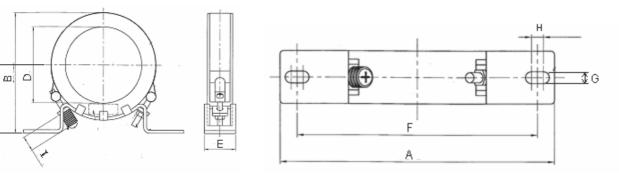

According to IEC61000-3-12, DC Reactor is designed with 4% system impedance, and AC Reactor is designed with 3% system impedance.

7-5 Zero Phase Reactors




UNIT: mm(inch)

model	Α	В	С	D	E	F	G(Ø)	Torque
RF008X00A	98 (3.858)	73 (2.874)	36.5 (1.437)	29 (1.142)	56.5 (2.224)	86 (3.386)	5.5 (0.217)	< 10kgf/cm ²
RF004X00A	110 (4.331)	87.5 (3.445)	43.5 (1.713)	36 (1.417)	53 (2.087)	96 (3.780)	5.5 (0.217)	< 10kgf/cm ²

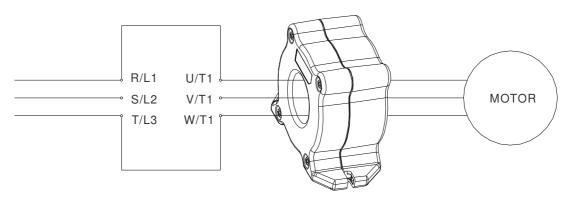

 \odot

UNIT: mm(inch)

model	Α	В	С	D	E	F	G(Ø)	Н	Torque
RF002X00A	200 (7.874)	172.5 (6.791)	90 (3.543)	78 (3.071)	55.5 (2.185)	184 (7.244)	5.5 (0.217)	22 (0.866)	<45kgf/cm ²

UNIT: mm(inch)

model	Α	в	С	D	ш	F	G(Ø)	H	Ι
RF300X00A	241(9.488)	217(8.543)	114(4.488)	155(6.102)	42(1.654)	220(8.661)	6.5(0.256)	7.0(0.276)	20(0.787)


Reactor model (Note)	Recommen	ded Wire Size	Wiring Method	Qty	Corresponding motor drives
RF008X00A	≤8 AWG	\leq 8.37 mm ²	Diagram A	1	VFD007CH23A, VFD015CH23A, VFD022CH23A, VFD037CH23A, VFD007CH43A, VFD015CH43A,
HF000A00A		<u>≥</u> 0.37 mm	Diagrafii A	A 1 A 1 A 1 A 1	VFD022CH43A, VFD037CH43A, VFD015CH43A,
RF004X00A	≦4 AWG	\leq 21.15 mm ²	Diagram A	1	VFD055CH23A, VFD075CH23A, VFD110CH23A,
HF004X00A		<u>⊇</u> 21.15 mm	Diagrafii A	I	VFD075CH43A, VFD110CH43A, VFD150CH43A
		\leq 33.62 mm ²	Diagram A	1	VFD150CH23A, VFD185CH23A, VFD220CH23A,
RF002X00A	\leq 2 AWG				VFD300CH23A, VFD370CH23A, VFD185CH43A,
RF002X00A					VFD220CH43A, VFD300CH43A, VFD370CH43A,
					VFD450CH43A, VFD550CH43A, VFD750CH43A
					VFD450CH23A, VFD550CH23A, VFD750CH23A,
					VFD900CH43A, VFD1100CH43A,
RF300X00A	\leq 300 MCM	\leq 152 mm ²	Diagram A	1	VFD1320CH43A, VFD1600CH43A,
					VFD1850CH43A, VFD2200CH43A,
					VFD2800CH43A

Note: 600V insulated cable wire

Diagram A

Please put all wires through at least one core without winding.

Zero Phase Reactor

- Note 1: The table above gives approximate wire size for the zero phase reactors but the selection is ultimately governed by the type and diameter of cable fitted i.e. the cable must fit through the center hole of zero phase reactors.
- Note 2: Only the phase conductors should pass through, not the earth core or screen.
- **Note3:** When long motor output cables are used an output zero phase reactor may be required to reduce radiated emissions from the cable.

7-6 EMI Filter

				CE Cabl	e Length	Radiation Emission
Model	input Current	Applicable EMI Filter	Zero Phase Reactor	default carrie	er frequency	default carrier frequency
	Guilon		- House	EN61800-3 C1	EN61800-3 C2	EN61800-3 C2
VFD007CH23A	6.4A			50m	100m	100m
VFD015CH23A	12A	EMF021A23A	RF008X00A	50m	100m	100m
VFD022CH23A	16A	EIVIFU21A23A	RF006A00A	50m	100m	100m
VFD037CH23A	20A			50m	100m	100m
VFD055CH23A	28A			50m	100m	100m
VFD075CH23A	36A	EMF056A23A	RF004X00A	50m	100m	100m
VFD110CH23A	52A	-		50m	100m	100m
VFD150CH23A	76A			50m	100m	100m
VFD185CH23A	83A	KMF3100A		50m	100m	100m
VFD220CH23A	99A		RF002X00A	50m	100m	100m
VFD300CH23A	124A			50m	100m	100m
VFD370CH23A	143A	B84143D0150R127		50m	100m	100m
VFD450CH23A	171A			50m	100m	100m
VFD550CH23A	206A	B84143B0250S020	RF300X00A	50m	100m	100m
VFD750CH23A	245A	-		50m	100m	100m
VFD007CH43A	4.3A			50m	100m	100m
VFD015CH43A	5.9A	EMF014A43A		50m	100m	100m
VFD022CH43A	8.7A	-	RF008X00A	50m	100m	100m
VFD037CH43A	14A			50m	100m	100m
VFD055CH43A	17A	EMF018A43A		50m	100m	100m
VFD075CH43A	20A			50m	100m	100m
VFD110HC43A	26A	EMF039A43A	RF004X00A	50m	100m	100m
VFD150CH43A	35A]		50m	100m	100m
VFD185CH43A	40A			50m	100m	100m
VFD220CH43A	47A	KMF370A		50m	100m	100m
VFD300CH43A	63A			50m	100m	100m
VFD370CH43A	74A		RF002X00A	50m	100m	100m
VFD450CH43A	101A			50m	100m	100m
VFD550CH43A	114A	-B84143D0150R127		50m	100m	100m
VFD750CH43A	157A]		50m	100m	100m

		Applicable EMI Filter	Zero Phase Reactor	CE Cabl	e Length	Radiation Emission
Model	input Current			default carrie	er frequency	default carrier frequency
	Guiloin		Trodoto!	EN61800-3 C1	EN61800-3 C2	EN61800-3 C2
VFD900CH43A	167A	B84143D0200B127		50m	100m	100m
VFD1100CH43A	207A	D04143D0200h127		50m	100m	100m
VFD1320CH43A	240A	MIF3400B		50m	100m	100m
VFD1600CH43A	300A	MIF3400B	RF300X00A	50m	100m	100m
VFD1850CH43A	380A			50m	100m	100m
VFD2200CH43A	400A	MIF3800		50m	100m	100m
VFD2800CH43A	494A			50m	100m	100m

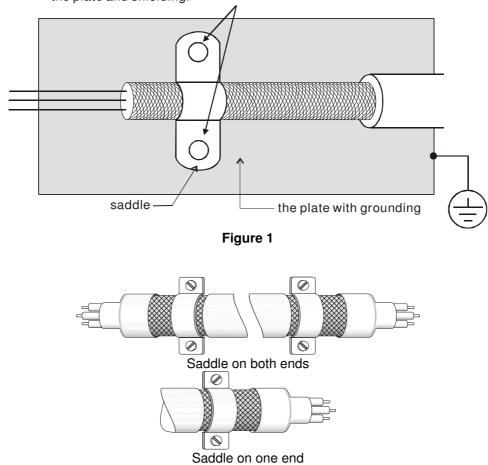
EMI Filter Installation

All electrical equipment, including AC motor drives, will generate high-frequency/low-frequency noise and will interfere with peripheral equipment by radiation or conduction when in operation. By using an EMI filter with correct installation, much interference can be eliminated. It is recommended to use DELTA EMI filter to have the best interference elimination performance.

We assure that it can comply with following rules when AC motor drive and EMI filter are installed and wired according to user manual:

- EN61000-6-4
- EN61800-3: 1996

EN55011 (1991) Class A Group 1 (1st Environment, restricted distribution)


General precaution

- 1. EMI filter and AC motor drive should be installed on the same metal plate.
- 2. Please install AC motor drive on footprint EMI filter or install EMI filter as close as possible to the AC motor drive.
- 3. Please wire as short as possible.
- 4. Metal plate should be grounded.
- 5. The cover of EMI filter and AC motor drive or grounding should be fixed on the metal plate and the contact area should be as large as possible.

Choose suitable motor cable and precautions

Improper installation and choice of motor cable will affect the performance of EMI filter. Be sure to observe the following precautions when selecting motor cable.

- 1. Use the cable with shielding (double shielding is the best).
- 2. The shielding on both ends of the motor cable should be grounded with the minimum length and maximum contact area.
- 3. Remove any paint on metal saddle for good ground contact with the plate and shielding.

Remove any paint on metal saddle for good ground contact with the plate and shielding.

Figure 2

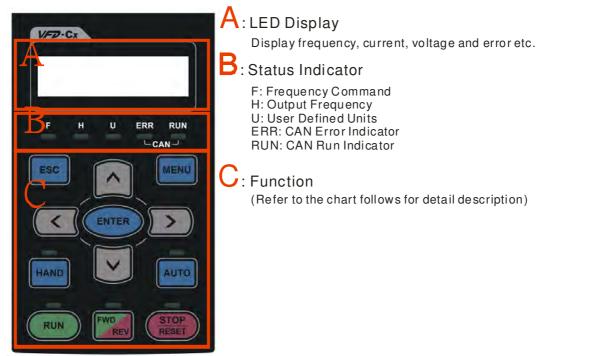
The length of motor cable

When motor is driven by an AC motor drive of PWM type, the motor terminals will experience surge voltages easily due to components conversion of AC motor drive and cable capacitance. When the motor cable is very long (especially for the 460V series), surge voltages may reduce insulation quality. To prevent this situation, please follow the rules below:

- Use a motor with enhanced insulation.
- Connect an output reactor (optional) to the output terminals of the AC motor drive

■ The length of the cable between AC motor drive and motor should be as short as possible (10 to 20 m or less)

■ For models 7.5hp and above:

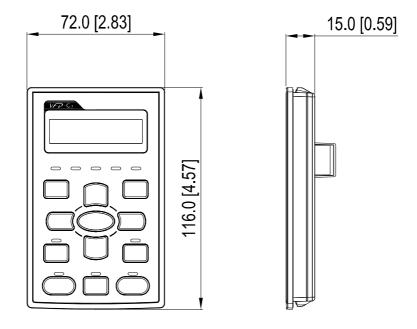

Insulation level of motor	1000V	1300V	1600V
460VAC input voltage	66 ft (20m)	328 ft (100m)	1312 ft (400m)
230VAC input voltage	1312 ft (400m)	1312 ft (400m)	1312 ft (400m)

■ For models 5hp and less:

Insulation level of motor	1000V	1300V	1600V
460VAC input voltage	66 ft (20m)	165 ft (50m)	165 ft (50m)
230VAC input voltage	328 ft (100m)	328 ft (100m)	328 ft (100m)

7-7 Digital Keypad

7-7-1 KPC-CE01

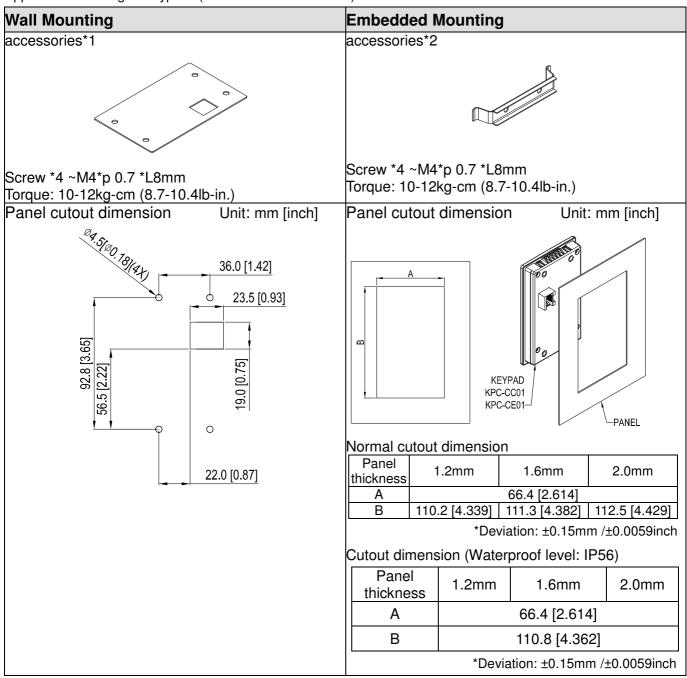


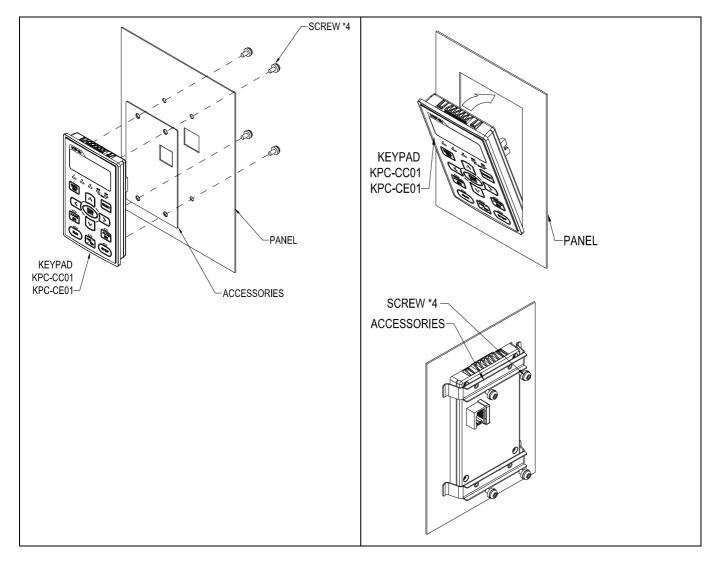
Key	Description					
ESC	ESC Key Press ESC key to return to the previous page. It also functions as a return to last category key in the sub-menu.					
MENU	Menu Key					
	Press MENU key under any condition will return to the main MENU.					
	Menu content:					
	1. Parameter Detail3. Keypad locked2. Copy Parameter4. PLC Function					
ENTER	ENTER Key					
	Press ENTER and go to the next level. If it is the last level then press ENTER to execute the command.					
HAND	HAND ON Key					
	1. HAND key will operates according to the parameter settings when the source of HAND master frequency command and the source of HAND operation command is properly set,. The factory setting of the source command for frequency and operation are from the digital keypad.					
	2. Press HAND key in stop status, the drive setting switches to the parameter setting of HAND. Press HAND					
	key in during operation, the drive will come to stop then switches to the parameter setting of HAND.					
	3. When process complete: H/A LED ON.					
AUTO	 Auto Operation Key AUTO function executes according to the parameter settings of the source of AUTO frequency and AUTO operation. The factory setting is the external terminal (source of operation is 4-20mA). Press the ATUO key in stop status, the drivel switches to auto-setting. Press the auto key during operation status, the drivel will come to stop and switch to auto-setting. When process complete: H/A LED is OFF 					
FWD/REV	 Operation Direction Key FWD/REV key controls the operation direction but will NOT activate the drive. FWD: forward, REV: reverse. The drive operates in the direction as shown by the LED light. 					
RUN	 Start Key 1. This button is functional only when the keypad is the source of the command. 2. This button allows the motor drive to run by following its settings. See Description of LED functions for LED status 3. Press repeatedly the "RUN" button is allow while the motor drive is stopping. 					
STOP	 Stop Key. 1. STOP key has the highest priority in command. 2. Press STOP key, the drive will come to stop under any condition. 3. The RESET key can be used to reset the drive when faults occur. If the RESET key is not responding, check MENU → Fault Records and check the most recent fault. 					

Descriptions of LED Functions

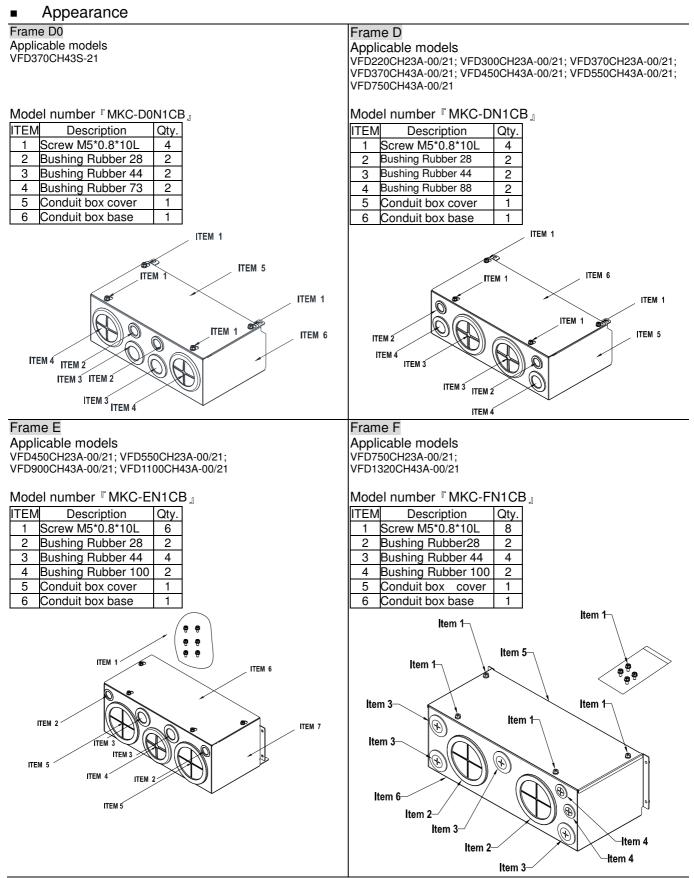
LED	Descriptions					
RUN	Steady ON: operation indicator of the AC motor drive, including DC brake, zero speed, standby, restart after fault and speed search. Blinking: drive is decelerating to stop or in the status of base block. Steady OFF: drive doesn't execute the operation command					
STOP	Steady ON: stop indicator of the AC motor drive. Blinking: drive is in the standby status. Steady OFF: drive doesn't execute "STOP" command.					
FWD	Operation Direction LED 『Green light= Forward』;『Red light= Reversely』 Steady ON: the drive is running forward. Blinking: the drive is changing direction. Steady Off: the drive is running reversely.					
	RUN (Gree LED status OFF	n light): Condition/State CANopen at initial				
CANopen ~"RUN"	Blinking	CANopen at pre-operation				
	Single flash	CANopen at stopped				
	ON	CANopen at operation status No LED				
	ERR (Red LED	light): Condition/ State				
	status					
	OFF Single	No Error One message fail				
	flash	ON - 200 200 100 M ms ms ms ms ms				
CANopen ~"ERR"	Double flash	Guarding fail or heartbeat fail ON 200 200 100 ms ms ms ms ms				
	Triple flash	ON 200 200 200 200 100 OFF ms ms ms ms				
	ON	Bus off				

7-7-2 Dimension


7-7-3 RJ45 Extension Lead for Digital Keypad

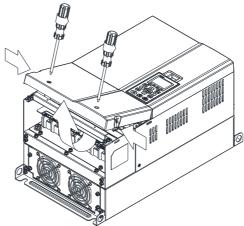

Part #	Description	
CBC-K3FT	3 feet RJ45 extension lead (approximately 0.9m)	
CBC-K5FT	5 feet RJ45 extension lead (approximately 1.5 m)	
CBC-K7FT	7 feet RJ45 extension lead (approximately 2.1 m)	
CBC-K10FT	10 feet RJ45 extension lead (approximately 3 m)	
CBC-K16FT	16 feet RJ45 extension lead (approximately 4.9 m)	

7-8 Panel Mounting (MKC-KPPK)

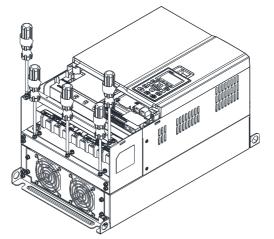

For MKC-KPPK model, user can choose wall mounting or embedded mounting, protection level is IP56.

Applicable to the digital keypads (KPC-CC01 & KPC-CE01).

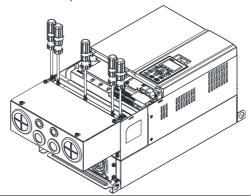
7-9 Conduit Box Kit

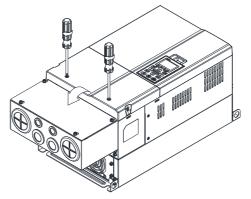

Frame G Applicable models VFD1600CH43A-00/21;VFD1850CH43A-00/21; VFD2200CH43A-00/21

VFD2200CH43A-00/21									
Model number 『MKC-GN1CB』									
ITEM Description	Qty.								
1 Screw M5* .8*10L	12								
2 Bushing Rubber 28	2								
3 Bushing Rubber 44	2								
4 Bushing Rubber 130	3								
5 Conduit box cover	1								
6 Conduit box base	1								

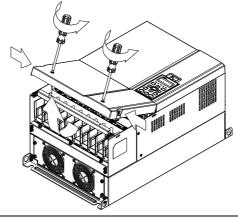

Conduit Box Installation

Frame D0

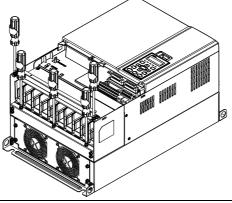

1. Loosen the cover screws and press the tabs on each side of the cover to remove the cover, as shown in the following figure. Screw torque: 12~15kg-cm (10.4~13 lb-in)


2. Remove the 5 screws shown in the following figure. Screw torque:24~26kg-cm (20.8~22.6lb-in)

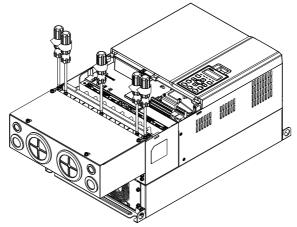
3. Install the conduit box by fasten the 5 screws shown in the following figure. Screw torque:24~26kg-cm (20.8~22.6lb-in)

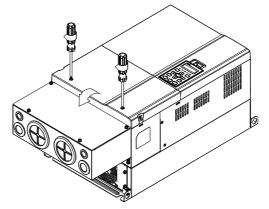


4. Fasten the 2 screws shown in the following figure. Screw torque: 12~15kg-cm (10.4~13 lb-in)

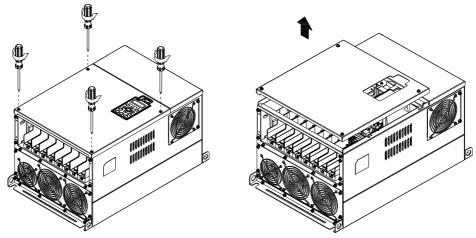


Frame D

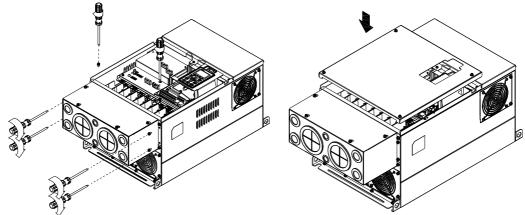

1. Loosen the cover screws and press the tabs on each side of the cover to remove the cover, as shown in the following figure. Screw torque: 12~15kg-cm (10.4~13 lb-in)


2. Remove the 5 screws shown in the following figure. Screw torque:24~26kg-cm (20.8~22.6lb-in)

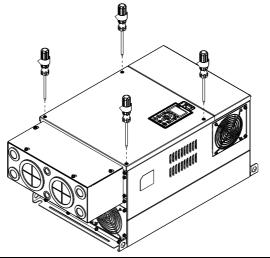
3. Install the conduit box by fasten the 5 screws shown in the following figure. Screw torque:24~26kg-cm (20.8~22.6lb-in)



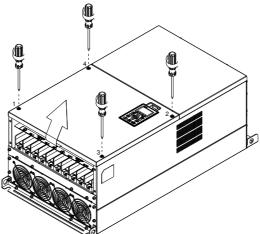
4. Fasten the 2 screws shown in the following figure. Screw torque: 12~15kg-cm (10.4~13 lb-in)



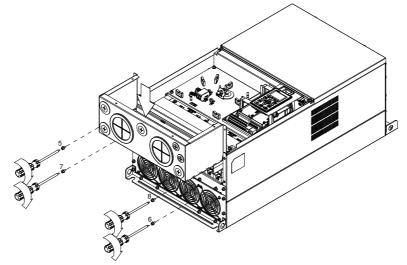
Frame E


1. Loosen the 4 cover screws and lift the cover; Screw torque: 12~ 15 kg-cm (10.4~13lb-in).

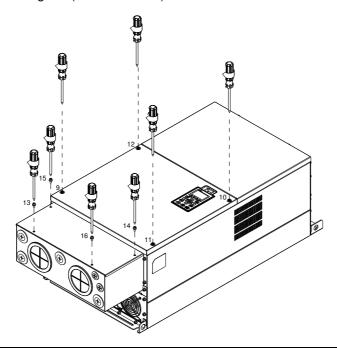
2. Fasten the 6 screws shown in the following figure and place the cover back to the original position. Screw torque: 24~26kg-cm (20.8~22.6lb-in).



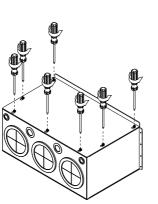
3. Fasten the 4 screws shown in the following figure. Screw torque:12~15kg-cm (10.4~13lb-in) _

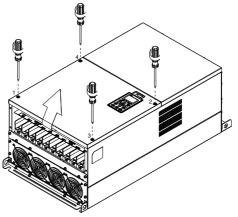


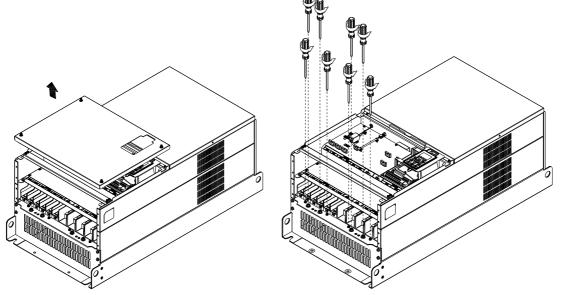
Frame F


1. Loosen the cover screws and press the tabs on each side of the cover to remove the cover, as shown in the following figure. Screw torque: 12~15kg-cm (10.4~13 lb-in).

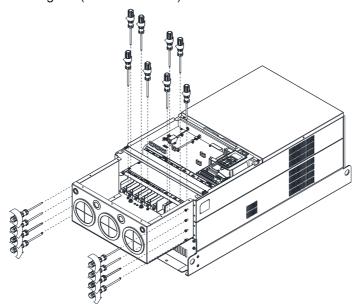
2. Install the conduit box by fastens the 4 screws, as shown in the following figure. Screw torque: 24~26kg-cm (20.8~22.6lb-in).

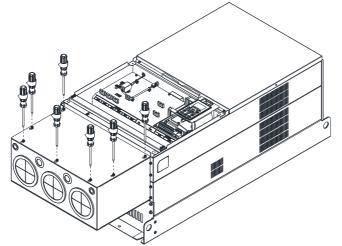


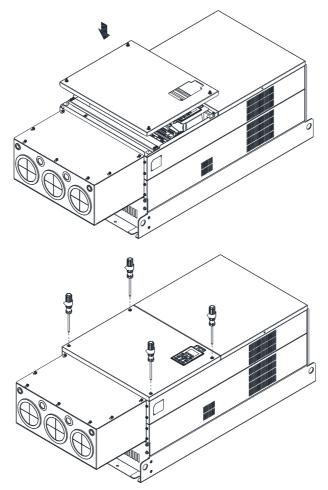

 Install the conduit box by fasten all the screws shown in the following figure Screw 9~12 torque: 12~15kg-cm (10.4~13.6lb-in) Screw 13~16 torque: 24~26kg-cm (20.8~22.6lb-in)

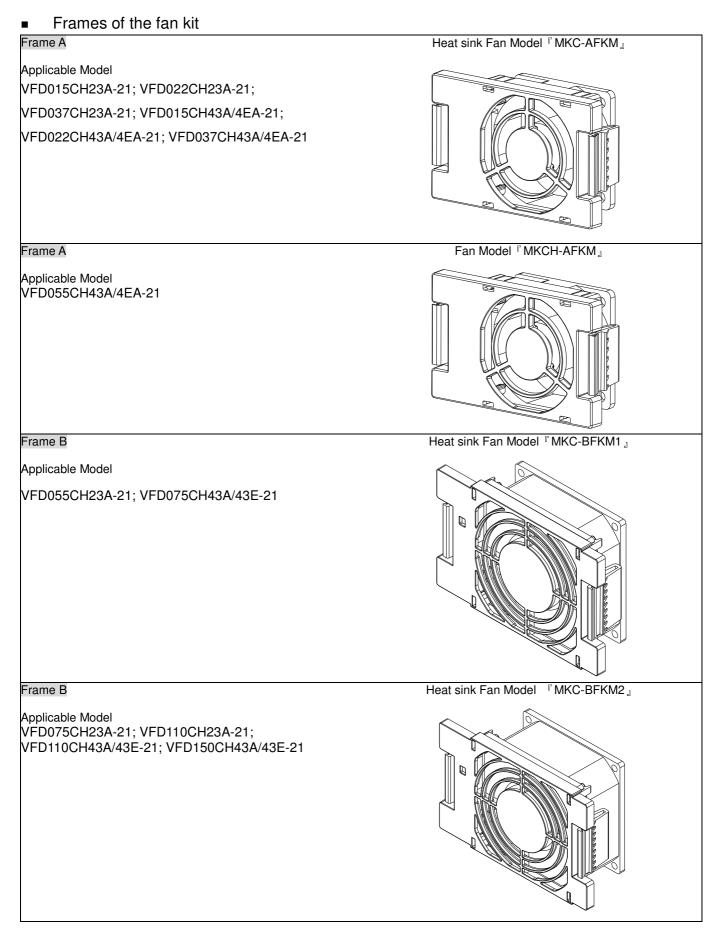

Frame G

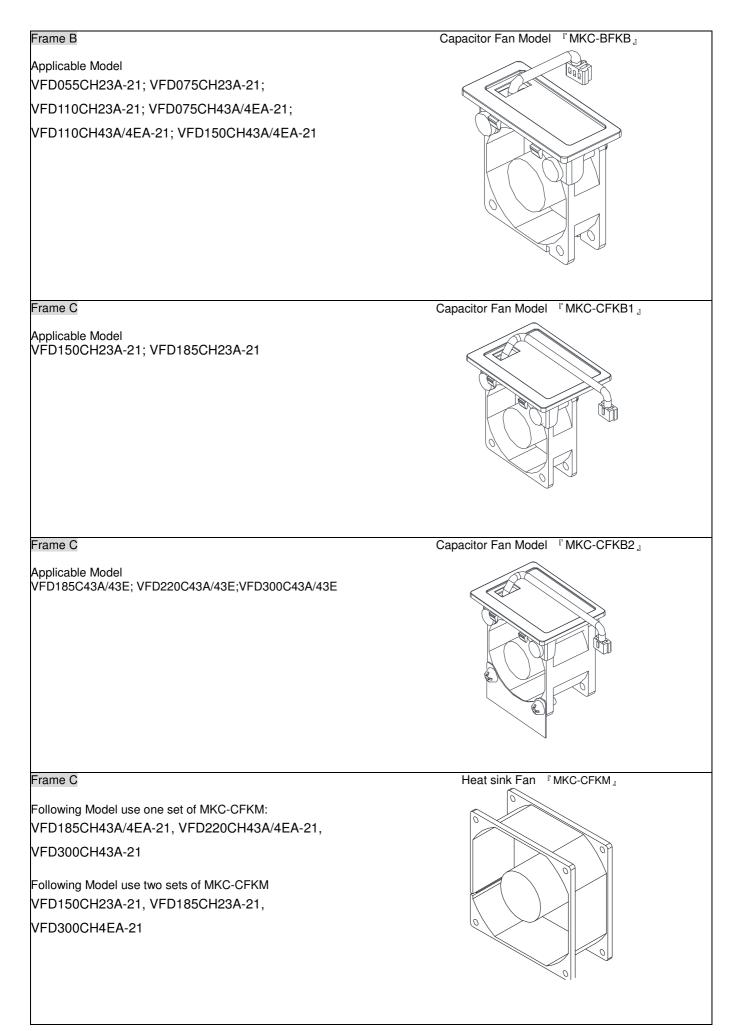
 On the conduit box, loosen 7 of the cover screws and remove the cover [¬] Screw torque: 24~26kg-cm (20.8~22.6lb-in) _ . On the drive, loosen 4 of the cover screws and press the tabs on each side of the cover to remove the cover, as shown in the following figure. Screw torque: 12~15kg-cm (10.4~13lb-in).



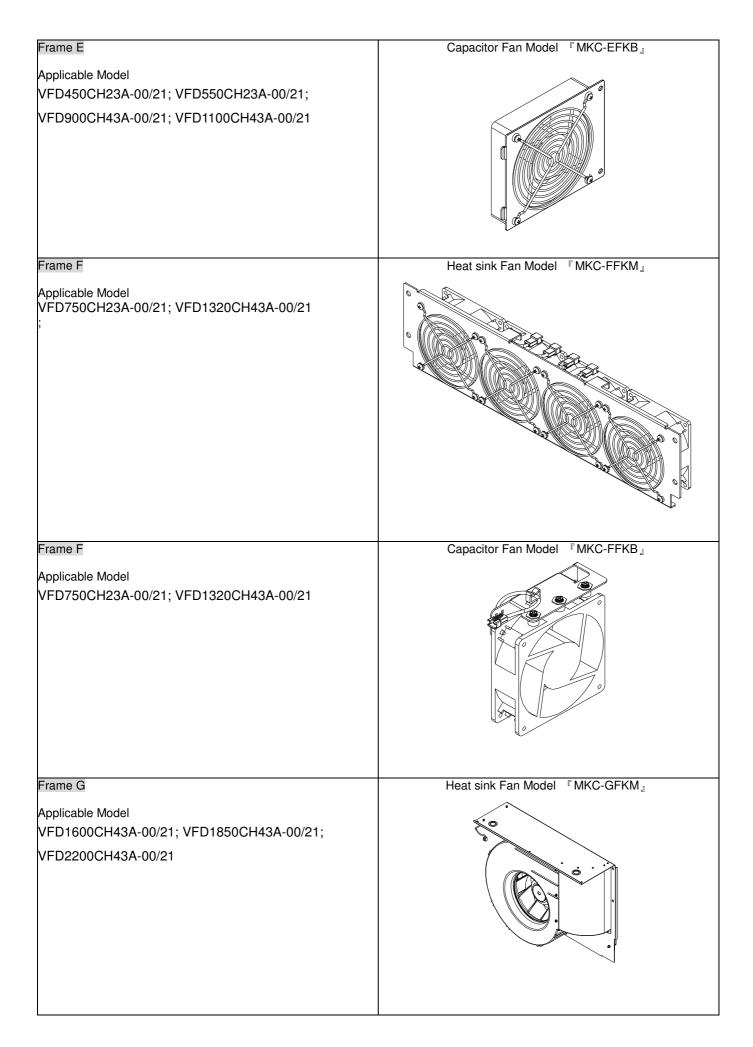

Remove the top cover and loosen the screws. M5 Screw torque: 24~26kg-cm (20.8~22.6lb-in) M8 Screw torque: 100~120kg-cm (86.7~104.1lb-in)

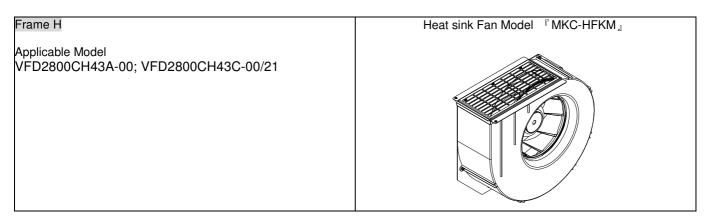

 Install the conduit box by fastening all the screws shown in the following figure. M5 Screw torque: 24~26kg-cm (20.8~22.6lb-in) M8 Screw torque: 100~120kg-cm (86.7~104.1lb-in)


Fasten all the screws. Screw torque: 24~26kg-cm (20.8~22.6lb-in).



Place the cover back to the top and fasten the screws (as shown in the figure). Screw torque: $12 \sim 15$ kg-cm ($10.4 \sim 13$ lb-in).


7-10 Fan Kit



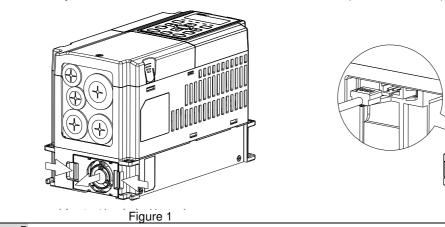
Chapter 7 Optional Accessories

Frame D0	Heat sink Fan Model 『MKC-D0FKM』	Capacitor Fan Model 『MKC-DFKB』	
Applicable Model VFD370CH43S-00/21	o o o o o o o o o o o o o o o o o o o		
Frame D	Heat sink Fan Model 『MKC-DFKM』	Capacitor Fan Model 『MKC-DFKB』	
Applicable Model VFD220CH23A-00/21; VFD300CH23A-00/21; VFD370CH23A-00/21; VFD370CH43A-00/21; VFD450CH43A-00/21; VFD550CH43A-00/21; VFD750CH43A-00/21			
Frame E	Heat sink Fan Mode	I 『MKC-EFKM1』	
Applicable Model VFD450CH23A-00/21; VFD550CH23A-00/21			
Frame E	Heat sink Fan Mode	el 『MKC-EFKM2』	
Applicable Model VFD900CH43A-00/21; VFD1100CH43A-00/21			

Chapter 7 Optional Accessories

Fan Removal

Frame A


Model 『 MKC-AFKM 』: Heat Sink Fan

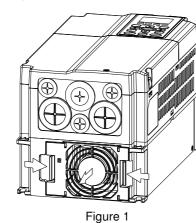
Applicable model

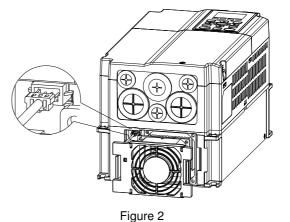
VFD015CH23A-21; VFD022CH23A-21; VFD037CH23A-21; VFD015CH43A/4EA-21; VFD022CH43A/4EA-21; VFD037CH43A/4EA-21 Refer to Figure 1, press the tabs on both side of the fan to 2. Disconnect the power terminal before removing the fan. 1.

successfully remove the fan.

(As shown below.)

Frame B


Model 『 MKC-BFKM1 』 Heat Sink Fan


Applicable model

VFD055CH23A-21; VFD075CH43A/43E-21

- 1. Refer to Figure 1, press the tab on both side of the fan to 2. successfully remove the fan.
- Disconnect the power terminal before removing the fan. (As shown below.)

Figure 2

Frame B

Model "MKC-BFKM2 J Heat Sink Fan

Applicable model

VFD075CH23A-21; VFD110CH23A-21; VFD110CH43A/43E-21; VFD150CH43A/43E-21 2. Disconnect the power terminal before removing the fan.

1. Refer to Figure 1, press the tab on both side of the fan to successfully remove the fan.

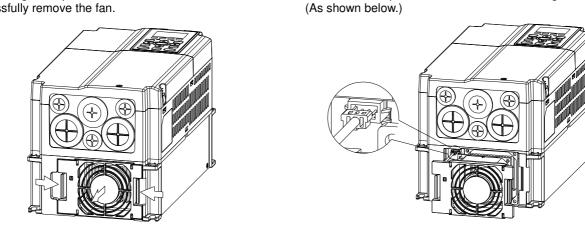
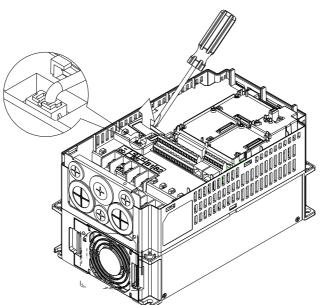


Figure 2


Frame B

Model 『 MKC-BFKB 』Capacitor Fan

Applicable model

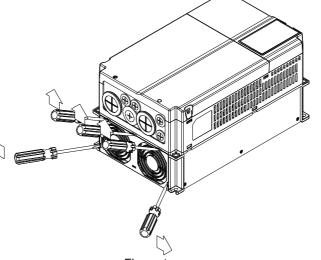
VFD055CH23A-21; VFD075CH23A-21; VFD110CH23A-21; VFD075CH43A/4EA-21; VFD110CH43A/4EA-21; VFD150CH43A/4EA-21

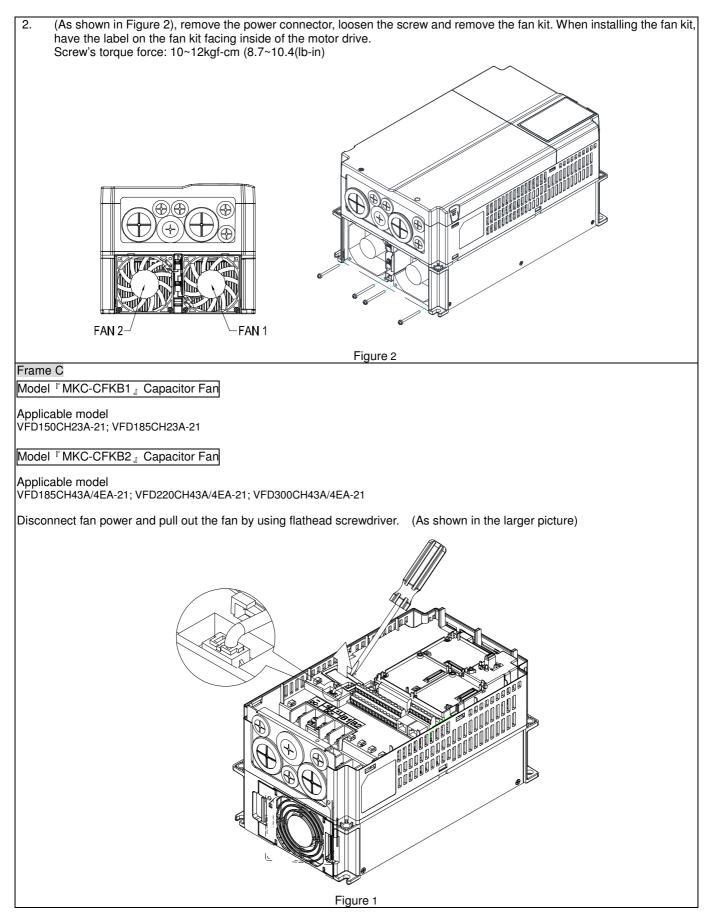
Disconnect fan power and pull out the fan by using flathead screwdriver. (As shown in the larger picture)

Frame C

Model 『 MKC-CFKM 』Heat Sink Fan

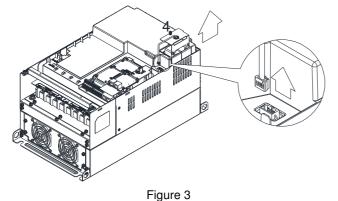
Applicable model


Single fan kit applicable models (only fan kit 1 is required to be installed):


VFD185CH43A/4EA-21, VFD220CH43A/4EA-21, VFD300CH43A-21

Duo fan kit applicable models (both fan kit 1 and 2 are required to be installed):

VFD150CH23A-21, VFD185CH23A-21, VFD300CH4EA-21

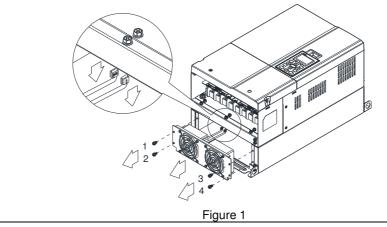

Model 『MKC-DFKB』Capacitor Fan

Applicable model

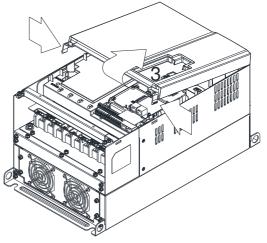
- VFD370CH43S-00/21
 Loosen screw 1 and screw 2, press the tab on the right and 2. left to remove the cover, follow the direction the arrows indicate. Press on top of digital keypad to properly remove it. Screw 1, 2 ^r Torque :12~15kgf-cm (8.6~10.4lb-in) ^a

Figure 1

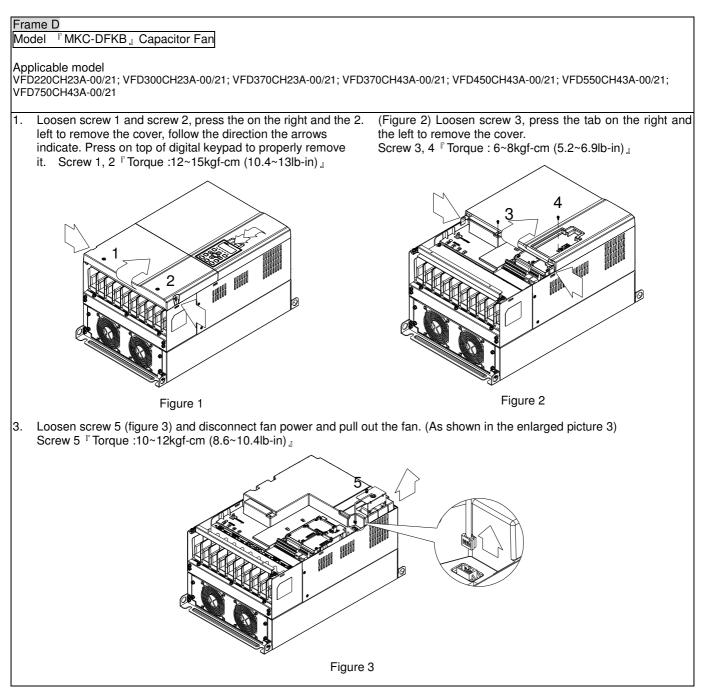
 Loosen screw 4 (figure 3) and disconnect fan power and pull out the fan. (As shown in the enlarged picture 3) Screw 4 [『] Torque : 10~12kgf-cm (8.6~10.4lb-in) 』



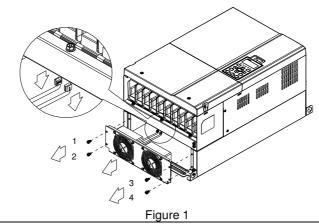
Frame D0


Model 『MKC-D0FKM』Heat Sink Fan

Applicable model


- VFD370CH43S-21
- 1. Loosen the screw and remove the fan kit. $\[\]$ Screw torque: 24~26kgf-cm (20.8~22.6lb-in) $\]$
- 2. (As shown Figure 1) Before removing the fan, remove the cover by using a slotted screwdriver.

(Figure 2) Loosen screw 3, press the tab on the right and the left to remove the cover. Screw 3 \degree Torque : 6~8kgf-cm (5.2~6.9lb-in) $_{\square}$


Frame D

Model 『MKC-DFKM』Heat Sink Fan

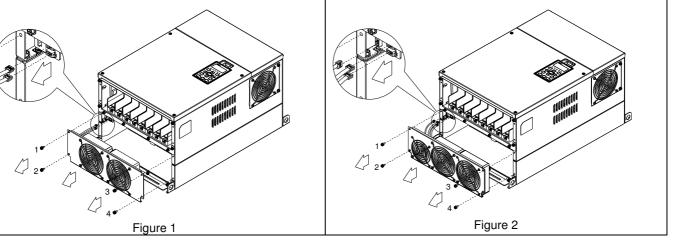
Applicable model

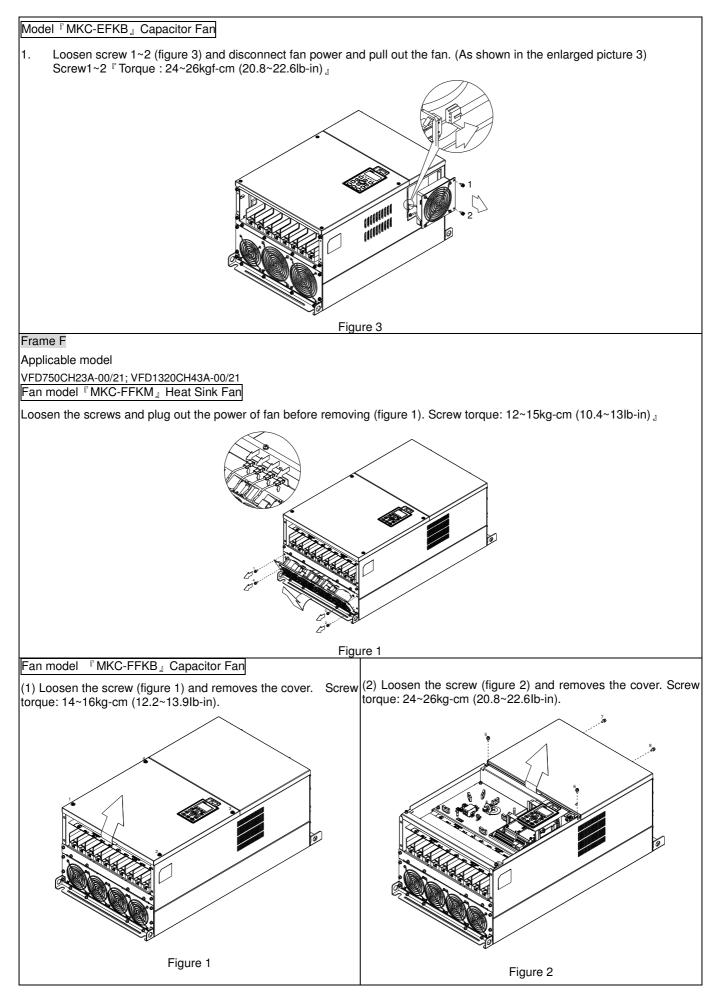
VFD220CH23A-00/21; VFD300CH23A-00/21; VFD370CH23A-00/21; VFD370CH43A-00/21; VFD450CH43A-00/21; VFD550CH43A-00/21; VFD750CH43A-00/21; VFD750CH43A-00/21

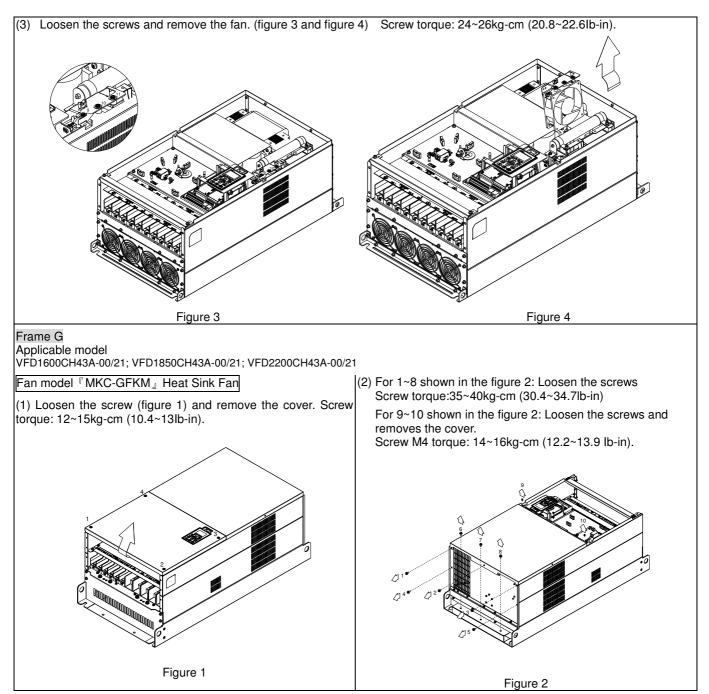
- 1. Loosen the screw and remove the fan kit. Screw torque: 24~26kgf-cm (20.8~22.6lb-in) _
- 2. (As shown Figure 1) Before removing the fan, remove the cover by using a slotted screwdriver.

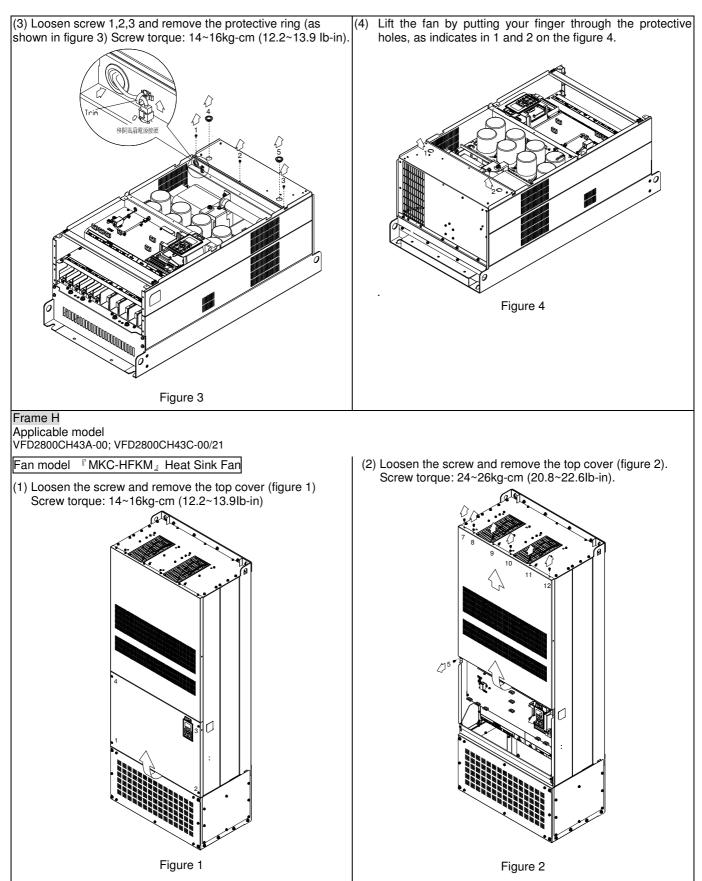
Frame E

Applicable model

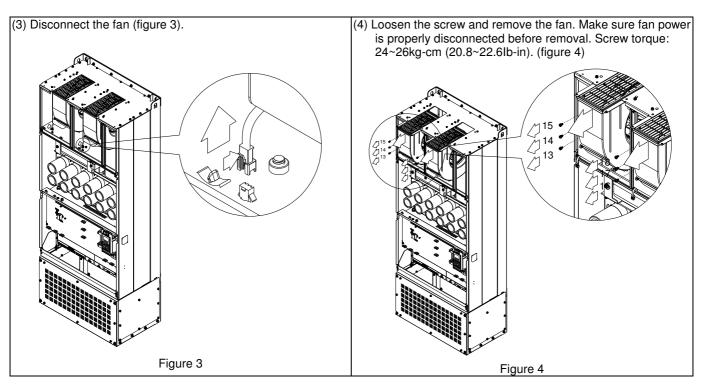

VFD450CH23A-00/21; VFD550CH23A-00/21; VFD900CH43A-00/21; VFD1100CH43A-00/21


Model 『 MKC-EFKM1 』 Heat Sink Fan


1. Loosen screw 1~4 (figure 1) and disconnect fan power and pull out the fan. (As shown in the enlarged picture 3) Screw1~4 ^[] Torque : 24~26kgf-cm (20.8~22.6lb-in) ^[]

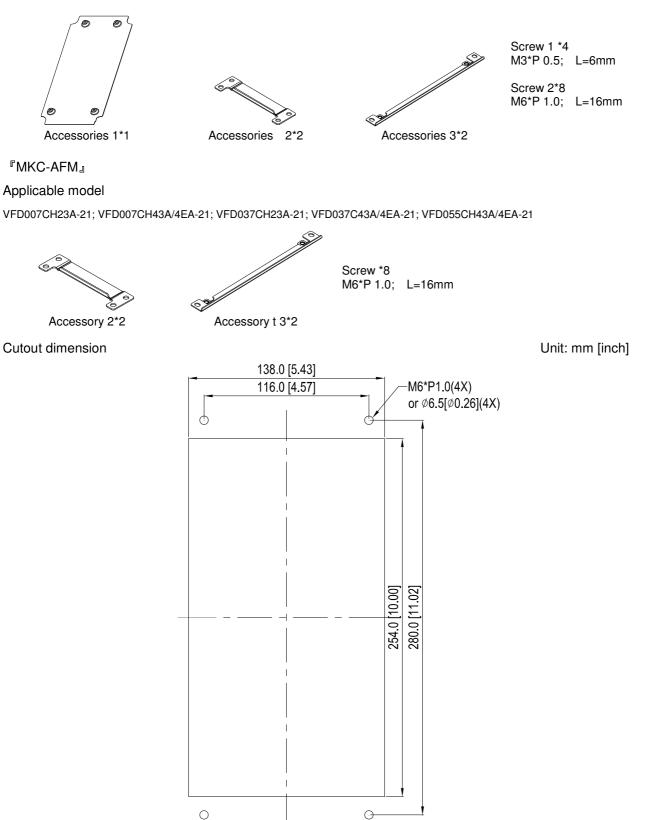

Model 『MKC-EFKM2』Heat Sink Fan

 Loosen screw 1~4 (figure 2) and disconnect fan power and pull out the fan. (As shown in the enlarged picture 3) Screw1~4 [[] Torque : 24~26kgf-cm (20.8~22.6lb-in)]

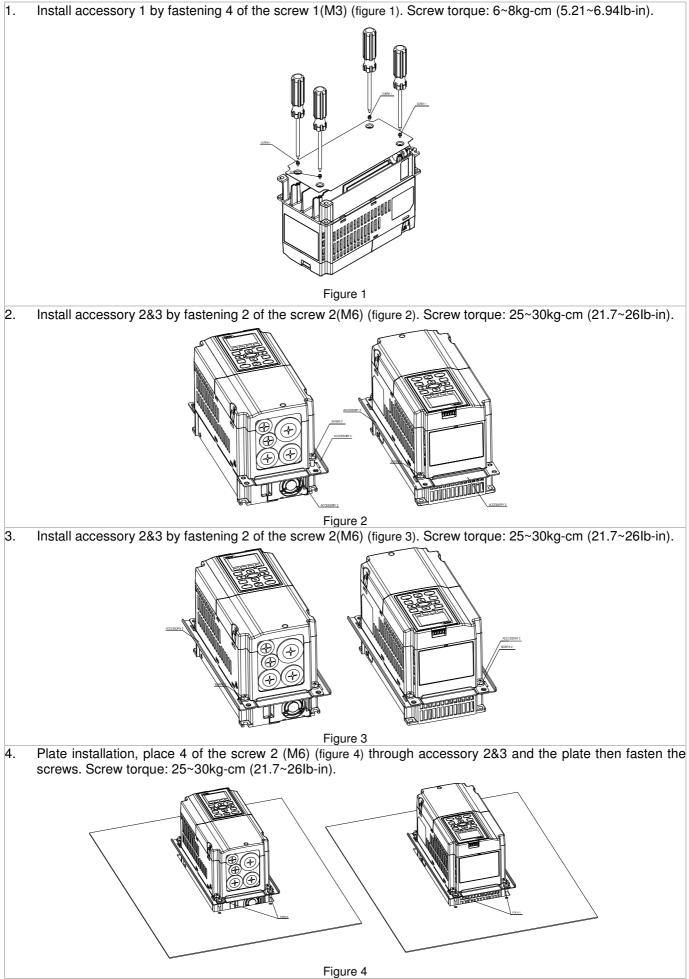


Chapter 7 Optional Accessories

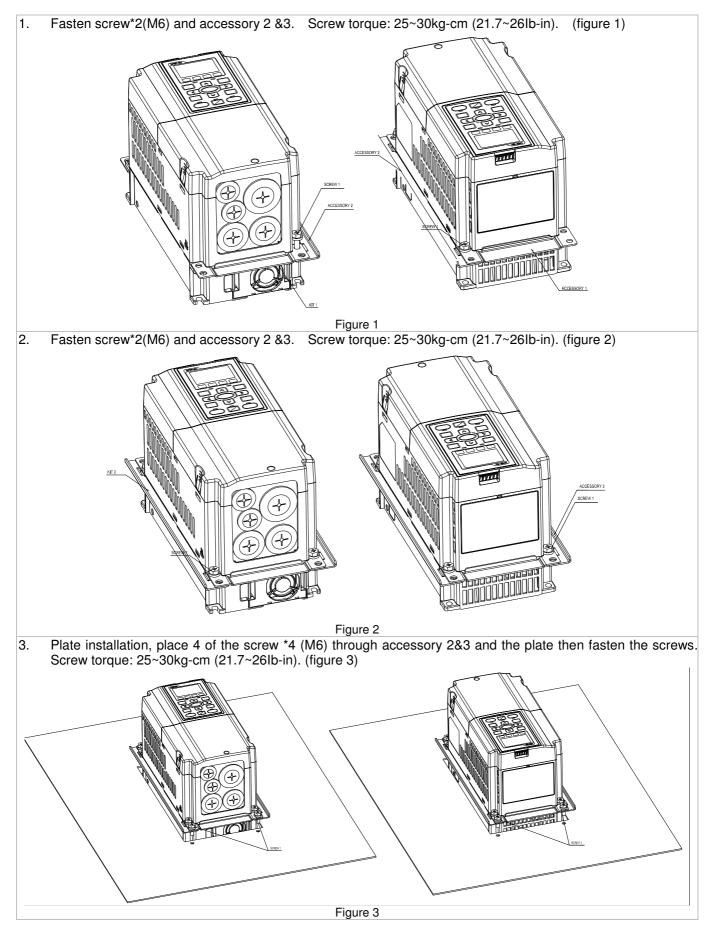
7-11 Flange Mounting Kit


Applicable Models, Frame A~F

Frame A


『MKC-AFM1』

Applicable model


VFD015CH23A-21;VFD015CH43A/4EA-21; VFD022CH23A-21; VFD022CH43A/4EA-21

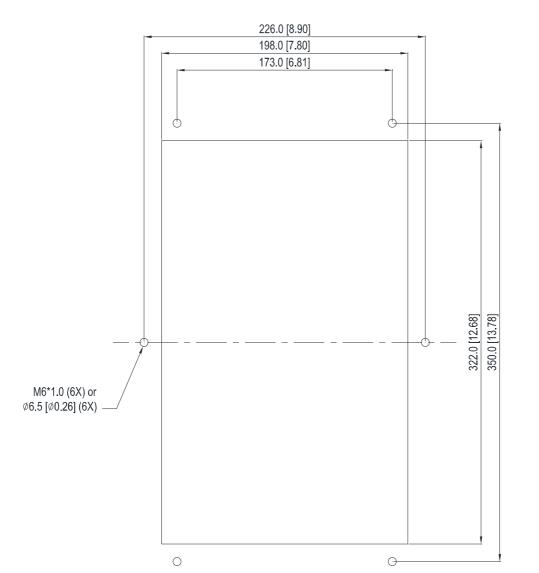
『MKC-AFM1』 Installation

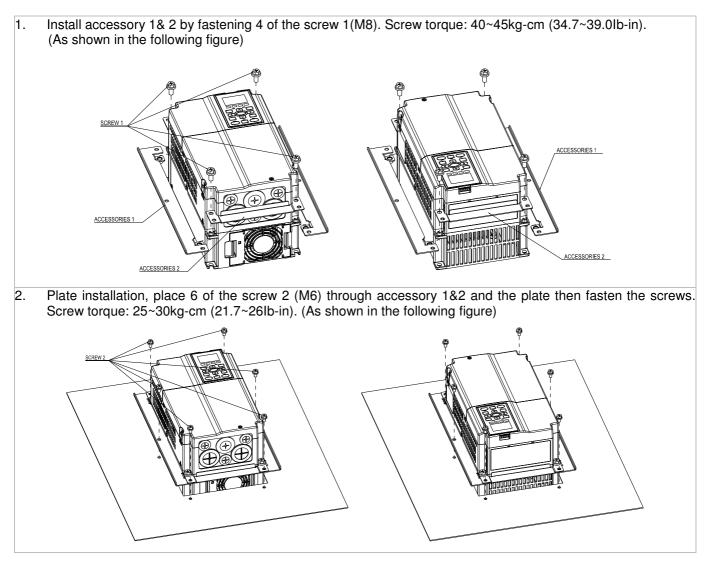
[®]MKC-AFM₂ Installation

Frame B

MKC-BFM』

Applicable model


VFD055CH23A-21; VFD075CH23A-21; VFD110CH23A-21; VFD075CH43A/4EA-21; VFD110CH43A/4EA-21; VFD150CH43A/4EA-21


2*2

Screw 1 *4 ~ M8*P 1.25; Screw 2*6 ~ M6*P 1.0;

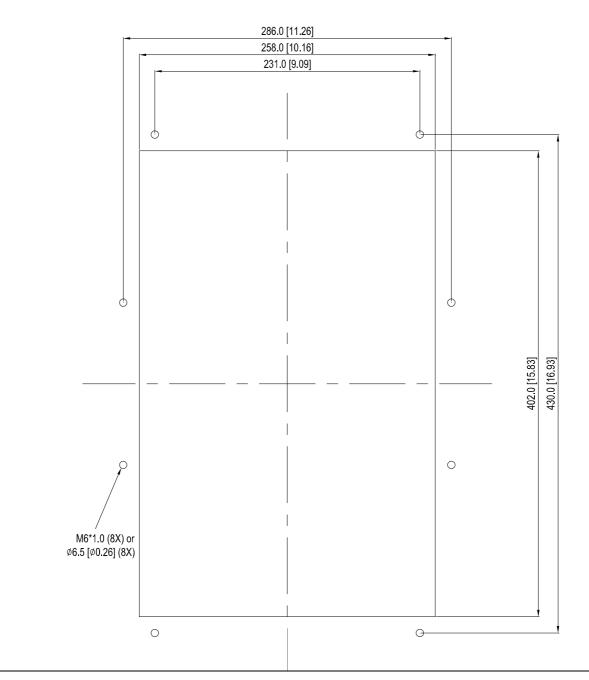
Cutout dimension

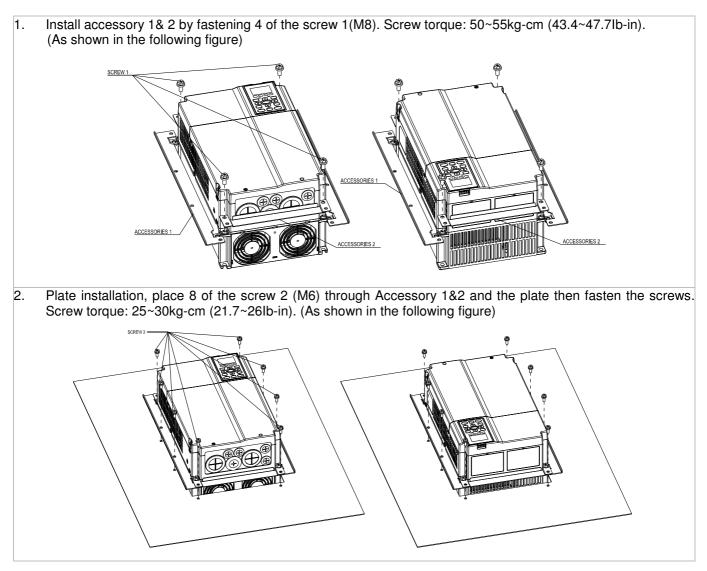
[®]MKC-BFM₂ Installation

Frame C

Applicable model

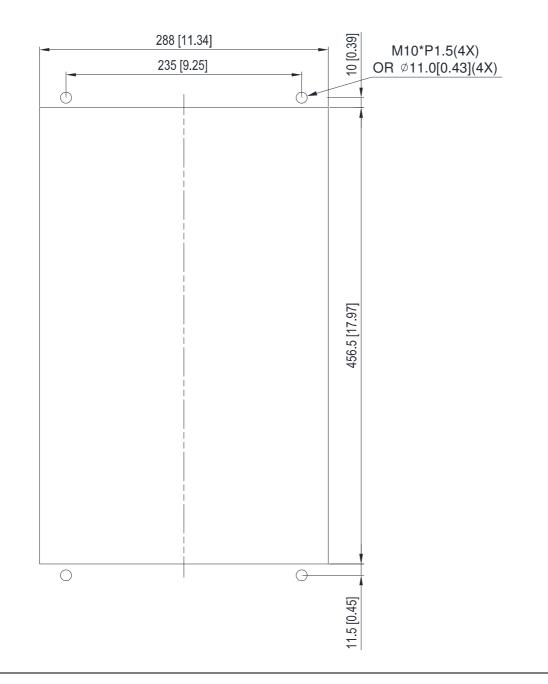
VFD150CH23A-21; VFD185CH23A-21; VFD185CH43A/4EA-21; VFD220CH43A/4EA-21; VFD300CH43A/4EA-21




Screw 1*4 ~ M8*P 1.25; Screw 2*8 ~ M6*P 1.0;

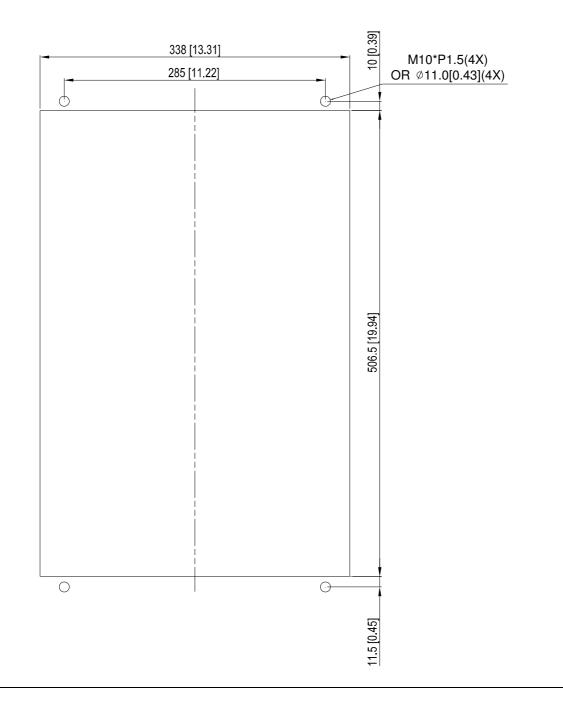
Accessory 1*2

Cutout dimension


[¶]MKC-CFM₂ Installation

Frame D0

Applicable model VFD370CH43S-00


Cutout dimension

Applicable model

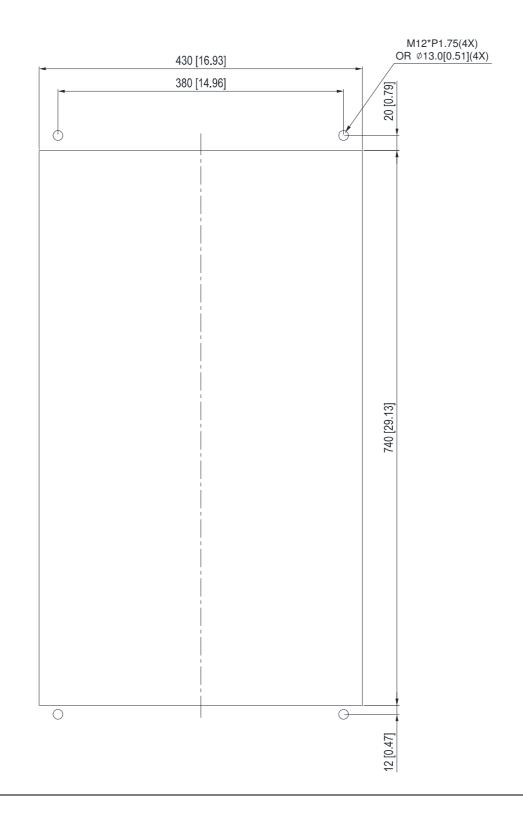
VFD220CH23A-00; VFD300CH23A-00; VFD370CH23A-00; VFD370CH43A-00; VFD450CH43A-00; VFD550CH43A-00; VFD750CH43A-00


Cutout dimension

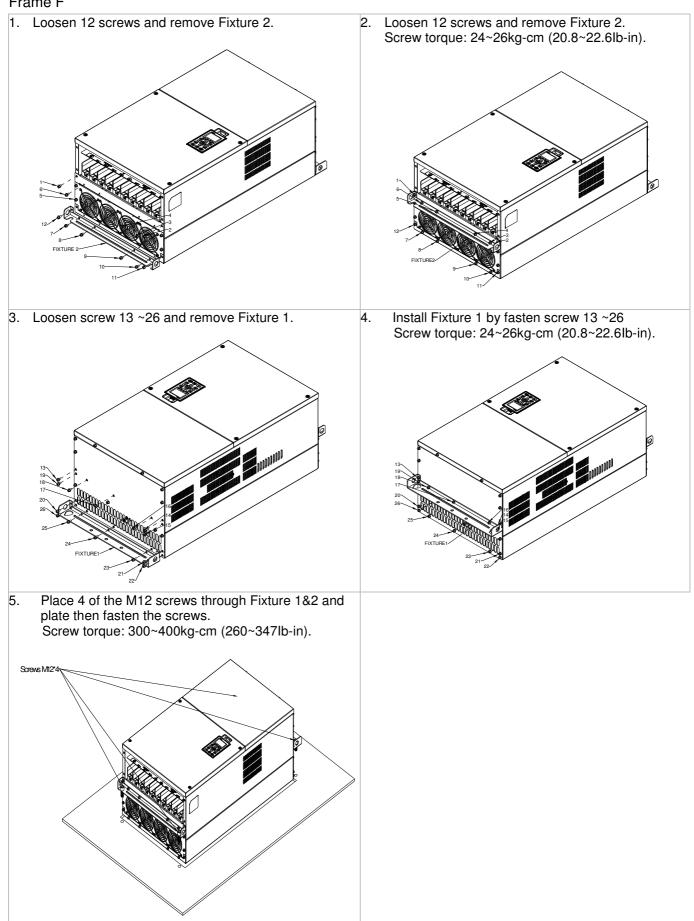
Frame E

Applicable model VFD450CH23A-00; VFD550CH23A-00; VFD900CH43A-00; VFD1100CH43A-21

Cutout dimension


Frame D0&D&E

1. Loosen 8 screws and remove Fixture 2 (as shown in 2. Loosen 10 screws and remove Fixture 1 (as shown the following figure). in the following figure). 3. Fasten 4 screws (as shown in the following figure). Fasten 5 screws (as shown in the following figure). 4. Screw torque: 30~32kg-cm (26.0~27.8lb-in). Screw torque: 30~32kg-cm (26.0~27.8lb-in). Fasten 5 screws (as shown in the following figure). 5. Fasten 4 screws (as shown in the following figure). 6. Screw torque: 24~26kg-cm (20.8~22.6lb-in). Screw torque: 24~26kg-cm (20.8~22.6lb-in). 7. Place 4 screws (M10) through Fixture 1&2 and the plate then fasten the screws. (as shown in the following figure) Frame D0/D M10*4 Screw torque: 200~240kg-cm (173.6~208.3lb-in). Frame E M12*4 Screw torque: 300~400kg-cm (260~347lb-in). FIXTURE 1


Frame F

Applicable model VFD750CH23A-00; VFD1320CH43A-00

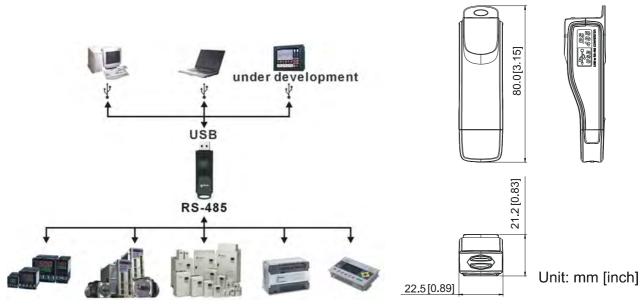
Cutout dimension

Frame F

7-12 USB/RS-485 Communication Interface IFD6530

🕂 Warning

✓ Please thoroughly read this instruction sheet before installation and putting it into use.


✓ The content of this instruction sheet and the driver file may be revised without prior notice. Please consult our distributors or download the most updated instruction/driver version at http://www.delta.com.tw/product/em/control/cm/control_cm_main.asp

1. Introduction

IFD6530 is a convenient RS-485-to-USB converter, which does not require external power-supply and complex setting process. It supports baud rate from 75 to 115.2kbps and auto switching direction of data transmission. In addition, it adopts RJ-45 in RS-485 connector for users to wire conveniently. And its tiny dimension, handy use of plug-and-play and hot-swap provide more conveniences for connecting all DELTA IABU products to your PC.

Applicable Models: All DELTA IABU products.

(Application & Dimension)

2. Specifications

Power supply	No external power is needed	
Power consumption	1.5W	
Isolated voltage	2,500VDC	
Baud rate	75, 150, 300, 600, 1,200, 2,400, 4,800, 9,600, 19,200, 38,400, 57,600, 115,200 bps	
RS-485 connector	RJ-45	
USB connector	A type (plug)	
Compatibility	Full compliance with USB V2.0 specification	
Max. cable length	RS-485 Communication Port: 100 m	
Support RS-485 half-duplex transmission		

RJ-45

PIN	Description
1	Reserved
2	Reserved
3	GND
4	SG-

PIN	Description
5	SG+
6	GND
7	Reserved
8	+9V

3. Preparations before Driver Installation

Please extract the driver file (IFD6530_Drivers.exe) by following steps. You could find driver file (IFD6530_Drivers.exe) in the CD supplied with IFD6530.

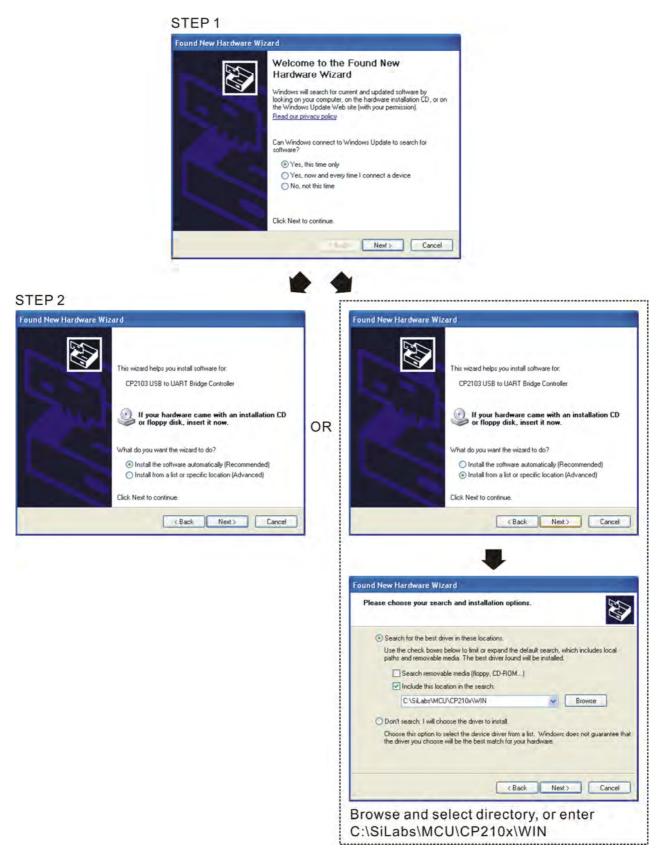
Note: DO NOT connect IFD6530 to PC before extracting the driver file.

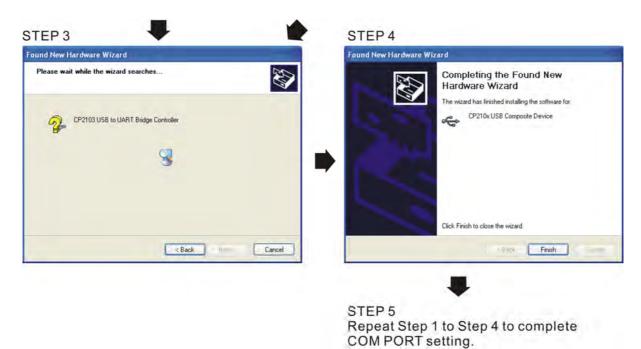
STEP 1 **STEP 2** InstallShield Wizard InstallShield Wizard License Agreement Please read the following license agreement carefully. 2 Welcome to the InstallShield Wizard for Silicon Laboratories CP210x Evaluation Kit Tools Press the PAGE DOWN key to see the rest of the agreement. The InstallShieldR Wizard will install Silicon Laboratories CP210x Evaluation Kit Tools Release 3.31 on your computer. To continue, click Next. 1 END-USER LICENSE AGREEMENT IMPORTANT: READ CAREFULLY BEFORE AGREEING TO TERMS THIS PRODUCT CONTAINS CERTAIN COMPUTER PROGRAMS AND OTHER THIRD PARTY PROPRIETARY MATERIAL ("LICENSED PRODUCT"), THE USE OF WHICH IS SUBJECT TO THIS END-USER LICENSE AGREEMENT, INDICATING YOUR AGREEMENT COMSTITUTES YOUR AND IF APPLICABLE) YOUR COMPANY'S ASSENT TO AND ACCEPTANCE OF THIS END-USER LICENSE AGREEMENT (THE Do you accept all the terms of the preceding License Agreement? If you choose No, the setup will close. To install Silicon Laboratories CP210x Evaluation Kit Tools Release 3.31 , you must accept this agreement. < Back Yes Next> No Cancel

STEP 4

STEP 3

InstallShield Wizard		
Choose Destination Location Select folder where Setup will install files.		
Setup will install Silicon Laboratories CP210x in the following folder.	Evaluation Kit Tools Releas	e 3.31
To install to this folder, click Next. To install to another folder.	o a different folder, click Bro	wse and select
Destination Folder		
C:\SiLabs\MCU\CP210x		Biowse
InstalSheld	-	
	<u>Back</u> <u>N</u> ext	> Cancel




STEP 5

You should have a folder marked SiLabs under drive C. c:\ SiLabs

4. Driver Installation

After connecting IFD6530 to PC, please install driver by following steps.

5. LED Display

- 1. Steady Green LED ON: power is ON.
- 2. Blinking orange LED: data is transmitting.

Chapter 8 Option Cards

8-1	Removed Key Cover

8-2 Srews Specification for Option Card Terminals

8-3 EMC-D42A

8-4 EMC-D611A

8-5 EMC-R6AA

8-6 EMC-BPS01

8-7 EMC-PG01/02L

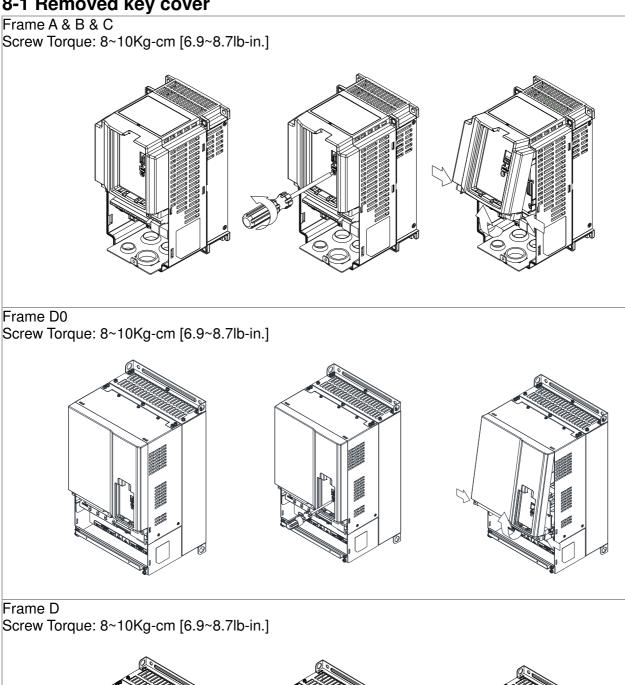
8-8 EMC-PG01/02O

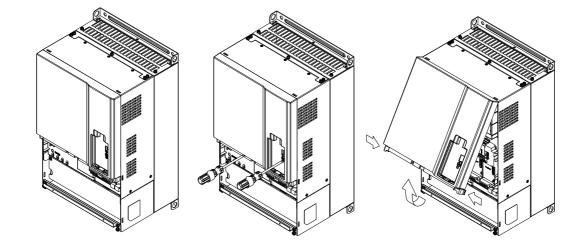
8-9 EMC-PG01/02U

8-10 EMC-PG01R

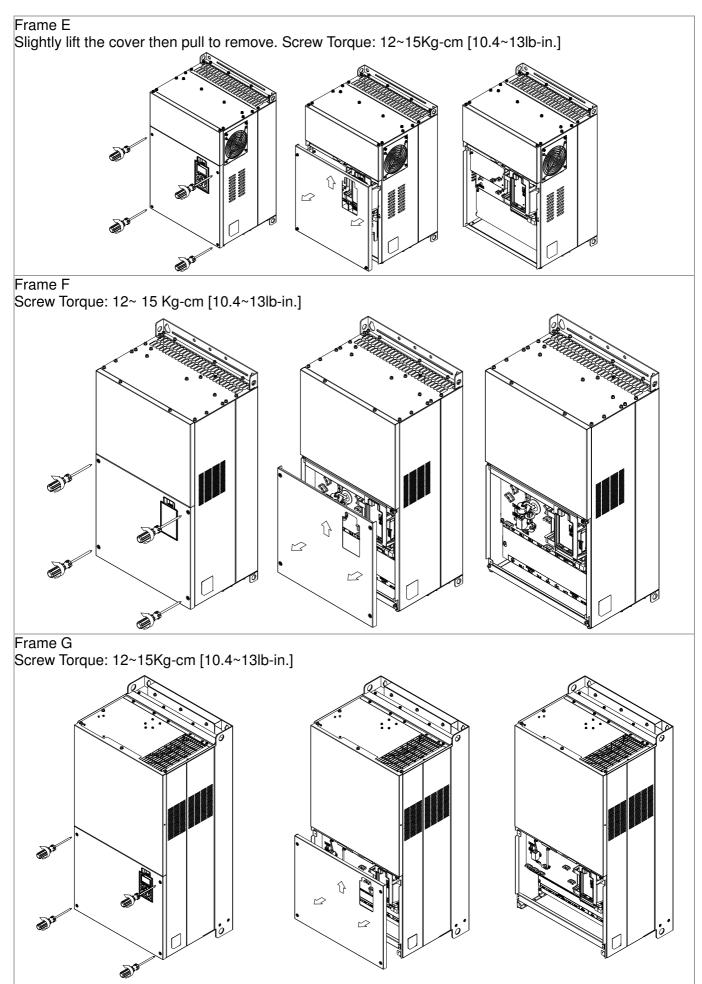
8-11 CMC-MOD01

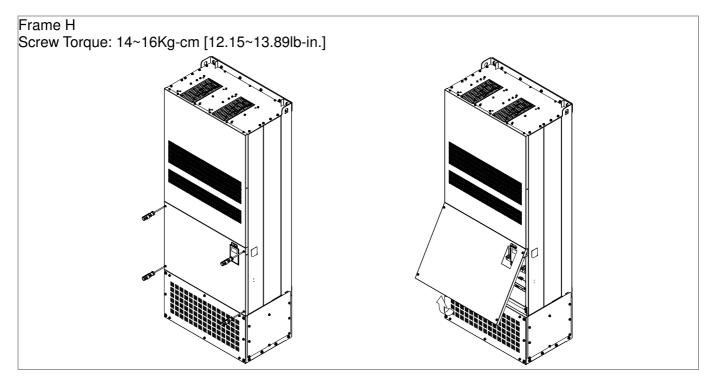
8-12 CMC-PD01


8-13 CMC-DN01

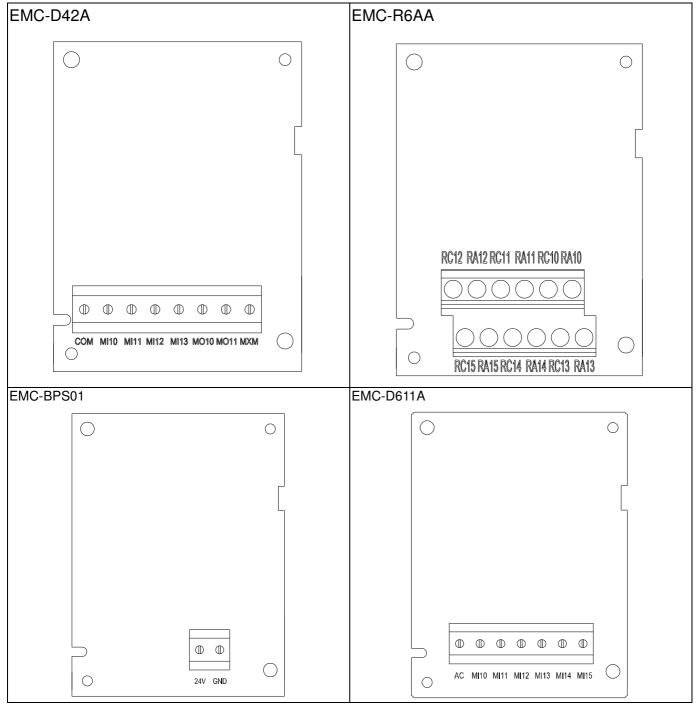

8-14 CMC-EIP01

8-15 EMC-COP01

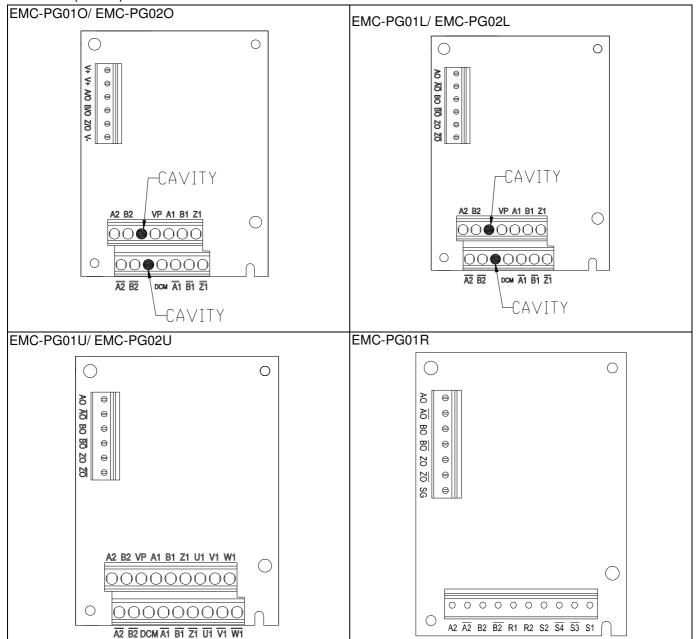

Please select applicable option cards for your drive or contact local distributor for suggestion. To prevent drive damage during installation, please removes the digital keypad and the cover before wiring. Refer to the following instruction.


8-1 Removed key cover

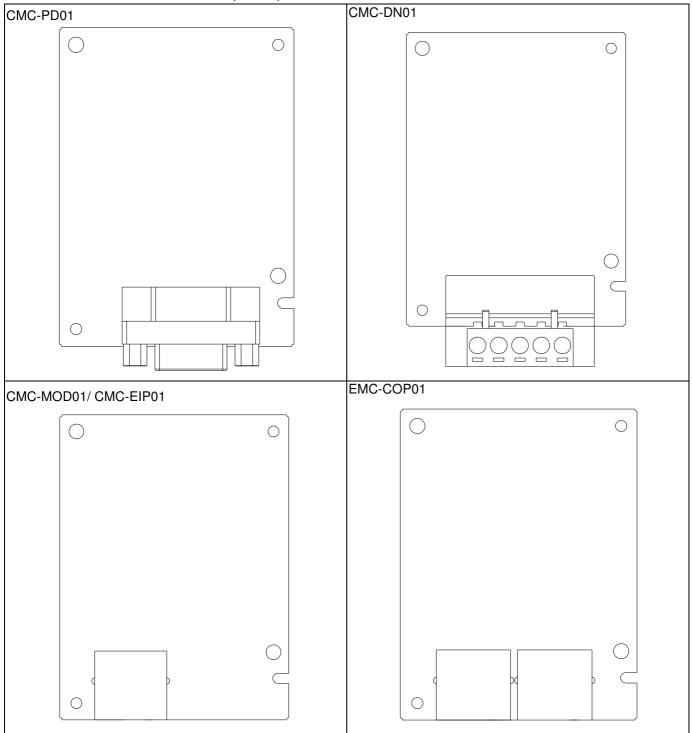
Chapter 8 Optional Cards

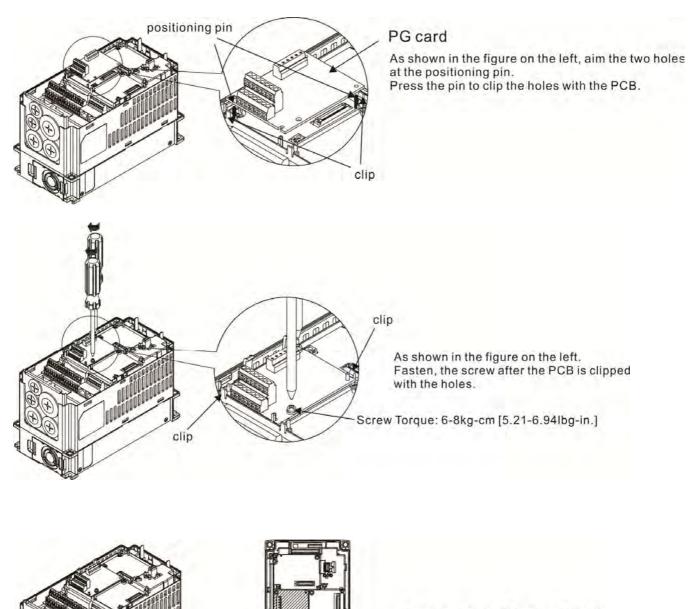


	1	RJ45 (Socket) for digital keypad
		KPC-CC01; KPC-CE01
		Please refer to CH10 Digital Keypad for more details on
		KPC-CE01.
		Please refer to CH10 Digital Keypad for more details on
		optional accessory RJ45 extension cable.
	2	Communication extension card (Slot 1)
(4) Slot 2 Slot 1		CMC-MOD01; CMC-PD01;
		CMC-DN01; CMC-EIP01;
		EMC-COP01;
	3	I/O & Relay extension card (Slot 3)
		EMC-D42A; EMC-D611A;
		EMC-R6AA; EMC-BPS01;
	4	PG Card (Slot 2)
		EMC-PG01L; EMC-PG02L;
		EMC-PG010; EMC-PG020;
		EMC-PG01U; EMC-PG02U;
		EMC-PG01R;

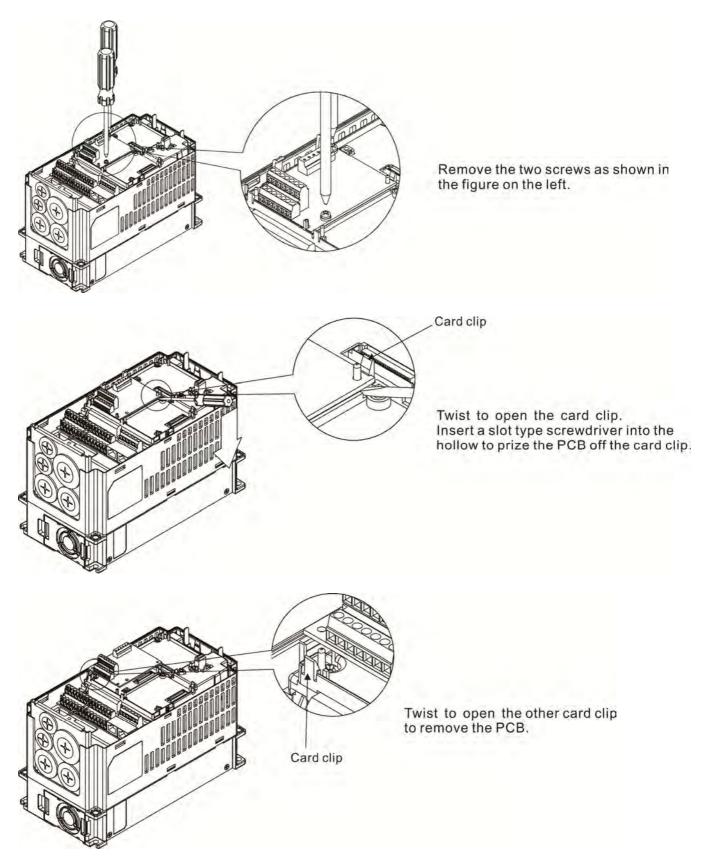

8-2 Screws Specification for option card terminals:

EMC-D42A	Wire gauge	24~12AWG (0.205~3.31mm ²)
EMC-D611A EMC-BPS01	Torque	5Kg-cm [4.34lb-in]
	Wire gauge	26~16AWG (0.128~1.31mm ²)
EMC-R6AA Torque		8Kg-cm [6.94lb-in]
EMC-PG01L		
EMC-PG01O	Wire gauge	30~16AWG(0.0509~1.31mm ²)
EMC-PG01R	Torque	2Kg-cm [1.74lb-in]
EMC-PG01U		


I/O & Relay extension card (Slot 3)


PG card (Slot 2)

Communication extension card (Slot 1)



PG Card intallation

As shown in the figure on the left installation is completed.

Disconneting the extension card

8-3 EMC-D42A

	Terminals	Descriptions			
I/O Extension Card	СОМ	Common for Multi-function input terminals Select SINK(NPN)/SOURCE(PNP)in J1 jumper / external power supply			
	MI10~ MI13	Refer to parameters 02-26~02-29 to program the multi-function inputs MI10~MI13. Internal power is applied from terminal E24: +24Vdc±5% 200mA, 5W External power +24VDC: max. voltage 30VDC, min. voltage 19VDC, 30W ON: the activation current is 6.5mA OFF: leakage current tolerance is 10µA			
	MO10~MO11	Multi-function output terminals (photocoupler) The AC motor drive releases various monitor signals, such as drive in operation, frequency attained and overload indication, via transistor (open collector).			
	МХМ	Common for multi-function output terminals MO10, MO11(photocoupler) Max 48VDC 50mA			

8-4 EMC-D611A

	Terminals	Descriptions	
	AC	AC power Common for multi-function input terminal (Neutral)	
I/O Extension Card	MI10~ MI15	Refer to Pr. 02.26~ Pr. 02.31 for multi-function input selection Input voltage: 100~130VAC Input frequency: 47~63Hz Input impedance: 27Kohm Terminal response time: ON: 10ms OFF: 20ms	

8-5 EMC-R6AA

	Terminals	Descriptions
	n R10A~R15A R10C~R15C	Refer to Pr. 02.36~ Pr. 02.41 for multi-function input selection
		Resistive load:
		5A(N.O.) 250VAC
Relay Extension		5A(N.O.) 30VDC
		Inductive load (COS 0.4)
		2.0A(N.O.) 250VAC
		2.0A(N.O.) 30VDC
		It is used to output each monitor signal, such as drive is in
	operation, frequency attained or overload indication.	

8-6 EMC-BPS01

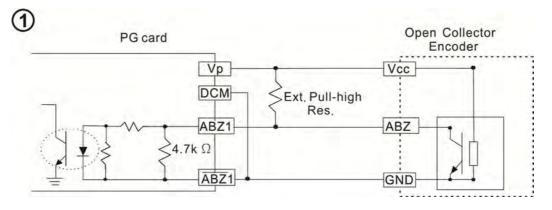
	Terminals	Descriptions
		Input power: 24V±5%
External Power		Maximum input current:0.5A Note:
Supply	24V GND	1) Do not connect control terminal +24V (Digital control signal common:
		SOURCE) directly to the EMC-BPS01input terminal 24V.
		2) Do not connect control terminal GND directly to the EMC-BPS01 input
		termina GND.

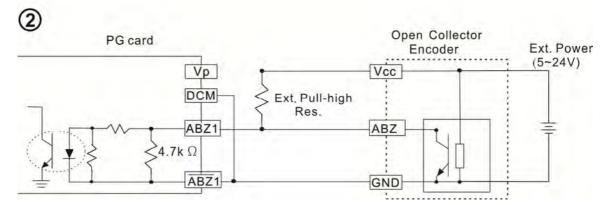
Note: Refer to I/O & Rlay extension card installation/ disconnecting method for PG Card installation/ disconnecting.

8-7 EMC-PG01L/EMC-PG02L

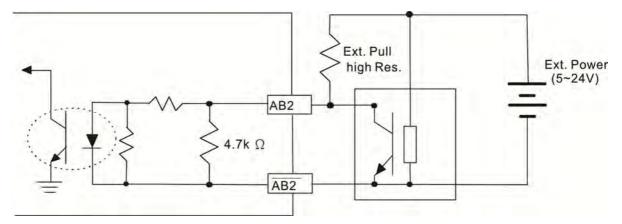
Terminal description

Set by Pr.10-00~10-02, 10-16~10-18

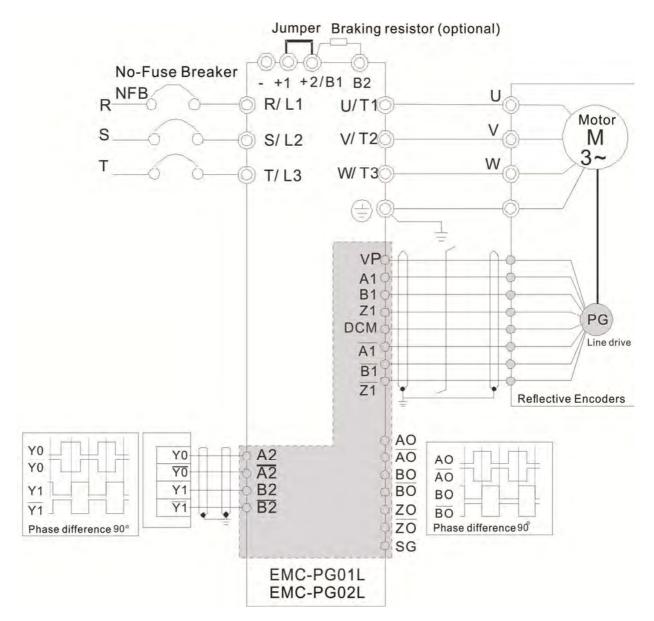

Terminals		Descriptions
	VP	Output voltage for power: +5V/+12V±5% (use FSW3 to switch +5V/+12V) Max. output current: 200mA
DOI	DCM	Common for power and signal
PG1	A1, /A1, B1, /B1, Z1, /Z1	Encoder input signal (Line Driver or Open Collector) Open Collector input voltage: +5~+24V (Note 1) It can be 1-phase or 2-phase input. EMC-PG01L: Max. input frequency: 300kHz EMC-PG02L: Max. input frequency: 30kHz(Note 2)
PG2	A2, /A2, B2, /B2	Pulse Input signal (Line Driver or Open Collector) Open Collector input voltage: +5~+24V (Note1) It can be 1-phase or 2-phase input. EMC-PG01L: Max. input frequency: 300kHz EMC-PG02L: Max. input frequency: 30kHz(Note 2)
PG OUT	AO, /AO, BO, /BO, ZO, /ZO, SG,	PG Card Output signals. It has division frequency function: 1~255 times Max. output voltage for Line driver: 5VDC Max. output current: 50mA EMC-PG01L Max. output frequency: 300kHz EMC-PG02L Max. output frequency: 30kHz SG is the GND of PG card. It is also the GND of position machine or PLC to make the ouput signal to be the common pivot point.


Note 1: Open Collector application, input current 5~15mA to each set then each set needs one pull-up resistor. If input voltage of open collector is 24V, the power of encoder needs to be connected externally. Please refer diagram 2 of PG1.

5V	Recommended pull-up resistor: above100~220Ω, 1/2W
12V	Recommended pull-up resistor: above 510~1.35kΩ, 1/2W
24V	Recommended pull-up resistor, above1.8k~3.3kΩ, 1/2W


Note 2: If the required bandwidth is not over 30kHz at the application, it is recommended to use EMC-PG02O/L (bandwidth 30kHz) to avoid interference.

PG1 card wiring diagram (the image 1 and 2 below are wiring diagrams of Open Collector encoder)



PG2 Wiring Diagram

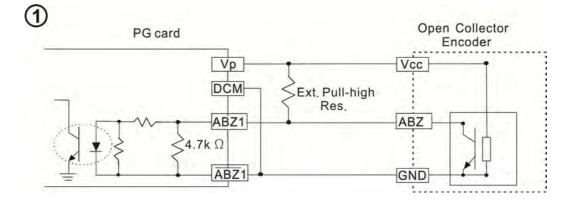
EMC-PG01L/EMC-PG02L Wiring Diagram

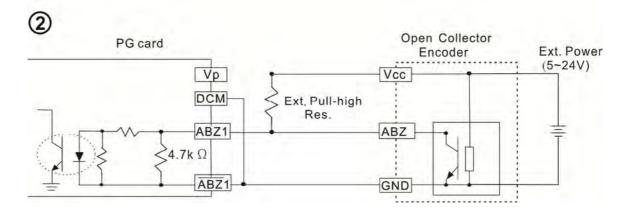
- Please use a shielded cable to prevent interference. Do not run control wires parallel to any high voltage AC power line (200 V and above).
- \square Recommended wire size 0.21 to 0.81mm² (AWG24 to AWG18).
- ☑ Cable length: Less than 100m

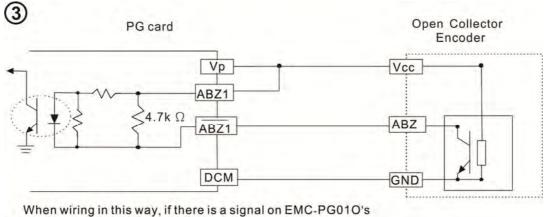
8-8 EMC-PG010/EMC-PG020

Terminal descriptions

Set by Pr.10-00~10-02, 10-16~10-18

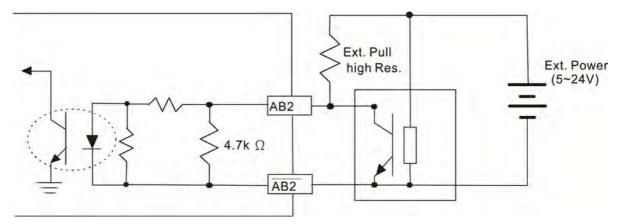

Terminals		Descriptions
	VP	Output voltage for power: +5V/+12V±5% (use FSW3 to switch +5V/+12V) Max. output current: 200mA
	DCM	Common for power and signal
PG1		Encoder Input signal (Line Driver or Open Collector)
		Open Collector Input Voltage: +5V~+24V (Note 1)
	A1, /A1, B1, /B1, Z1, /Z1	It can be 1-phase or 2-phase input.
	,_,,_,,_,	EMC-PG01O Max. input frequency: 300kHz
		EMC-PG02O Max. input frequency: 30kHz(Note 2)
	A2, /A2, B2, /B2	Pulse Input Signal (Line Driver or Open Collector)
PG2		Open Collector Input Voltage: +5~+24V (Note 1)
FGZ		EMC-PG01O Max. input frequency: 300kHz
		EMC-PG02O Max. input frequency: 30kHz(Note 2)
	V+, V+	Needs external power source for PG OUT circuit.
		Input voltage of power:+12V ~ +24V
	V-	Input voltage for the negative side
		PG Card Output signals has division frequency function: 1~255 times.
PG OUT		On the open collector's output signal, add a high-pull resistor on the external
10001		power V+ \sim V- (e.g. power of PLC) to prevent the interference of the receiving
	A/O, B/O, Z/O	signal. Max. • [Three pull-up resistor are included in the package (1.8kW/1W)]
		(Note 1)
		EMC-PG01O Max. input frequency: 300kHz
		EMC-PG02O Max. input frequency: 30kHz


Note 1: Open Collector application, input current 5~15mÅ to each set then each set needs one pull-up resistor. If input voltage of open collector is 24V, the power of encoder needs to be connected externally. Please refer diagram 2 of PG1.

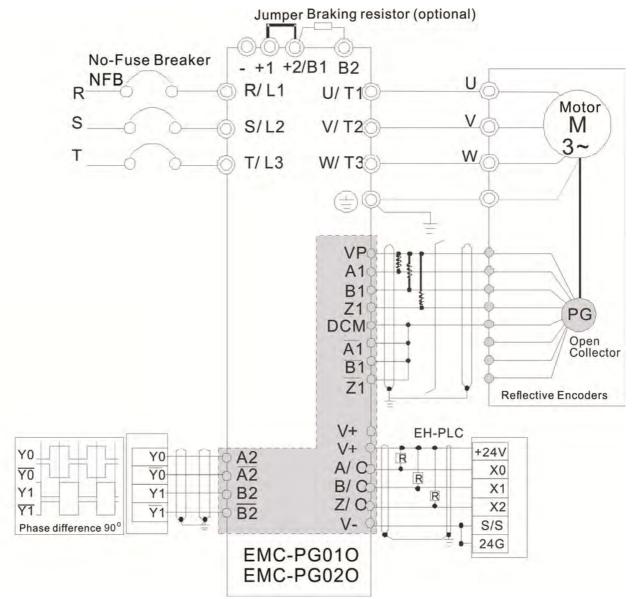

5V	Recommended pull-up resistor: above100~220Ω, 1/2W
12V	Recommended pull-up resistor: above 510~1.35kΩ, 1/2W
24V	Recommended pull-up resistor, above1.8k~3.3kΩ, 1/2W
 following a strategy of the state	

Note 2: If the required bandwidth is not over 30kHz at the application, it is recommended to use EMC-PG02O/L (bandwidth 30kHz) to avoid interference.

PG1 card wiring diagram (the image 1 and 2 below are wiring diagrams of Open Collector encoder)



A1, B1 and Z1, LED lights is OFF.


If A1, B1 and Z1 have no signals, LED lights is ON.

PG2 Wiring Diagram

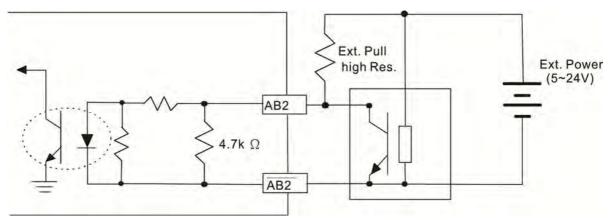
■ EMC-PG010/EMC-PG020 Wiring Diagram

- Please use a shielded cable to prevent interference. Do not run control wires parallel to any high voltage AC power line (200 V and above).
- \square Recommended wire size 0.21 to 0.81mm² (AWG24 to AWG18).
- ☑ Cable length: Less than 30m

8-9 EMC-PG01U/ EMC-PG02U

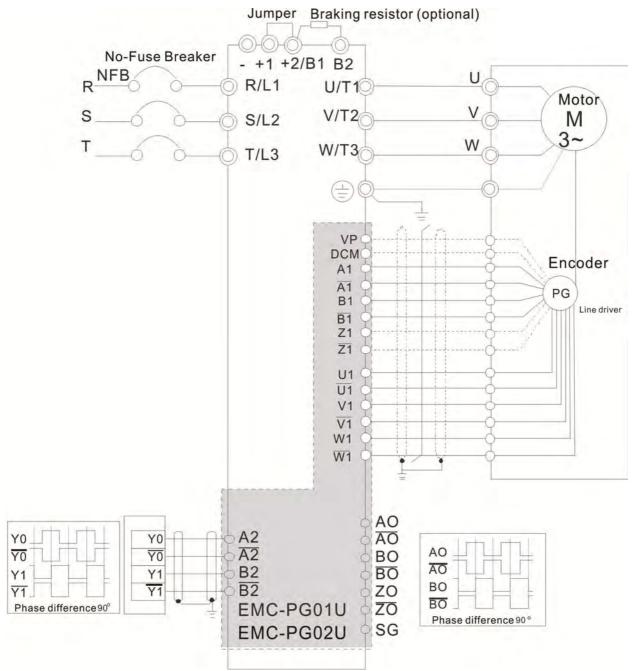
- FSW1 S: Standard UVW Output Encoder; D: Delta Encoder
- When using the Delta Encoder, wait for at least 250ms after powering up to receive signals from UVW. If a running command is received before UVW signals finish, a PGF5 error message will be given. So wait for 250ms before sending a running command.
- EMC-PG02U has encoder disconnection detection function.
- Set by Pr.10-00~10-02, 10-16~10-18

Terminals		Descriptions
	VP	Output voltage for power: +5V/+12V±5% (use FSW3 to switch +5V/+12V) Max. output current: 200mA
	DCM	Common for power and signal
PG1	A1, /A1, B1, /B1, Z1, /Z1	Encoder input signal (Line Driver) It can be 1-phase or 2-phase input. Max. output frequency: 300kP/sec
	U1, /U1, V1, /V1, W1, /W1	Encoder input signal
PG2	A2, /A2, B2, /B2	Pulse Input signal (Line Driver or Open Collector) Open Collector Input Voltage: +5~+24V (Note1) It can be 1-phase or 2-phase input. Max. output frequency: 300kP/sec.
PG OUT AO, /AO, BO, /BO, ZO, /ZO, SG		PG Card Output signals. It has division frequency function: 1~255 times Max. output voltage for Line driver: 5Vdc Max. output current: 50mA Max. output frequency: 300kP/sec SG is the GND of PG card. It is also the GND of position machine or PLC to make the ouput signal to be the common pivot point.


 Note 1: Open Collector application, input current 5~15mA to each set then each set needs one pull-up resistor.

 5V
 Recommended pull-up resistor: above100~220Ω, 1/2W

 12V
 Recommended pull-up resistor: above 510~1.35kΩ, 1/2W

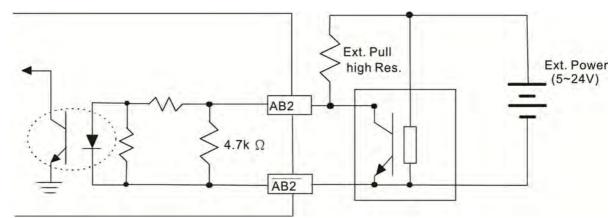

24V	Recommended pull-up resistor, above1.8k~3.3kΩ, 1/2W

PG2 Wiring Diagram

EMC-PG01U Wiring Diagram

- Please use a shielded cable to prevent interference. Do not run control wires parallel to any high voltage AC power line (200 V and above).
- \square Recommended wire size 0.21 to 0.81mm² (AWG24 to AWG18).
- ☑ Cable length: Less than 30m

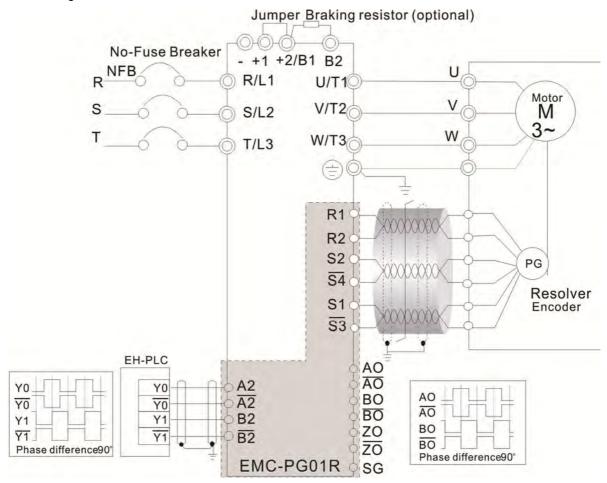
8-10 EMC-PG01R


Terminal Descriptions

Set by Pr.10-00~10-02

Terminals		Descriptions
	R1- R2	Resolver Output Power 7Vrms, 10kHz
PG1	S1, /S3, S2, /S4,	Resolver Input Signal (S2, /S4=Sin; S1, /S3=Cos) 3.5±0.175Vrms, 10kHz
PG2	A2, /A2, B2, /B2	Pulse Input signal (Line Driver or Open Collector) Open Collector Input Voltage: +5~+24V (Note1) It can be 1-phase or 2-phase input. Max. output frequency: 300kP/sec.
PG OU ⁻	AO, /AO, BO, /BO, ZO, /ZO, SG,	PG Card Output signals. It has division frequency function: 1~255 times Max. output voltage for Line driver: 5VDC Max. output current: 50mA Max. output frequency: 300kP/sec SG is the GND of PG card. It is also the GND of position machine or PLC to make the ouput signal to be the common pivot point.
Note 1: Open Collector application, input current 5~15mA to each set then each set needs one pull-up resistor		lication, input current 5~15mA to each set then each set needs one pull-up resisto
	5V	Recommended pull-up resistor: above100~220Ω, 1/2W
12V Becommended pull-up resistor: above 510~		Becommended pull-up resistor: above 510~1.35kQ, 1/2W

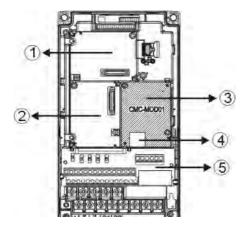
12V	Recommended pull-up resistor: above 510~1.35kΩ, 1/2W
24V	Recommended pull-up resistor, above1.8k~3.3kΩ, 1/2W


PG2 Wiring Diagram

- DOS(Degradation of Signal) : If the amplitude of the sine wave input of the S1-/S3/S2-/S4 is lower than or higher than the encoder IC's specification, a red light will be on. The possible reasons which cause this problem are the following.
 - 1. The turns ratio of the resolver encoder is not 1:0.5 which makes the sine wave input of the S1-/S3/S2-/S4 not equal to 3.5±0.175Vrms.
 - 2. While motor is running, motor creates common mode noise which makes accumulated voltage to be more than 3.5±0.175Vrms
- LOT(Loss of Tracking): Compare the angle of S1-/S3/S2-/S4 sine wave input to the R1-R2 cosine wave. If their difference is more than 5 degree, a red light will be on. Here are the possible reasons why that happens:
 - 1. The output frequency of the PG card is incorrect.
 - 2. The specification of Resolver's encoder is not 10KHz
 - 3. The motor creates common mode noise while it is running. That causes a big difference, while the motor is rotating, between main winding's cosine wave angle and the sine wave angle of second and third windings.

EMC-PG01R Wiring Diagram

- Please use a shielded cable to prevent interference. Do not run control wires parallel to any high voltage AC power line (200 V and above).
- ☑ Recommended wire size 0.21 to 0.81mm² (AWG24 to AWG18).
- ☑ Cable length: Less than 100m



8-11 CMC-MOD01

Features

- 1. Supports Modbus TCP protocol
- 2. MDI/MDI-X auto-detect
- 3. Baud rate: 10/100Mbps auto-detect
- 4. E-mail alarm
- 5. AC motor drive keypad/Ethernet configuration
- 6. Virtual serial port.

Product File

1	I/O CARD &	Relay Card
---	------------	------------

^② PG Card

³ Comm. Card

^④ RJ-45 connection port

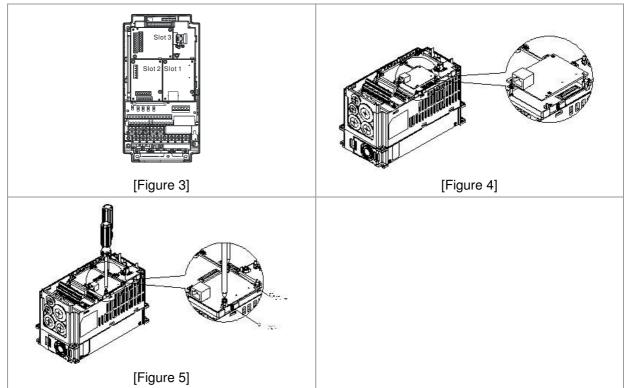
S Removable control circuit terminal

Specifications

Network Interface

Interface	RJ-45 with Auto MDI/MDIX
Number of ports	1 Port
Transmission method	IEEE 802.3, IEEE 802.3u
Transmission cable	Category 5e shielding 100M
Transmission speed	10/100 Mbps Auto-Detect
Network protocol	ICMP, IP, TCP, UDP, DHCP, HTTP, SMTP, MODBUS OVER TCP/IP,
	Delta Configuration

Electrical Specification


Power supply voltage	5VDC (supply by the AC motor drive)
Insulation voltage	2KV
Power consumption	0.8W
Weight	25g

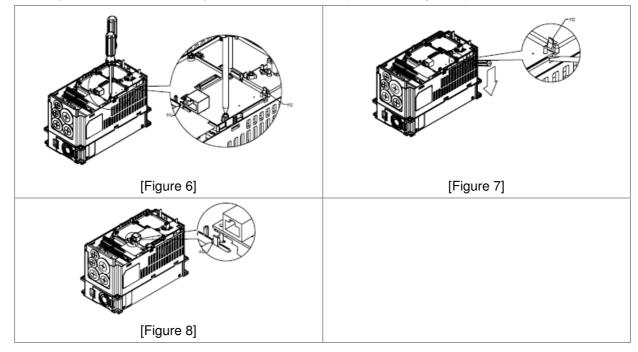
Environment

Noise immunity	ESD (IEC 61800-5-1, IEC 61000-4-2) EFT (IEC 61800-5-1, IEC 61000-4-4) Surge Test (IEC 61800-5-1, IEC 61000-4-5) Conducted Susceptibility Test (IEC 61800-5-1, IEC 61000-4-6)
Operation/storage	Operation: $-10 \ \ \sim 50 \ \ \odot$ (temperature), 90% (humidity) Storage: $-25 \ \ \sim 70 \ \ \odot$ (temperature), 95% (humidity)
Vibration/shock immunity	International standard: IEC 61800-5-1, IEC 60068-2-6/IEC 61800-5-1, IEC 60068-2-27

■ Install CMC-MOD01 to VFD-CH2000

- 1. Switch off the power supply of VFD-CH2000.
- 2. Open the front cover of VFD-CH2000.
- 3. Place the insulation spacer into the positioning pin at Slot 1 (shown in Figure 3), and aim the two holes on the PCB at the positioning pin. Press the pin to clip the holes with the PCB (shown in Figure 4).
- 4. Screw up at torque 6 ~ 8 kg-cm (5.21 ~ 6.94 in-lbs) after the PCB is clipped with the holes (shown in Figure 5).

Communication Parameters for VFD-CH2000 Connected to Ethernet


When VFD-CH2000 is link to Ethernet, please set up the communication parameters base on the table below. Ethernet master will be able to read/write the frequency word and control word of VFD-CH2000 after communication parameters setup.

Parameter	Function	Set value (Dec)	Explanation
P00-20	Source of frequency command setting	8	The frequency command is controlled by communication card.
P00-21	Source of operation command setting	5	The operation command is controlled by communication card.

P09-30	Decoding method for communication	0	Decoding method for Delta AC motor drive
P09-75	IP setting	0	Static IP(0) / Dynamic distribution IP(1)
P09-76	IP address -1	192	IP address 192.168.1.5
P09-77	IP address -2	168	IP address 192.168.1.5
P09-78	IP address -3	1	IP address 192.168.1.5
P09-79	IP address -4	5	IP address 192.168.1.5
P09-80	Netmask -1	255	Netmask 255.255.255.0
P09-81	Netmask -2	255	Netmask 255.255.255.0
P09-82	Netmask -3	255	Netmask 255.255.255.0
P09-83	Netmask -4	0	Netmask 255.255.255.0
P09-84	Default gateway -1	192	Default gateway 192.168.1.1
P09-85	Default gateway -2	168	Default gateway 192.168.1.1
P09-86	Default gateway -3	1	Default gateway 192.168.1.1
P09-87	Default gateway -4	1	Default gateway 192.168.1.1

Disconnecting CMC- MOD01 from VFD-CH2000

- 1. Switch off the power supply of VFD-CH2000.
- 2. Remove the two screws (shown in Figure 6).
- 3. Twist opens the card clip and inserts the slot type screwdriver to the hollow to prize the PCB off the card clip (shown in Figure 7).
- 4. Twist opens the other card clip to remove the PCB (shown in Figure 8).

Basic Registers

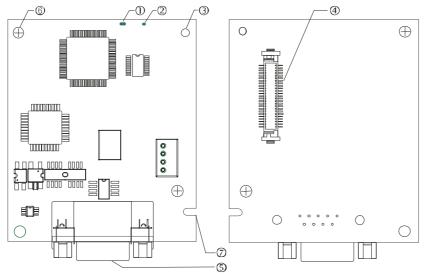
BR#	R/W	Content	Explanation
#0	R	Model name	Set up by the system; read only. The model code of CMC-MOD01=H'0203
#1	R	Firmware version	Displaying the current firmware version in hex, e.g. H'0100 indicates the firmware version V1.00.
#2	R	Release date of the version	Displaying the data in decimal form. 10,000s digit and 1,000s digit are for "month"; 100s digit and 10s digit are for "day". For 1 digit: 0 = morning; 1 = afternoon.
#11	R/W	Modbus Timeout	Pre-defined setting: 500 (ms)
#13	R/W	Keep Alive Time	Pre-defined setting: 30 (s)

■ LED Indicator & Troubleshooting

LED Indicators

LED	Status		Indication	How to correct it?
POWER	Green	On	Power supply in normal status	
FOWER	Green	Off	No power supply	Check the power supply
		On	Network connection in normal status	
LINK	Green	Flashes	Network in operation	
		Off	Network not connected	Check if the network cable is connected

Troubleshooting


Abnormality	Cause	How to correct it?
POWER LED off	AC motor drive not powered	Check if AC motor drive is powered, and if the power supply is normal.
	CMC-MOD01 not connected to AC motor drive	Make sure CMC-MOD01 is connected to AC motor drive.
	CMC-MOD01 not connected to network	Make sure the network cable is correctly connected to network.
LINK LED off	Poor contact to RJ-45 connector	Make sure RJ-45 connector is connected to Ethernet port.
	CMC-MOD01 not connected to network	Make sure CMC-MOD01 is connected to network.
No module found	PC and CMC-MOD01 in different networks and blocked by network firewall.	Search by IP or set up relevant settings by AC motor drive keypad.
	CMC-MOD01 not connected to network	Make sure CMC-MOD01 is connected to the network.
Fail to open CMC-MOD01 setup	Incorrect communication setting in DCISoft	Make sure the communication setting in DCISoft is set to Ethernet.
page	PC and CMC-MOD01 in different networks and blocked by network firewall.	Conduct the setup by AC motor drive keypad.
Able to open CMC-MOD01 setup page but fail to utilize webpage monitoring	Incorrect network setting in CMC-MOD01	Check if the network setting for CMC-MOD01 is correct. For the Intranet setting in your company, please consult your IT staff. For the Internet setting in your home, please refer to the network setting instruction provided by your ISP.
Fail to send e-mail	Incorrect network setting in CMC-MOD01	Check if the network setting for CMC-MOD01 is correct.
	Incorrect mail server setting	Please confirm the IP address for SMTP-Server.

8-12 CMC-PD01

Features

- 1. Supports PZD control data exchange.
- 2. Supports PKW polling AC motor drive parameters.
- 3. Supports user diagnosis function.
- 4. Auto-detects baud rates; supports Max. 12Mbps.

Product Profile

1. NET indicator
2. POWER indicator
3. Positioning hole
4. AC motor drive connection
port
5. PROFIBUS DP connection
port
6. Screw fixing hole
7. Fool-proof groove

Specifications

PROFIBUS DP Connector

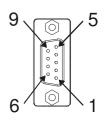
Interface	DB9 connector
Transmission method	High-speed RS-485
Transmission cable	Shielded twisted pair cable
Electrical isolation	500VDC

Communication

Message type	Cyclic data exchange
Module name	CMC-PD01
GSD document	DELA08DB.GSD
Company ID	08DB (HEX)
Serial transmission speed supported (auto-detection)	9.6kbps; 19.2kbps; 93.75kbps; 187.5kbps; 125kbps; 250kbps; 500kbps; 1.5Mbps; 3Mbps; 6Mbps; 12Mbps (bit per second)

Electrical Specification

Power supply	5VDC (supplied by AC motor drive)	
Insulation voltage	500VDC	
Power consumption	1W	
Weight	28g	


Environment

Noise immunity	ESD(IEC 61800-5-1,IEC 6100-4-2) EFT(IEC 61800-5-1,IEC 6100-4-4) Surge Teat(IEC 61800-5-1,IEC 6100-4-5)
	Conducted Susceptibility Test(IEC 61800-5-1,IEC 6100-4-6)
Operation /storage	Operation: -10ºC ~ 50ºC (temperature), 90% (humidity) Storage: -25ºC ~ 70ºC (temperature), 95% (humidity)
Shock / vibration resistance	International standards: IEC61131-2, IEC68-2-6 (TEST Fc)/IEC61131-2 & IEC 68-2-27 (TEST Ea)

Installation

PROFIBUS DP Connector

PIN	PIN name	Definition
1	-	Not defined
2	-	Not defined
3	Rxd/Txd-P	Sending/receiving data P(B)
4	-	Not defined
5	DGND	Data reference ground
6	VP	Power voltage – positive
7	-	Not defined
8	Rxd/Txd-N	Sending/receiving data N(A)
9	-	Not defined

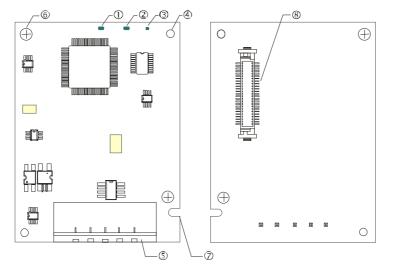
LED Indicator & Troubleshooting

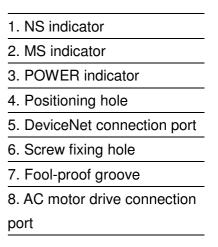
There are 2 LED indicators on CMC-PD01. POWER LED displays the status of the working power. NET LED displays the connection status of the communication.

POWER LED

LED status	Indication	How to correct it?
Green light on	Power supply in normal status.	
Off	No power	Check if the connection between CMC-PD01 and AC motor drive is normal.

NET LED


LED status	Indication	How to correct it?
Green light on	Normal status	
Red light on	CMC-PD01 is not connected to PROFIBUS DP bus.	Connect CMC-PD01 to PROFIBUS DP bus.
Red light flashes	Invalid PROFIBUS communication address	Set the PROFIBUS address of CMC-PD01 between 1 ~ 125 (decimal)
Orange light flashes	CMC-PD01 fails to communication with AC motor drive.	Switch off the power and check whether CMC-PD01 is correctly and normally connected to AC motor drive.


8-13 CMC-DN01

Functions

- 1. Based on the high-speed communication interface of Delta HSSP protocol, able to conduct immediate control to AC motor drive.
- 2. Supports Group 2 only connection and polling I/O data exchange.
- 3. For I/O mapping, supports Max. 32 words of input and 32 words of output.
- 4. Supports EDS file configuration in DeviceNet configuration software.
- 5. Supports all baud rates on DeviceNet bus: 125kbps, 250kbps, 500kbps and extendable serial transmission speed mode.
- 6. Node address and serial transmission speed can be set up on AC motor drive.
- 7. Power supplied from AC motor drive.

Product Profile

Specifications

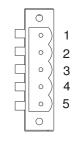
DeviceNet Connector

Interface	5-PIN open removable connector. Of 5.08mm PIN interval	
Transmission	CAN	
Transmission cable	Shielded twisted pair cable (with 2 power cables)	
Transmission speed	125kbps, 250kbps, 500kbps and extendable serial transmission speed	
Network protocol	DeviceNet protocol	

AC Motor Drive Connection Port

Interface	50 PIN communication terminal	
Transmission method	SPI communication	
Terminal function	 Communicating with AC motor drive Transmitting power supply from AC motor drive 	
Communication	Delta HSSP protocol	

Electrical Specification


Power supply voltage	5VDC (supplied by AC motor drive)
Insulation voltage	500VDC
Communication wire power consumption	0.85W
Power consumption	1W
Weight	23g

Environment

Noise immunity	ESD (IEC 61800-5-1,IEC 6100-4-2) EFT (IEC 61800-5-1,IEC 6100-4-4) Surge Teat(IEC 61800-5-1,IEC 6100-4-5)
	Conducted Susceptibility Test (IEC 61800-5-1,IEC 6100-4-6)
Operation /storage	Operation: -10°C ~ 50°C (temperature), 90% (humidity) Storage: -25°C ~ 70°C (temperature), 95% (humidity)
Shock / vibration resistance	International standards: IEC61131-2, IEC68-2-6 (TEST Fc)/IEC61131-2 & IEC 68-2-27 (TEST Ea)

DeviceNet Connector

PIN	Signal	Color	Definition
1	V+	Red	DC24V
2	Н	White	Signal+
3	S	-	Earth
4	L	Blue	Signal-
5	V-	Black	0V

LED Indicator & Troubleshooting

There are 3 LED indicators on CMC-DN01. POWER LED displays the status of power supply. MS LED and NS LED are dual-color LED, displaying the connection status of the communication and error messages.

POWER LED

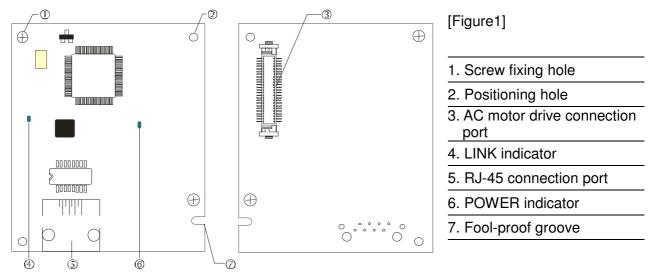
LED status	Indication	How to correct it?
On	Power supply in abnormal status.	Check the power supply of CMC-DN01.
Off	Power supply in normal status	

NS LED

LED status	D status Indication How to correct it?	
Off	No power supply or CMC-DN01 has not completed MAC ID test yet.	 Check the power of CMC-DN01 and see if the connection is normal. Make sure at least one or more nodes are on the bus. Check if the serial transmission speed of CMC-DN01 is the same as that of other nodes.
Green light flashes	CMC-DN01 is on-line but has not established connection to the master.	 Configure CMC-DN01 to the scan list of the master. Re-download the configured data to the master.
Green light on	CMC-DN01 is on-line and is normally connected to the master	
Red light flashes	CMC-DN01 is on-line, but I/O connection is timed-out.	 Check if the network connection is normal. Check if the master operates normally.
Red light on	 The communication is down. MAC ID test failure. No network power supply. CMC-DN01 is off-line. 	 Make sure all the MAC IDs on the network are not repeated. Check if the network installation is normal. Check if the baud rate of CMC-DN01 is consistent with that of other nodes. Check if the node address of CMC-DN01 is illegal. Check if the network power supply is normal.

MS LED

LED status	Indication	How to correct it?	
Off	No power supply or being off-line	Check the power supply of CMC-DN01 and see of the connection is normal.	
Green light flashes	Waiting for I/O data	Switch the master PLC to RUN status	
Green light on	I/O data are normal		
Red light flashes	Mapping error	 Reconfigure CMC-DN01 Re-power AC motor drive 	
Red light on	Hardware error	 See the error code displayed on AC motor drive. Send back to the factory for repair if necessary. 	
Orange light flashes	CMC-DN01 is establishing connection with AC motor drive.	If the flashing lasts for a long time, check if CMC-DN01 and AC motor drive are correctly installed and normally connected to each other.	


Chapter 8 Optional Cards

8-14 CMC-EIP01

Features

- 1. Supports Modbus TCP and Ethernet/IP protocol
- 2. MDI/MDI-X auto-detect
- 3. Baud rate: 10/100Mbps auto-detect
- 4. AC motor drive keypad/Ethernet configuration
- 5. Virtual serial port

Product Profile

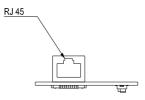
Specifications

Network Interface

Interface	RJ-45 with Auto MDI/MDIX	
Number of ports	1 Port	
Transmission method	IEEE 802.3, IEEE 802.3u	
Transmission cable	Category 5e shielding 100M	
Transmission speed	10/100 Mbps Auto-Detect	
Network protocol	ICMP, IP, TCP, UDP, DHCP, HTTP, SMTP, MODBUS OVER TCP/IP, EtherNet/IP, Delta Configuration	

Electrical Specification

Weight	25g
Insulation voltage	500VDC
Power consumption	0.8W
Power supply voltage	5VDC

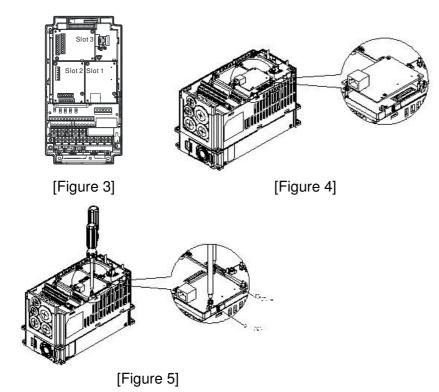

Environment

Noise immunity	ESD (IEC 61800-5-1,IEC 61000-4-2)					
	EFT (IEC 61800-5-1,IEC 61000-4-4)					
	Surge Test (IEC 61800-5-1,IEC 61000-4-5)					
	Conducted Susceptibility Test (IEC 61800-5-1,IEC 61000-4-6)					
Onevetien/eterene	Operation: -10 ℃ ~ 50 ℃ (temperature), 90% (humidity)					
Operation/storage	Storage: -25 ℃ ~ 70 ℃ (temperature), 95% (humidity)					
Vibration/shock immunity	International standard: IEC 61800-5-1, IEC 60068-2-6/IEC 61800-5-1, IEC 60068-2-27					

Installation

Connecting CMC-EIP01 to Network

- 1. Turn off the power of AC motor drive.
- 2. Open the cover of AC motor drive.
- Connect CAT-5e network cable to RJ-45 port on CMC-EIP01 (See Figure 2).

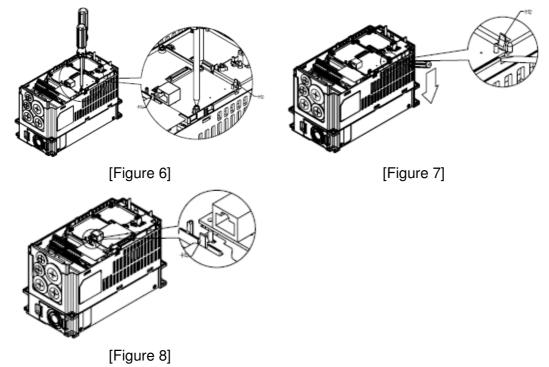


RJ-45 PIN Definition

PIN	Signal	Definition	PIN	Signal	Definition	
1	Tx+	Positive pole for data transmission	5		N/C	
2	Tx-	Negative pole for data transmission	6	Rx-	Negative pole for data receiving	
3	Rx+	Positive pole for data receiving	7		N/C	8 1
4		N/C	8		N/C	

Connecting CMC-EIP01 to VFD-CH2000

- 1. Switch off the power of AC motor drive.
- 2. Open the front cover of AC motor drive.
- 3. Place the insulation spacer into the positioning pin at Slot 1 (shown in Figure 3), and aim the two holes on the PCB at the positioning pin. Press the pin to clip the holes with the PCB (see Figure 4).
- 4. Screw up at torque 6 ~ 8 kg-cm (5.21 ~ 6.94 in-lbs) after the PCB is clipped with the holes (see Figure 5).


Communication Parameters for VFD-CH2000 Connected to Ethernet

When VFD-CH2000 is connected to Ethernet network, please set up the communication parameters for it according to the table below. The Ethernet master is only able to read/write the frequency word and control word of VFD-CH2000 after the communication parameters are set.

Parameter (Dec)	Function	Set value (Dec)	Explanation
P00-20	Source of frequency command setting	8	The frequency command is controlled by communication card.
P00-21	Source of operation command setting	5	The operation command is controlled by communication card.
P09-30	Decoding method for communication	0	The decoding method for Delta AC motor drive
P09-75	IP setting	0	Static IP(0) / Dynamic distribution IP(1)
P09-76	IP address -1	192	IP address 192.168.1.5
P09-77	IP address -2	168	IP address 192.168.1.5
P09-78	IP address -3	1	IP address 192.168.1.5
P09-79	IP address -4	5	IP address 192.168.1.5
P09-80	Netmask -1	255	Netmask 255.255.255.0
P09-81	Netmask -2	255	Netmask 255.255.255.0
P09-82	Netmask -3	255	Netmask 255.255.255.0
P09-83	Netmask -4	0	Netmask 255.255.255.0
P09-84	Default gateway -1	192	Default gateway 192.168.1.1
P09-85	Default gateway -2	168	Default gateway 192.168.1.1
P09-86	Default gateway -3	1	Default gateway 192.168.1.1
P09-87	Default gateway -4	1	Default gateway 192.168.1.1

Disconnecting CMC- EIP01 from VFD-CH2000

- 1. Switch off the power supply of VFD-CH2000.
- 2. Remove the two screws (see Figure 6).
- 3. Twist opens the card clip and inserts the slot type screwdriver to the hollow to prize the PCB off the card clip (see Figure 7).
- 4. Twist opens the other card clip to remove the PCB (see Figure 8).

LED Indicator & Troubleshooting

There are 2 LED indicators on CMC-EIP01. The POWER LED displays the status of power supply, and the LINK LED displays the connection status of the communication.

LED Indicators

LED	Status		Indication	How to correct it?				
POWER	Groop	On	Power supply in normal status					
POWER Green Off		Off	No power supply	Check the power supply.				
	Green	On	Network connection in normal status					
LINK		Flashes	Network in operation					
		Off	Network not connected	Check if the network cable is connected.				

Troubleshooting

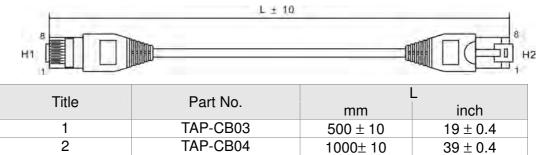
Abnormality	Cause	How to correct it?
POWER LED off	AC motor drive not powered	Check if AC motor drive is powered, and if the power supply is normal.
	CMC-EIP01 not connected to AC motor drive	Make sure CMC-EIP01 is connected to AC motor drive.
	CMC-EIP01 not connected to network	Make sure the network cable is correctly connected to network.
LINK LED off	Poor contact to RJ-45 connector	Make sure RJ-45 connector is connected to Ethernet port.

Abnormality	Cause	How to correct it?			
	CMC-EIP01 not connected to network	Make sure CMC-EIP01 is connected to network.			
No communication card found	PC and CMC-EIP01 in different networks and blocked by network firewall.	Search by IP or set up relevant settings by AC motor drive keypad.			
	CMC-EIP01 not connected to network	Make sure CMC-EIP01 is connected to the network.			
Fail to open CMC-EIP01 setup	Incorrect communication setting in DCISoft	Make sure the communication setting in DCISoft is set to Ethernet.			
page	PC and CMC-EIP01 in different networks and blocked by network firewall.	Conduct the setup by AC motor drive keypad.			
Able to open CMC-EIP01 setup page but fail to utilize webpage monitoring	Incorrect network setting in CMC-EIP01	Check if the network setting for CMC-EIP01 is correct. For the Intranet setting in your company, please consult your IT staff. For the Internet setting in your home, please refer to the network setting instruction provided by your ISP.			
	Incorrect network setting in CMC-EIP01	Check if the network setting for CMC-EIP01 is correct.			
Fail to send e-mail	Incorrect mail server setting	Please confirm the IP address for SMTP-Server.			

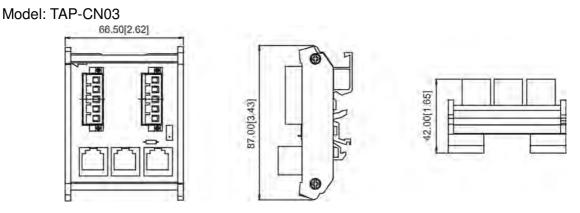
8-15 EMC-COP01

RJ-45 Pin definition

S485	socket


Pin	Pin name	Definition								
1	CAN_H	CAN_H bus line (dominant								
		high)								
2	CAN_L	CAN_L bus line (dominant low)								
3	CAN_GND	Ground/0V/V-								
7	CAN_GND	Ground/0V/V-								

Specifications


Interface	RJ-45
Number of ports	1 Port
Transmission method	CAN
Transmission cable	CAN standard cable
Transmission speed	1M 500k 250k 125k 100k 50k
Communication protocol	CANopen

CANopen Communication Cable

Model: TAP-CB03, TAP-CB04

CANopen Dimension

For more information on CANopen, please refer to Chapter 15 CANopen Overview or CANopen user manual can also be downloaded on Delta website: http://www.delta.com.tw/industrialautomation/.

9-1 230V Series

Frame Size					A				В			0
М	odel V	/FD CH23A-21	007	015	022	03	37 (055	075	110	150	185
		e Motor Ourput (KW)	0.75	1.5	2.2	3.		5.5	7.5	11	15	18.5
		le Motor Ourput (HP)	1	2	3	5		7.5	10	15	20	25
	Duty	Rated Output Capacity (kVA)	2.0	3.2	4.4	6.	8	10	13	20	26	30
ating	Heavy Duty	Rated Output Current (A)	5	8	11	1	7	25	33	49	65	75
Output Rating	er He	Carrier Frequency (kHz)						15kHz				
Out	Super I	Overload Tolerance							50% for 60 00% for 3			
ing	Inpu	ut Current (A) Super Heavy Duty	6.4	12	16	2	0	28	36	52	72	83
Rat	Rate	d Voltage/Frequency			3-pha	se AC 20)0V~240	V (-15%	5 ~ +10%)	, 50/60Hz		
Input Rating	Oper	rating Voltage Range					170~	265Va	c			
<u>_</u>	Fre	equency Tolerance					47 [,]	~63Hz				
	AC	Drive Weight		2.6	6± 0.3Kg				5.4± 1Kg		9.8±	1.5Kg
	Co	ooling Method	Natural cooling					Fan c	ooling			
	Bra	aking Chopper	Frame A~C: Built-in; Frame D and above: Optional									
		DC reactor	Frame A~C: Optional;									
				Frame D and above: Built-in								
		EMI Filter		Optional								
	E	EMC-COP01					Ομ	otional				
		Frame Size		D			E	F				
Mod	el V VF	FDCH23A-00 FDCH23A-21	220	300	370	450	550	750)			
		e Motor Ourput (KW)	22	30	37	45	55	75				
Арр		e Motor Ourput (HP)	30	40	50	60	75	100)			
bu	Duty	Rated Output Capacity (kVA)	36	48	58	72	86	102	2			
Rati	eavy	Rated Output Current (A)	90	120	146	180	215	25	5			
Output Rating	uper Heavy	Carrier Frequency (kHz)			5~15							
0	Overload ToleranceRated output current is 150% for 60 sec.; Rated output current is 200% for 3 sec.											
ing	Ιηρι	ut Current (A) Super Heavy Duty	99	124	143	171	206	24	5			
Input Rating	Rate	d Voltage/Frequency	3-phas	se AC 20	0V~240V	(-15% ~ -	⊦10%), 50	0/60Hz				
Indr	Oper	ating Voltage Range			170~20	65Vac						
1	Fre	equency Tolerance			47~6	3Hz						

Inpl	Operating Voltage Range	170~26	55Vac				
-	Frequency Tolerance	47~6	3Hz				
	AC Drive Weight	38.5± 1.5Kg	64.8± 1.5Kg	86.5± 1.5Kg			
	Cooling Method	Fan co	9				
	Braking Chopper	Frame A~C: Built-in; Frame D and above: Optional					
	DC reactor	Frame A~C Frame D a	C: Optional; nd above: Built-in				
	EMI Filter	Optic					
	EMC-COP01	Optic	onal				

9-2 460V Series

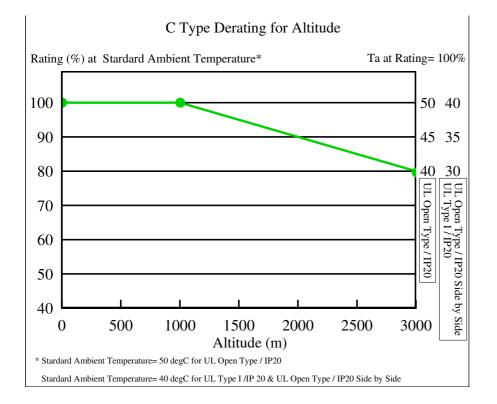
Frame Size				А					В			С		
Mode	el VF VF		007	015	022	03	7	055	075	110	150	185	220	300
Ap	plicab	le Motor Ourput (KW)	0.75	1.5	2.2	3.7	7	5.5	7.5	11	15	18.5	22	30
Ap	Applicable Motor Ourput (HP)			2	3	5		7.5	10	15	20	25	30	40
	Duty	Rated Output Capacity (kVA)	2.4	3.2	4.8	7.2	2	9.6	14	19	25	30	36	48
ating	eavy [Rated Output Current (A)	3	4	6	9		12	18	24	32	38	45	60
Output Rating	Super Heavy Duty	Carrier Frequency (kHz)							~15kHz					
Out		Overload Tolerance		r	-				rent is 1 rent is 2		60 sec.; 3 sec.			
Input Rating	Inp	out Current (A) Super Heavy Duty	4.3	5.9	8.7	14		17	20	26	35	40	47	63
Ra	Rate	ed Voltage/Frequency			3-p	bhase A	C 38	0V~48	0V(-15	%~+10	%), 50/60	OHz		
out	Оре	erating Voltage Range						323	~528Va	C				
lu	FI	requency Tolerance						4	7~63Hz					
		C Drive Weight			2.6± 0.3	Ka				5.4± 1K	a		9.8± 2K	a
		Cooling Method	Natural cooling						Fan co		9			5
	В	raking Chopper							A~C: Bu D and a		Optional			
		DC reactor		Frame A~C: Optional; Frame D and above: Built-in										
		EMI Filter		Frame A ~ C, VFDCH4EA-21, EMI filter built-in; Frame A ~ C, VFDCH43A-21, EMI filtter without built-in										
		EMC-COP01		Optional										
														1
Mode	el VF	Frame Size	D E			F		G		Н				
IVIODE		DCH43A 2800CH43C-00/-21	370	450	550	750	90	00	1100	1320	1600	1850	2200	2800
		le Motor Ourput (KW)	37	45	55	75	9		110	132	160	185	220	280
Ap	plicab	le Motor Ourput (HP)	50	60	75	100	12	25	150	175	215	250	300	375
bu	Duty	Rated Output Capacity (kVA)	58	73	88	120	14	43	175	199	247	295	359	438
t Rating	eavy Duty	Rated Output Current (A)	73	91	110	150	18	80	220	250	310	370	450	550
Output I	Super H	Carrier Frequency (kHz)		5~15	ikHz						~10kHz			
0		Overload Tolerance							rent is 1 rent is 2		60 sec.; 3 sec.			1
ting	Inp	out Current (A) Super Heavy Duty	74	101	114	157	16	67	207	240	300	380	400	494
Rai	Rate	ed Voltage/Frequency			3-p	hase A	C 38	0V~~4	80V (-1	5% +109	%), 50/60	OHz		
Input Rating	Оре	erating Voltage Range						323	~528Va	C				
Ч	Fi	requency Tolerance						47	7~63Hz					
	A	C Drive Weight		38.5±	1.5Kg		64	4.8± 1.		86.5± 1.5Kg	1	34± 4Kg	l	228Kg
	С	ooling Method						Fai	n cooling	Ű,				•
		aking Chopper						e D an	d above	: Optior				
		DC reactor							nd abov					
<u> </u>		EMI Filter				ŀ	-ram		d above	: Optior	al			
L		EMC-COP01						U	ptional					

- The value of the carrier frequency is a factory setting. To increase the carrier frequency, the current needs to be decreased. See derating curve diagram of Pr06-55 for more information.

- When a load is a shock or impact load, use a higher level model. For FRAME A, B and C, Model VFDXXXCHXXX-21 the enclosure type is IP20/-UL OPEN TYPE. For FRAME D and above, if the last character of the model is "-00" then the enclosure type is IP00/ IP20/ UL OPEN TYPE; if the last character of the model is "-21" then the enclosure type is IP20/ NEMA1/ UL TYPE1.

General Specifications

	Control Method			
	Control Method	1: V/F, 2: SVC, 3: VF+PG, 4: FOC+PG, 5: TQC+PG,		
	Starting Torque	Reach up to 200% or above at 0.5Hz. Under FOC+PG mode, starting torque can reach 200% at 0Hz.		
	V/F Curve	4 point adjustable V/F curve and square curve		
	Speed Response			
	Ability	5Hz (vector control can reach up to 40Hz)		
	Torque Limit	Max. 220% torque current		
	Torque Accuracy	±5%		
	Max. Output Frequency (Hz)	Super Heavy Duty: 0.00~600.00Hz		
s	Frequency Output Accuracy	Digital command:±0.01%, -10 $^\circ\!\mathbb{C}$ ~+40 $^\circ\!\mathbb{C}$, Analog command: ±0.1%, 25±10 $^\circ\!\mathbb{C}$		
ristics	Output Frequency Resolution	Digital command: 0.01Hz, Analog command: 0.03 X max. output frequency/60 Hz (±11 bit)		
icte	Overload Tolerance	Rated output current is 150 % for 60 seconds ; 200% for 3 seconds		
hara	Frequency Setting Signal	+10V~-10, 0~+10V, 4~20mA, 0~20mA, Pulse input		
0 0	Accel./decel. Time	0.00~600.00/0.0~6000.0 seconds		
Control Characteristics	Main control function	Torque control, Droop control, Speed/torque control switching, Feed forward control, Zero-servo control, Momentary power loss ride thru, Speed search, Over-torque detection, Torque limit, 17-step speed (max), Accel/decel time switch, S-curve accel/decel, 3-wire sequence, Auto-Tuning (rotational, stationary), Dwell, Cooling fan on/off switch, Slip compensation, Torque compensation, JOG frequency, Frequency upper/lower limit settings, DC injection braking at start/stop, High slip braking, PID control (with sleep function),Energy saving control, MODOBUS communication (RS-485 RJ45, max. 115.2 kbps), Fault restart, Parameter copy		
	Fan Control	230V model VFD150CH23A-21(include) and series above: PMW control; VFD110CH23A-21(include) and series below: on/off switch control 460V model VFD185CH43A/4EA-21(include) and series above: PMW control; VFD150CH43A/4EA-21(include) and series below: on/off switch control		
	Motor Protection	Electronic thermal relay protection		
stics	Over-current Protection	For drive model 230V and 440V Over-current protection for 300% rated current current clamp [©] Super heavy duty: 220% [®]		
Protection Characteristics	Over-voltage Protection	230: drive will stop when DC-BUS voltage exceeds 410V 460: drive will stop when DC-BUS voltage exceeds 820V		
	Over-temperature Protection	Built-in temperature sensor		
	Stall Prevention	Stall prevention during acceleration, deceleration and running independently		
	Restart After Instantaneous Power Failure	Parameter setting up to 20 seconds		
	Grounding Leakage Current Protection	Leakage current is higher than 50% of rated current of the AC motor drive		
Cer	tifications	CE, GB/T12668-2, Certification in progress)		

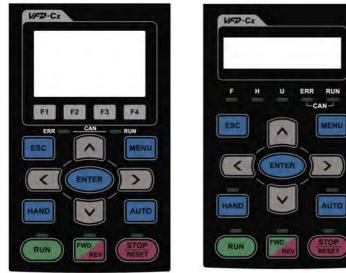

9-3 Environment for Operation, Storage and Transportation

DO NOT expose the AC motor drive in the bad environment, such as dust, direct sunlight, corrosive/inflammable gasses, humidity, liquid and vibration environment. The salt in the air must be less than 0.01mg/cm² every year.

	Installation location	IEC60364-1/IEC60	664-1 Pollution degree 2, Indoor use only	
	Surrounding Temperature	Storage Transportation Non-condensation	-25 °C ~ +70 °C -25 °C ~ +70 °C n, non-frozen	
	Rated Humidity	Operation Storage/ Transportation No condense wat	Max. 95% Max. 95%	
Environment	Air Pressure	Operation/ Storage Transportation	86 to 106 kPa 70 to 106 kPa	
	Pollution Level	IEC721-3-3 Operation Class 3C2; Class 3S2 Storage Class 2C2; Class 2S2 Transportation Class 1C2; Class 1S2 No concentrate No concentrate		
	Altitude	Operation	If AC motor drive is installed at altitude 0~1000m, follow normal operation restriction. If it is install at altitude 1000~2000m, decrease 2% of rated current or lower 0.5°C of temeperature for every 100m increase in altitude. Maximum altitude for Corner Grounded is 2000m.	
Package Drop	Storage ISTA procedure 1A(according to weight) IEC60068-2-31			
Vibration 1.0mm, peak to peak value range from 2Hz to 13.2 Hz; 0.7G~1.0G range from 13.2Hz to 55Hz; 1.0G r 512 Hz. Comply with IEC 60068-2-6				
Impact	IEC/EN 60068-2-27			
Operation Position	Max. allowed offset angle ±10° (under normal installation position)			

9-4 Specification for Operation Temperature and Protection Level

Model	Frame	Top cover	Conduit Box	Protection Level	Operation Temperature
	Frame A~C 230V: 0.75~18.5kW 460V: 0.75~30kW	Top cover Removed	Standard conduit plate	IP20/ UL Open Type	-10~50 ℃
VFDxxxxCHxxx-21		Standard with top cover		IP20/ UL Type1/ NEMA1	-10~40 ℃
	Frame D~H 230V: >22kW 460V: >30kW	N/A	Standard conduit box	IP20/ UL Type1/ NEMA1	-10~50℃
VFDxxxxCHxxx-00	Frame D~H 230V: >22kW 460V: >30kW	N/A	Standard conduit box	IP00 IP20/UL Open Type Only the circled ar Other parts are IP2	-10~50℃


9-5 Derating of ambient temperature and altitude

Protection Level	Operating Environment	
UL Type I / IP20	When the AC motor drive is operating at the rated current and the ambient temperat has to be between 10° C ~ +40 °C. When the temperature is over 40° C, for every increase by 1° C, decrease 2% of the rated current. The maximum allowable temperature is 60° C.	
UL Open Type / IP20	When the AC motor drive is operating at the rated current and the ambient temperature has to be between -10° C ~ $+50^{\circ}$ C. When the temperature is over 50° C, for every increase by 1° C, decrease 2% of the rated current. The maximum allowable temperature is 60° C.	
High Altitude	If AC motor drive is installed at altitude $0 \sim 1000$ m, follow normal operation restriction. If it is install at altitude $1000 \sim 2000$ m, decrease 2% of rated current or lower 0.5° C of temperature for every 100m increase in altitude. Maximum altitude for Corner Grounded is 2000m. Contact Delta for more information, if you need to use this motor drive at an altitude of 2000m or higher.	

Chapter 10 Digital Keypad

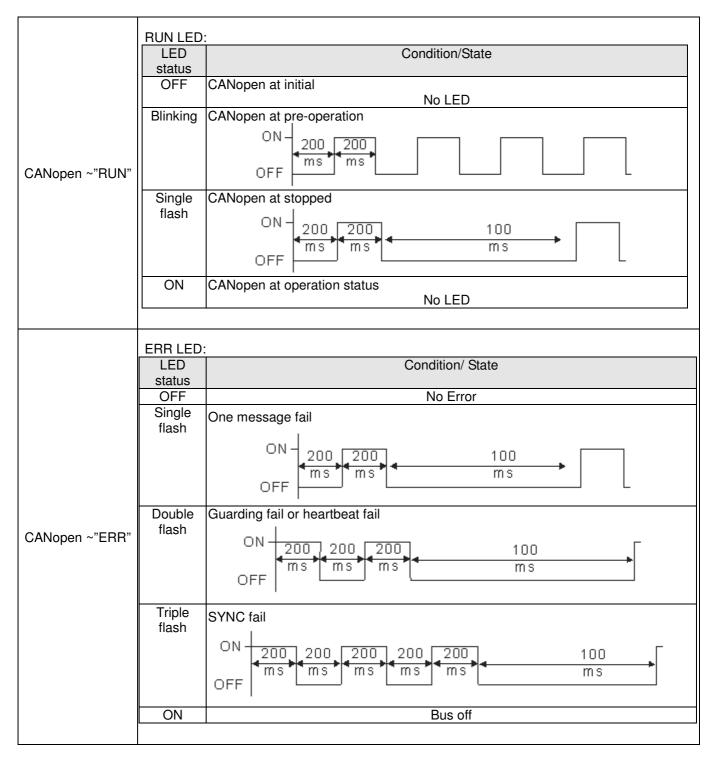
- 10-1 Descriptions of Digital Keypad
- 10-2 Function of Digital Keypad KPC-CC01
- 10-3 TPEditor Installation Instruction
- 10-4 Fault Code Description of Digital Keypad KPC-CC01

10-1 Descriptions of Digital Keypad KPC-CC01 KPC-CE01(Option)

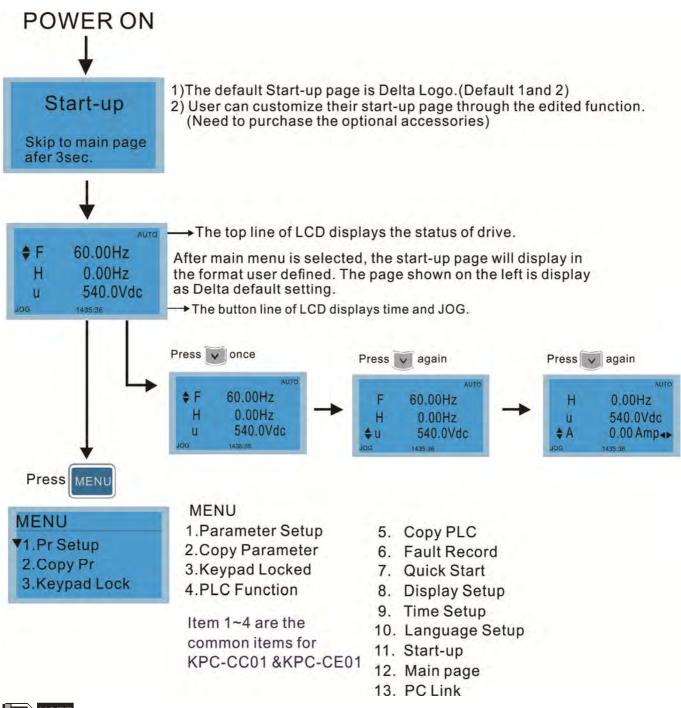
Installation Method

- 1. Embedded type and can be put flat on the surface of the control box. The front cover is water proof.
- 2. Buy a MKC-KPPK model to do wall mounting or embedded mounting. Its protection level is IP66.
- 3. The maximum RJ45 extension lead is 5 m (16ft)
- 4. This keypad can only be used on Delta's motor drive C2000, CH2000 and CP2000.

Descriptions of Keypad Functions

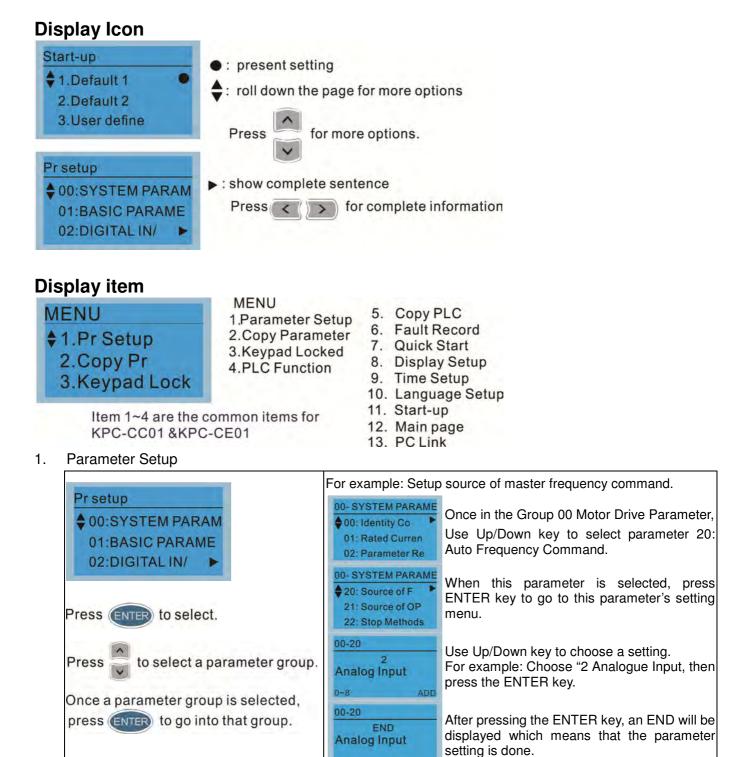

Кеу	Descriptions	
RUN	 Start Operation Key It is only valid when the source of operation command is from the keypad. It can operate the AC motor drive by the function setting and the RUN LED will be ON. It can be pressed again and again at stop process. When enabling "HAND" mode, it is only valid when the source of operation command is from the keypad. 	
STOP RESET	 Stop Command Key. This key has the highest processing priority in any situation. When it receives STOP command, no matter the AC motor drive is in operation or stop status, the AC motor drive needs to execute "STOP" command. The RESET key can be used to reset the drive after the fault occurs. For those faults that can't be reset by the RESET key, see the fault records after pressing MENU key for details. 	
FWD	 Operation Direction Key 1. This key is only control the operation direction NOT for activate the drive. FWD: forward, REV: reverse. 2. Refer to the LED descriptions for more details. 	
ENTER	ENTER Key Press ENTER and go to the next level. If it is the last level then press ENTER to execute the command.	
ESC	ESC Key ESC key function is to leave current menu and return to the last menu. It is also functioned as a return key in the sub-menu.	
MENU	Press menu to return to main menu. Menu content: KPC-CE01 does not support function 5 ~13. 1. Parameter setup 7. Quick start 13. PC Link 2. Copy Parameter 8. Display Setup 3. Keypad Locked 9. Time Setup 4. PLC Function 10. Language Setup 5. Copy PLC 11. Startup Menu 6. Fault Record 12. Main Page	
	 Direction: Left/Right/Up/Down 1. In the numeric value setting mode, it is used to move the cursor and change the numeric value. 2. In the menu/text selection mode, it is used for item selection. 	

Chapter 10 Digital Keypad

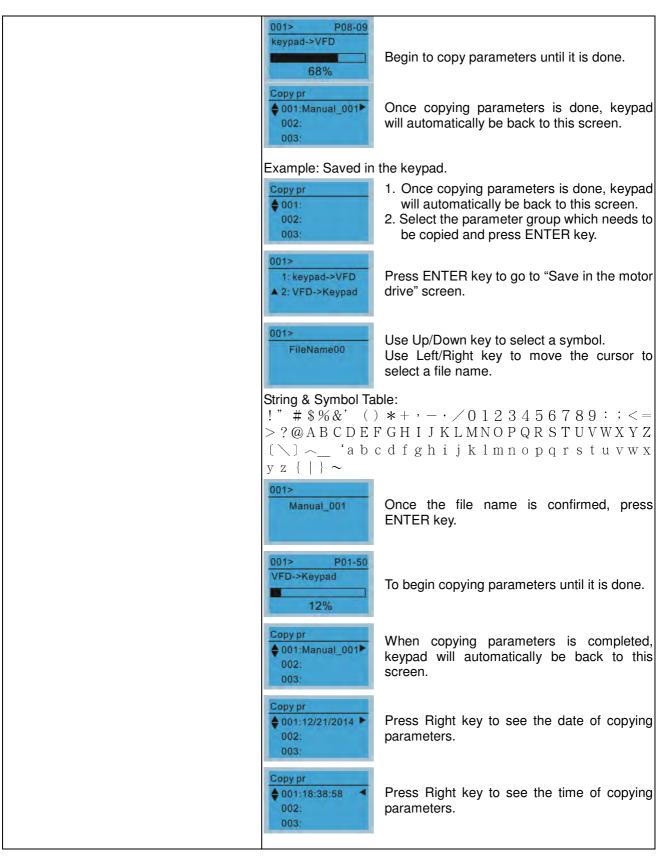

	Fun	ction Key
	1.	The functions keys have factory settings and can be defined by users. The factory settings
		of F1 and F4 work with the function list below. For example, F1 is JOG function, F4 is a
F1 F2		speed setting key for adding/deleting user defined parameters.
	2.	Other functions must be defined by TPEditor first. TPEditor software V1.30.6 is available
F3 F4		for download at:
		http://www.delta.com.tw/ch/product/em/download/download main.asp?act=3&pid=1&cid=
		1&tpid=3
	3.	Installation Instruction for TPEditor is on page 10-15 of this chapter.
	HAN	ND ON Key
	1.	This key is executed by the parameter settings of the source of Hand frequency and hand
		operation. The factory settings of both source of Hand frequency and hand operation are
		the digital keypad.
	2.	Press HAND ON key at stop status, the setting will switch to hand frequency source and
HAND		hand operation source. Press HAND ON key at operation status, it stops the AC motor
		drive first (display AHSP warning), and switch to hand frequency source and hand
		operation source.
	3.	Successful mode switching for KPC-CE01, "H/A" LED will be on; for KPC-CC01, it will
		display HAND mode/ AUTO mode on the screen.
	1.	This key is executed by the parameter settings of the source of AUTO frequency and
		AUTO operation. The factory setting is the external terminal (source of operation is
		4-20mA).
	2.	Press Auto key at stop status, the setting will switch to hand frequency source and hand
AUTO		operation source. Press Auto key at operation status, it stops the AC motor drive first
		(display AHSP warning), and switch to auto frequency source and auto operation source.
	3.	Successful mode switching for KPC-CE01, "H/A" LED will be off; for KPC-CC01, it will
	-	display HAND mode/ AUTO mode on the screen
l		

Descriptions of LED Functions

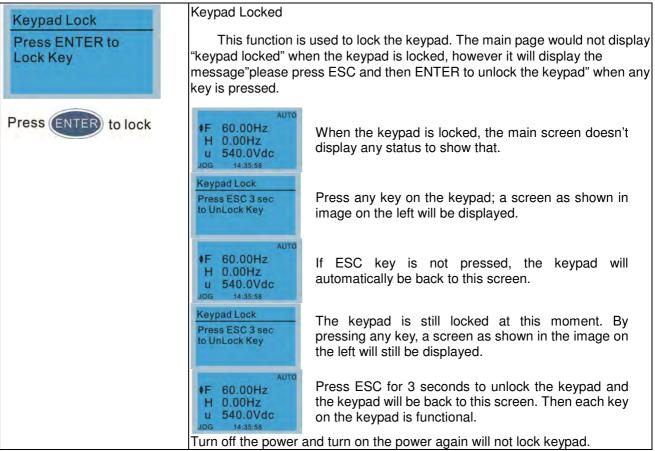
LED	Descriptions
	Steady ON: operation indicator of the AC motor drive, including DC brake, zero speed, standby, restart after fault and speed search.
RUN	Blinking: drive is decelerating to stop or in the status of base block.
	Steady OFF: drive doesn't execute the operation command Steady ON: stop indicator of the AC motor drive.
STOP	Blinking: drive is in the standby status.
RESET	Steady OFF: drive doesn't execute "STOP" command.
	Operation Direction LED
	 Green light is on, the drive is running forward. Red light is on, the drive is running backward.
	3. Twinkling light: the drive is changing direction.
	(Only KPC-CE01 support this function)
HAND	Setting can be done during operation. HAND LED: When HAND LED is on (HAND mode); when HAND LED is off (AUTO mode).
	(Only KPC-CE01Support this function)
Αυτο	Setting can be done during operation.
	AUTO LED: when AUTO LED is on (AUTO mode); when AUTO LED is off (HAND mode).



10-2 Function of Digital Keypad KPC-CC01



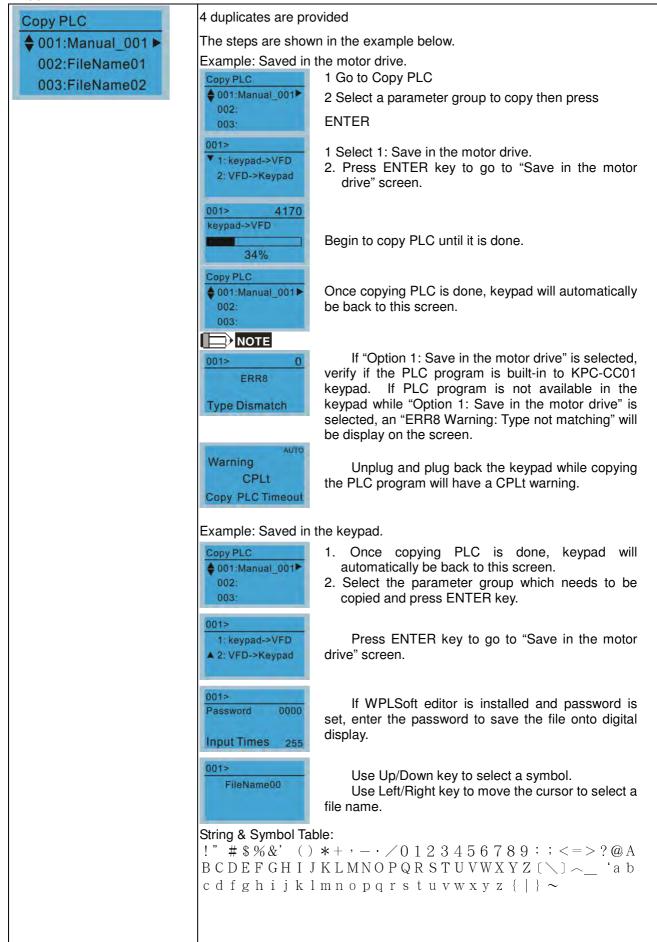
- 1. Startup page can only display pictures, no flash.
- 2. When Power ON, it will display startup page then the main page. The main page displays Delta's default setting F/H/A/U, the display order can be set by Pr.00.03 (Startup display). When the selected item is U page, use left key and right key to switch between the items, the display order of U page is set by Pr.00.04 (User display).



2. Copy Parameter

Copy Pr		4 duplicates are pr	ovided
♦ 001:Manual_001 ►		The steps are show	wn in the example below.
002:FileName01		Example: Saved in	the motor drive.
003:FileName02		Copy pr	1 Go to Copy Parameter
Press ENTER key to go to 001~004:		♦ 001:Manual_001►	2 Select the parameter group which needs to
		002: 003:	be copied and press ENTER key.
content storage		001> 1: keypad->VFD 2: VFD->Keypad	 Select 1: Save in the motor drive. Press ENTER key to go to "Save in the motor drive" screen.

3. Keypad locked

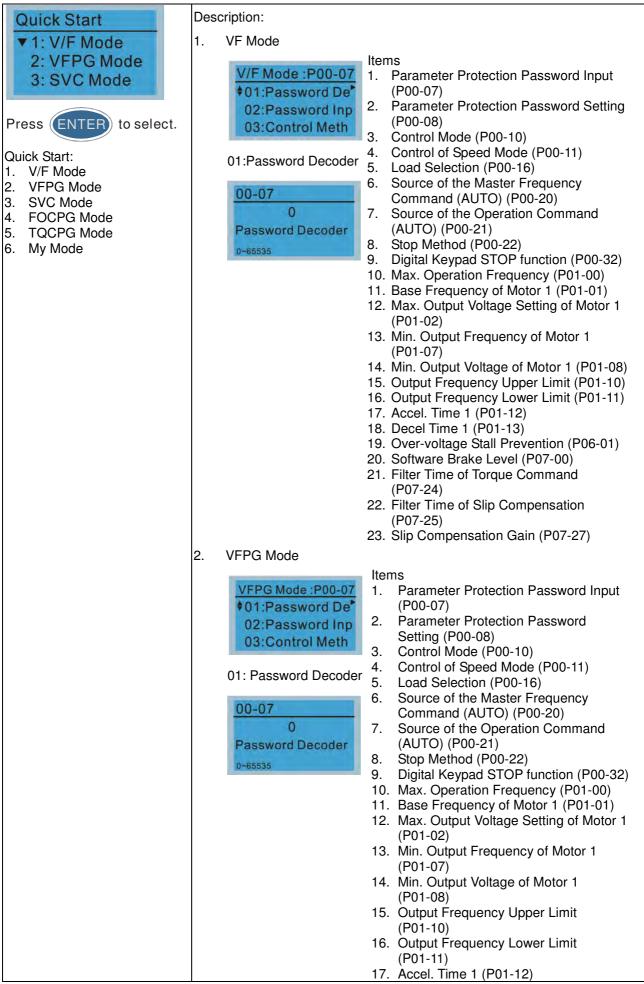


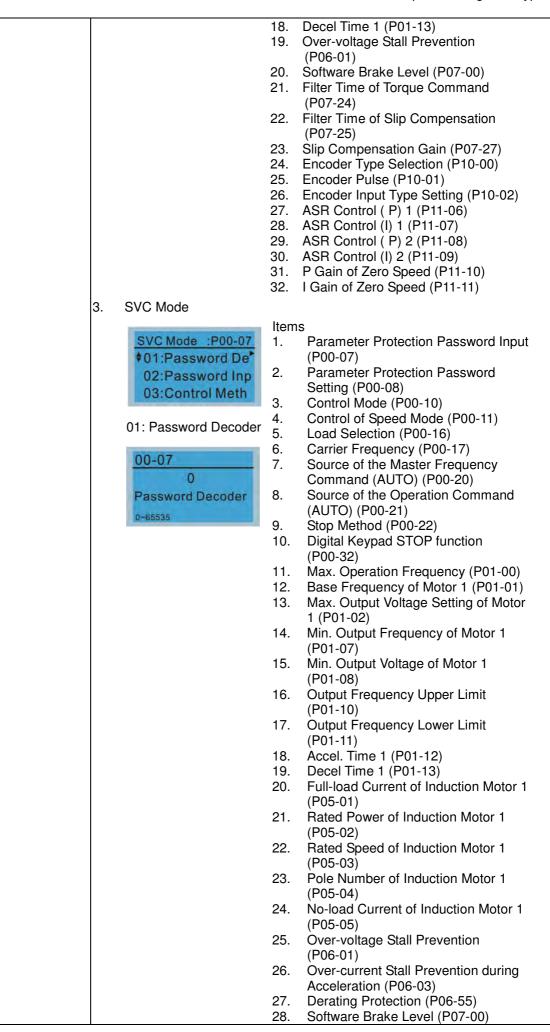
4. PLC Function

PLC . Disable	When activate and stop PLC function, the PLC status will be displayed main page of Delta default setting.	
2.PLC Run 3.PLC Stop	PLC 1.Disable \$2.PLC Run 3.PLC Stop	Optipn 2: Enable PLC function
Press Up/Down key to select PLC's function. Then press ENTER.	ta +F 60.00Hz H 0.00Hz u 540.0Vdc Jog 14:35:58	Factory setting on the main screen displays PLC/RUN status bar.
	PLC 1.Disable 2.PLC Run ▲3.PLC Stop	Option 3: Disable PLC function
	PLC/STOP AUTO F 60.00Hz H 0.00Hz U 540.0Vdc JOG 14:35:58	Factory setting on the main screen displays PLC/STOP status bar
	PLC/STOP AUTO Warning PLFF Function defect	If the PLC program is not available in the control board, PLFF warning will be displayed when choosing option 2 or 3. In this case, select option 1 : No Function to clear PLFF warning.
	The PLC function of KPC-CE01 can only displays: 1. PLC0 2. PLC1 3. PLC2	

Chapter 10 Digital Keypad

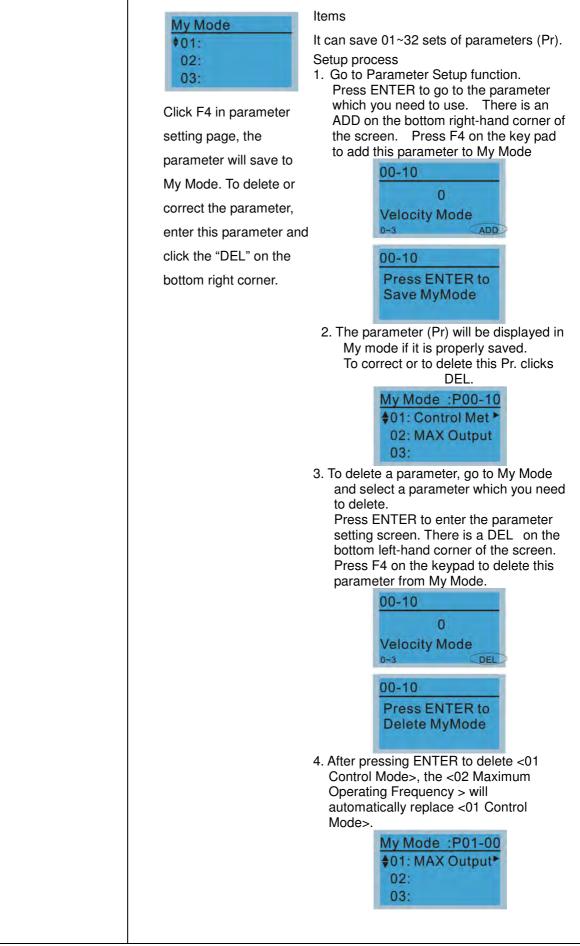
5. Copy PLC

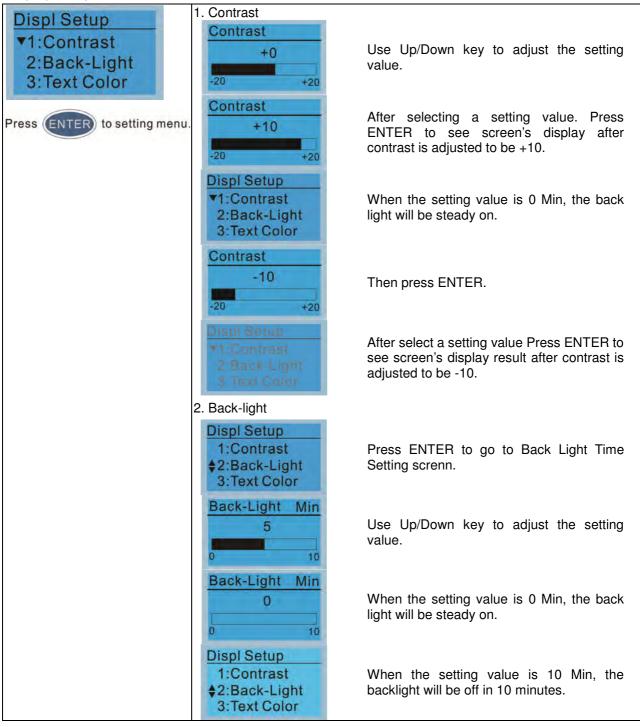

001> Manual_001	Once the file name is confirmed, press ENTER key.
001> 2010 VFD->Keypad 12%	To begin copying parameters until it is done.
Copy PLC ♦ 001:Manual_001► 002: 003:	When copying parameters is completed, keypad will automatically be back to this screen.
Copy PLC ♦ 001:12/21/2014 ► 002: 003:	Press Right key to see the date of copying parameters.
Copy PLC ♦ 001:18:38:58 ◀ 002: 003:	Press Right key to see the time of copying parameters.


6. Fault record

Fault record		
Fault record ▼1:oL 2:ovd 3:GFF	Able to store 6 error code (Keypad V1.02 and previous versions) Able to store 20 error code(Keypad V1.0e3 and previous version) The most recent error record is shown as the first record. Select an error record to see its detail such as date, tme, frequency, current, voltage, DCBUs voltage)	
Press ENTER to select. KPC-CE01 does not support	Fault record ▼1:oL 2:ovd 3:GFF	Press Up/Down key to select an error record. After selecting an error code, press ENTER to see that error record's detail
this function.	1: oL ♦ Current: 79.57 Voltage: 189.2 BUS Voltage:409.5 1: oL ♦ Date: 01/20/2014 Time: 21:02:24 Outfreq: 32.61	Press Up/Down key to see an error record's detail such as date, time, frequency, current, voltage, DCBus voltage.
	Fault record 1:oL \$ 2:ovd 3:GFF	Press Up/Down key to select an error record. After selecting an error code, press ENTER to see that error record's detail
	2: ovd ♦Current: 79.57 Voltage: 189.2 BUS Voltage:409.5 2: ovd ♦Date: 01/20/2014 Time: 21:02:24 Outfreq: 32.61	Press Up/Down key to see an error record's detail such as date, time, frequency, current, voltage, DCBus voltage.
	Fault actions of AC motor drive are record and save to KPC-CC01. When KPC-CC01 is removed and apply to another AC motor drive, the previous fault records will not be deleted. The new fault records of the present AC motor drive will accumulate to KPC-CC01.	

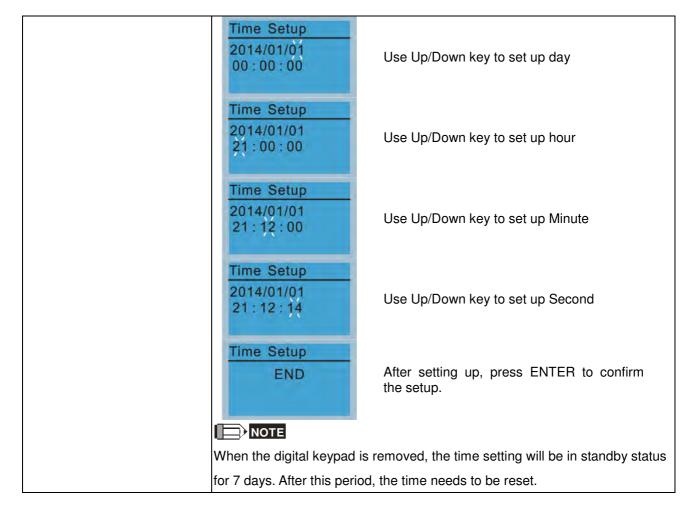
Chapter 10 Digital Keypad


7. Quick Start



		29. Emergency Stop (EF) & Force to Stop Selection (P07-20))
		 Filter Time of Torque Command (P07-24) 	
		31. Filter Time of Slip Compensation (P07-25)	
		32. Slip Compensation Gain (P07-27)	
4.	FOCPG Mode		
	FOCPG Mode :P00-07	Items 1. Parameter Protection Password Input	
	O1:Password De 02:Password Inp	(P00-07) 2. Parameter Protection Password Setting	J
	03:Control Meth	(P00-08) 3. Control Mode (P00-10)	
	01: Password Decoder	5. Source of the Master Frequency	
	00-07	Command (AUTO) (P00-20) 6. Source of the Operation Command	
	0 Password Decoder	(AUTO) (P00-21) 7. Stop Method (P00-22)	
	0~65535	 Max. Operation Frequency (P01-00) Base Frequency of Motor 1 (P01-01) 	
		10. Max. Output Voltage Setting of Motor 1 (P01-02)	
		 Output Frequency Upper Limit (P01-10) Output Frequency Lower Limit (P01-11) 	
		13. Accel. Time 1 (P01-12) 14. Decel Time 1 (P01-13)	
		 Full-load Current of Induction Motor 1 (P05-01) 	
		 Rated Power of Induction Motor 1 (P05-02) 	
		 Rated Speed of Induction Motor 1 (P05-03) 	
		 Pole Number of Induction Motor 1 (P05-04) 	
		 No-load Current of Induction Motor 1 (P05-05) 	
		 20. Over-voltage Stall Prevention (P06-01) 21. Over-current Stall Prevention during 	
		Acceleration (P06-03) 22. Derating Protection (P06-55)	
		23. Software Brake Level (P07-00)24. Emergency Stop (EF) & Force to Stop	
		Selection (P07-20) 25. Encoder Type Selection (P10-00)	
		26. Encoder Pulse (P10-01) 27. Encoder Input Type Setting (P10-02)	
		28. System Control (P11-00)29. Per Unit of System Inertia (P11-01)	
		30. ASR1 Low-speed Bandwidth (P11-03) 31. ASR2 High-speed Bandwidth (P11-04)	
		32. Zero-speed Bandwidth (P11-05)	

6.	Μv	Mode
0.		111000



8. Display setup

9. Time setting

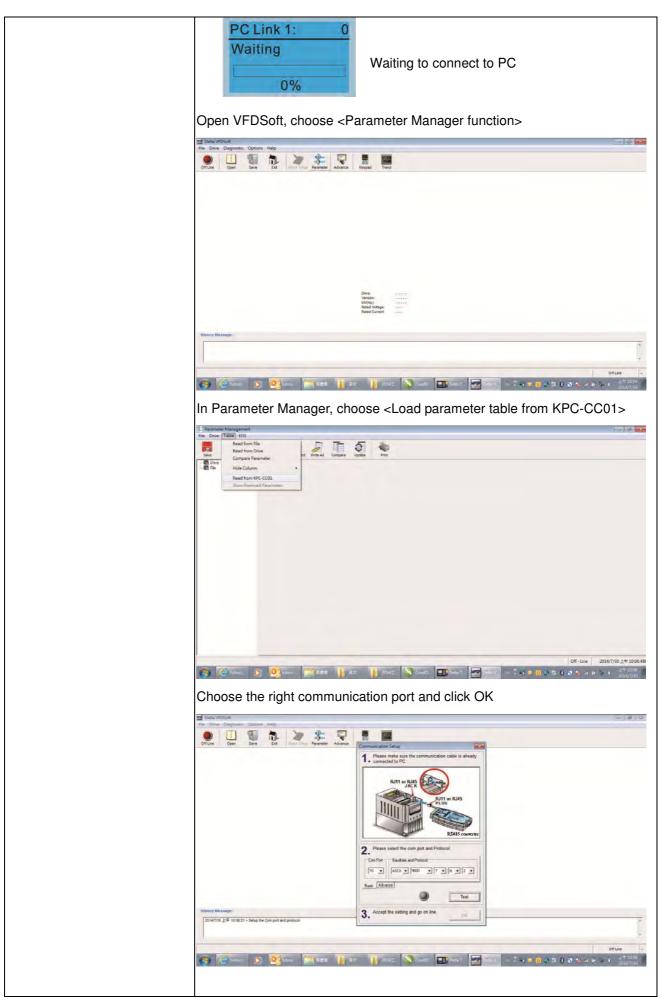
Time setup 2009/01/01 ::	Time Setup 2014/01/01 00 : 00 : 00	Use Up/Down key to set up Year
Use Left/Right key to select Year, Month, Day, Hour, Minute or Second to set up	Time Setup 2014/01/01 00 : 00 : 00	Use Up/Down key to set up Month

10. Language setup

Language • 1:English	Language setting option is displayed in the language of the user's choir Language setting options:	
2:繁體中文	1. English	5.
3:简体中文	2. 繁體中文	6. Espanol
Use Up/Down key to select	3. 简体中文	7. Portugues
language, than press ENTE	R. 4. Turkce	

11. Startup-up

3	3. User Defined: optional accessory is require (TPEditor & USB/RS-485
	Communication Interface-IFD6530)
	Install an editing accessory would allow users to design their own start-up
	page.If editor accessory is not installed, "user defined" option will dispay a
	blank page.
	DELTA VFD C2000 X-Y-Z 3-axis station X-axis
L	JSB/RS-485 Communication Interface-IFD6530 Please refer to Chapter 07 Optional Acessories for more detail.
	<u>TPEditor</u> Go to Delta's website to download TPEditor V1.30.6 or later versions. <u>http://www.delta.com.tw/ch/product/em/download/download_main.asp?act</u>
	=3&pid=1&cid=1&tpid=3

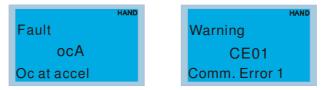

12. Main page

Main Page	1. Default page
 ▼ 1.Default 2.User Define 	 ♦ F 60.00Hz H 0.00Hz u 540.0Vdc Jog 14:25:56
Default picture and editable picture are available upon selection. Press ENTER to select.	 F 600.00Hz >>> H >>> A >>> U (circulate) User Defined: optional accessory is require (TPEditor & USB/RS-485 Communication Interface-IFD6530) Install an editing accessory would allow users to design their own start-up page.If editor accessory is not installed, "user defined" option will dispay a blank page. Freq. 60.00Hz Current 123.45A DC BUS 543.21Vdc PID target 50.00% PID feedback(47.45)% Output freq. 53.21Hz USB/RS-485 Communication Interface-IFD6530
	Please refer to Chapter 07 Optional Acessories for more detail. <u>TPEditor</u> Go to Delta's website to download TPEditor V1.30.6 or later versions. <u>http://www.delta.com.tw/ch/product/em/download/download_main.asp?act</u> <u>=3&pid=1&cid=1&tpid=3</u>

13. PC Link

PC Link		allows users to connect the keypad to a bad and edit user defined pages.
2. VFDSoft	PC Link Waiting 0%	Click ENTER to go to <waiting connect="" pc="" to=""></waiting>

	n TPEditor, choose <co< th=""><th>mmunication>, then choose "Write</th><th>to HMI"</th></co<>	mmunication>, then choose "Write	to HMI"
	Consider Data Delay Complete Dispersion Local Programmer Dispersion L	Press from TP(R)	T T T T T T T T T T
		<u>F4</u>	Fright
2	9, YI 🚯 🖉 —— 💿 💁 == - A. 🧮 = E 4	Denar Type DBLTA VEO C Invest Nachar Type VEO C ForeFol USA CONTRACTOR CONT	8 8 10 14 16 14 2014/7/12
(Choose <yes> in the <c< th=""><th>Confirm to Write> dialogue box.</th><th></th></c<></yes>	Confirm to Write> dialogue box.	
	Demol@s_DelaTTEAL Hit Holdt Verdy, Carefold Objecte(C), Single Space temperature Dir State		JT
1		e (12)	in 17 Page 0. 1. Box Page
	Output cument ###.# PID target 0		
		F4	
		<u>Ym</u> 50	Property
	9 () () () () () () () () () (Denix Type DELTA VPD-C hones Machine Type VPD-C Royfed	8 8 9 4 8 9 4 <u>2008</u>
	PC Link Receiving 28%	Start downloading pages to ed	t KPC-CC01.
	PC Link Completed 100%	Download completed	
2.	VFDSoft: this function	allows user to link to the VFDSoft (Operating
	software then to uploa		
	Copy parameter 1~4 i		
	Connect KPC-CCO1 t	o a computer	
	1TPEditor 42. VFDSoft	Start downloading pages to KPC-CC01	edit to
	PC Link \$001: C2000_Fan1 002: C2000_Fan2 003: C2000_Pum1	Use Up/Down key to select a group to upload to VFDSoft. Press ENTER	parameter



E.

PC Link 1: 2170 Receiving 58%	Start to upload parameters to VFDSoft		
PC Link 1: 3640 Completed 100%	Uploading parameter is completed		
Before using the user de	fined starting screen and user defined main		
screen, the starting screen setup and the main screen setup have to be			
preset as user defined.			
If the user defined page a	are not downloaded to KPC-CC01, the starting		
screen and the main scre	een will be blank.		

Other display

When fault occur, the menu will display:

- 1. Press ENTER and start RESET. If still no response, please contact local distributor or return to the factory. To view the fault DC BUS voltage, output current and output voltage, press "MENU"→"Fault Record".
- 2. Press ENTER again, if the screen returns to main page, the fault is clear.
- 3. When fault or warning message appears, backlight LED will blinks until the fault or the warning is cleared.

Optional accessory: RJ45 Extension Lead for Digital Keypad

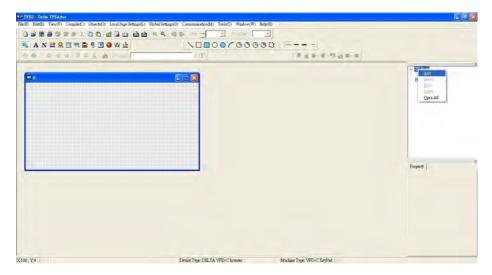
Part No.	Description	
CBC-K3FT	RJ45 extension lead, 3 feet (approximately 0.9m)	
CBC-K5FT	RJ45 extension lead, 5 feet (approximately 1.5 m)	
CBC-K7FT	RJ45 extension lead, 7 feet (approximately 2.1 m)	
CBC-K10FT	RJ45 extension lead, 10 feet (approximately 3 m)	
CBC-K16FT	RJ45 extension lead, 16 feet (approximately 4.9 m)	

Note: When you need to buy communication cables, buy non-shielded , 24 AWG, 4 twisted pair, 100 ohms communication cables.

10-3 TPEditor Installation Instruction

TPEditor can edit up to 256 HMI (Human-Machine Interface) pages with a total storage capacity of 256kb.

Each page can edit 50 normal objects and 10 communication objects.

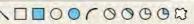

- 1) TPEditor: Setup & Basic Functions
 - 1. Run TPEditor version 1.30

2. Go to File(F)→Click on New. The Window below will pop up. At the device type, click on the drop down menu and choose DELTA VFD-C Inverter. At the TP type, click on the drop down menu and choose VFD-C KeyPad. As for File Name, enter TPE0. Now click on OK.

New Project	
HMI <=> PLC	_
Set Device Type	
DELTA VFD-C Inverter	ž
ТР Туре	
VFD-C KeyPad	-
File Name	
TPEO	
OK Cancel	1

3. You are now at the designing page. Go to Edit (E)→Click on Add a New Page (A) or go to the TP page on the upper right side, right click once on TP page and choose Add to increase one more page for editing. The current firmware of Keypad is version1.00 and can support up to 4 pages.

4. Edit Startup Page


5. Static Text **A**. Open a blank page, click once on this button **A**, and then double click on that blank page. The following windows will pop up.

T A A A B A A Terlapet	÷T	00000	
i nu u o o V m courter			E TPPue 0 BoxPue
	Store Text Betting	Prive Dense Prive Dense Image: Control of	Digent
		OR Gaos	Ensempting Giblioux Lado (Lado, Topo, Wall Paramo Stormage, Daugh Their Diseases, Honor Lado to D Hot, Alignment (Align: Laft Vers. Alignment (Align: Laft Vers. Alignment (Align: Laft Post Stormage, (Nature Lance) Their lagest

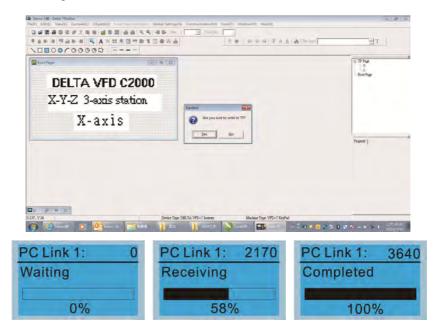
6. Static Bitmap \rightarrow Open a blank page, then click once on this button and then double click on that blank page. The following window will pop up.

n El hon han		RIND	dazov		• - 6	e	Picture:	= TP Page
	0 0 0 0 0 0 0 0 0	AS AS AS AS AS AS AS AS AS AS	d damw001 d damw002 d damw003 d damw004 d damw004 d damw006 d damw006 d damw006 d damw000 d damw010 d damw010 d damw011 d damw014 d damw014	 damoults 	Antrov039 Antrov030 Antrov031 Antrov032 Antrov033 Antrov033 Antrov034 Antrov034 Antrov034 Antrov035 Antrov036 Antrov039 Antrov	A Annu All S Annu All Annu All An	(fore)	Box Page
			据名(10) 图案辅助(10)			· 開日(1) • 取消]	@Basic Info (Left Top, Walth Himap Read [Effinise]
			個素純素用い	Bitmaps (* haug)		• R ()B		Elitmalpi Pasid (Elitmalp)

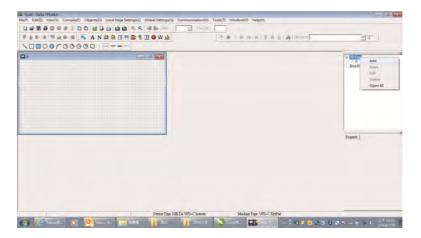
Please note that Static Bitmap setting support only images in BMP format. Now choose a image that you need and click open, then that image will appear in the Static Bitmap window.

7. Geometric Bitmap are 11 kinds of geometric bitmap to choose. Open a new blank page then click once on a geometric bitmap icon that you need. Then drag that icon and enlarge it to the size that you need on that blank page.

Chapter 10 Digital Keypad


8. Finish editing the keypad starting screen and select **Communication>Input User Defined Keypad Starting Screen.**

n		TE AND ALANDAR
00000000		
Soot Page		10 TP Page Book Page
DELTA VE	0 C2000	
X-Y-Z 3-exis	station	
X-ax	is	
		Property

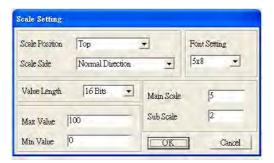

- 9. Downloading setting: Go to Tool > Communication. Set up communication port and speed of IFD6530.
- 10. Only three speed selections are available: 9600 bps, 19200 bps and 38400 bps.

TP Station Address	1 ÷
PC COM Port	COM3 -
Baud Rate	9600 👻

11. When a dialogue box displayed on the screen asking to confirm writing or not, press buttons on the keypad to go to MENU, select PC LINK and then press ENTER and wait for few seconds. Then select YES on the screen to start downloading.

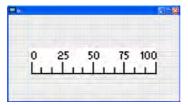
- 2) Edit Main Page & Example of Download
 - 1. Go to editing page, select EditàAdd one page or press the button ADD on the right hand side of the HMI page to increase number of pages to edit. This keypad currently support up to 256 pages.

2. On the bottom right-hand corner of the HMI, click on a page number to edit or go to VIEW >HMI page to start editing main page. As shown in the image, the following objects are available. From left to right: Static Text, ASCII Display, Static Bitmap, Scale, Bar Graph, Button, Clock Display, Multi-state bit map, Units, Numeric Input and 11 geometric bitmaps and lines of different width. The application of Static Text, Static Bitmap, and geometric bitmap is the same as the editing startup page.


3. Numric/ASCII Display : To add a Numeric/ASCII Display object to a screen, double click on the object to set up Related Devices, Frame Setting, Fonts and Alignment.

Refer Device			Distances		
\$2100			Frame Setting	No Frame	-
	_		Font Setting	5x8 💌	
Value Type	Unsigned	<u>~</u>	Alignment	Align Left	-
Value Length	16 Bits	+	T Leading Zeros		
Integer Number	5	*			
Detimal Number	là	-	OK	Cancel	

Related Device: Choose the VFD Communication Port that you need, if you want to read output frequency (H), set the VFD Communication Port to \$2202. For other values, please refer to ACMD ModBus Comm Address List.


-	Refer Device	
C PLC	🖵 Denice Name 🚺 📺	
@ VFD	Absolute Addr. 2100	
	0 1 2 3 4 5	ОК
Set PLC ID [1]	6789AB	Clear
TP Port COMI	CDEF./	Close

4. Scale Setting "" : On the Tool Bar, click on this "" for Scale Setting. You can also edit Scale Setting in the Property Window on the right hand side of your computer screen.

- a. Scale Position: Click on the drop down list to choose which position that you need to place a scale.
- b. Scale Side: Click on the drop down list to choose if you want to number your scale from smaller number to bigger number or from big to small. Click OK to accept this setting or click Cancel to abort.
- c. Font Setting: Click on the drop down list to choose the Font setting that you need then click OK to accept the setting or click Cancel to abort.
- d. Value Length: Click on the drop down to choose 16bits or 32 bits. Then click OK to accept the setting or click Cancel to abort.
- e. Main Scale & Sub Scale: In order to divide the whole scale into equal parts, key in the numbers of your choices for main scale and sub scale.
- f. Maximum value & Minimum Value are the numbers on the two ends of a scale. They can be negative numbers. But the values allowed to be input are limited by the length of value. For example, when the length of value is set to **be hexadecimal**, the maximum and the minimum value cannot be input as -4000.

Follow the Scale setting mentioned above; you will have a scale as shown below.

5. Bar Graph setting

Refer Device		Direction Setting	
52100		From Bottom to Top	•
Value Type	Unsign	ed 🖃	
Value Length	16 Bits	<u>•</u>	
Max Value	65535		OK
Min Value	0		Cancel

- a. Related Device: Choose the VFD Communication Port that you need.
- b. Direction Setting: Click on the drop down menu to choose one of the following directions: From Bottom to Top, From Top to Bottom, From Left to Right or From Right to Left.
- c. Maximum Value & Minimum Value: They define the range covered by the maximum value and minimum value. If a value is smaller than or equal to the minimum value, then the bar graph will be blank. If a value is bigger or equal to the maximum value, then the bar graph will be full. If a value is between minimum and maximum value, then the bar graph will be filled proportionally.

6. Button [®] : Currently this function only allows the Keypad to switch pages, other functions are not yet available. Text input function and Image inserted functions are not yet supported.

Double click on ¹ to open set up window.

Button Type Page Jump	Page Jump Setting Page No		Frame Setting	Single Frame 👱
Writt-in		-	Text Alignment	5x8 💌 Bitmap Alignment
F Read			Middle 💌	Middle 💌
Value Length	E Fai		Graph Input	
Value Type Current State 0	Before Writing C After Writing	r Reset r Set	[None]	
Total States 1	User Level	0 💌		Bitmap Read Bitmap Clear
Button Text			OK	Cancel

<Button Type> allows users set up buttons' functions. <Page Jump> and <Constant Setting> are the only two currently supported functions.

A [Page Jump] function setting

- Page Jump setting: After you choose the Page Jump function in the drop down list, you will see this Page Jump Setting Menu
- <Function Key> allows you to assign functions to the following keys on the KPC-CC01 keypad: F1, F2, F3, F4, Up, Down, Left and Right. Please note that the Up and Down keys are locked by TPEditor. These two keys cannot be programmed. If you want to program Up and Down keys, go to Tool→Function Key Settings (F)→Re-Define Up/Down Key(R).

Communication Settings(C) AutoSave Setup(A)		
Function Key Setting(F)	Re-Define Up/Down Key(R)	
Frid Setting(G)	三日 金田・田 (町) 金田・田	
anguage Setting(L)	•	🖃 TP Page
		- 0:
		- Boot Page

 Button Text: This function allows user to name buttons. For example, key in <Next Page> in the empty space, a button will have the wording <Next Page> displayed on it.

B [Constant setting] function

This function is to set up the memory address' value of the VFD or PLC. When pressing the <function button> set up in before, a value will be written to the memory address of the <Constant Setting>. This function can be used as initializing a variable.

Buttion Type:	onstant Setting	Constant Setting	-		Single Frame 🔹	
Write-in 1 Houl Function Key	\$211A			Font Sering Text Alignment Middle	528 • Bitniap Alignment Middle • Middle •	
Value Length Value Type	16 Bits] = 0.0		Graph Input	T.	
Ouveut State	0 2	C Alter Writing	6° Ros € ≥	(None)	Bitmip Read	
Bitton Text		User Level	0 •	or 1	Eitmap Clear	

7. Clock Display Setting : The setup window of the Clock Display is shown as the image below. Time, Day or Date can be displayed on the keypad.

Open a new file and click once in that window, you will see the following

In the clock display setting, you can choose to display Time, Day or Date on the Keypad. To adjust time, go to #9 on the Keypad's menu. You can also adjust Frame Setting, Font Setting and Alignment.

	Frame Setting	No Fra	ne	
	Font Setting	Align L	eft	2
Association	Alignment	5x8		2
ae	• Time	🔿 Day	C Date	
line	OK	C	moel	

8. Multi-state bitmap : The setup window of the multi-state is shown as the image below. This object reads the bit's property value of the PLC. It defines what image or wording is when this bit is 0 or when this bit is 1. Set the initial status to be 0 or 1 to define the displayed image or wording.

M0		
G Bit C Value	Graph Input	
Value Type 🗾 🛨 Value Length 📃 🛨	(None)	Bitmap Read Bitmap Clear
Total States 2	Text Input	Font Setting
1	OK	Cancel

9. Unit Measurement Research Click once on this Button: Open a new file and double click on that window, you will see the following

inits Setting		
Metrology Type	Time	
Unit Name	ms	
OK		Cancel

Choose from the drop down list the Metrology and the Unity Name that you need. As for Metrology, you have the following choices Length, Square Measure, Volume/Solid Measure, Weight, Speed, Time and Temperature. The unit name changes automatically when you change metrology type. 10. Numeric Input Setting

This menu allows you to provide parameters or communication ports and to input numbers.

Click once on this button

Open a new file and double click on that window, you will see the following:

Numeric Input Se	etting			
-Refer Device Write ∣⊓ Read	<u>52100</u>	OutLine Setting Frame Setting Font Setting	No Frame	•
Function Key		Hori. Alignment Vert. Alignment	Middle Middle	•
Value Type Value Length	Unsigned •	Call Setting		
Value Setting Integer Number Decimal Number	5 <u>•</u>	C After Writing		
Limit Setting Min Value Max Value	0	User Level	0 💌	
	Tease	OK	Cancel	

- a. Related Device: There are two blank spaces to fill in, one is <Write> and another one is <Read>. Input the numbers that you want to display and the corresponding numbers of a parameter and that of a communication port. For example, input 012C to Read and Write Parameter P01-44.
- b. OutLine Setting: The Frame setting, Font setting, Vertical Alignment and Horizontal Alignment are the same as mentioned before. Click on the drop down menu and choose the setting that you need.
- c. Function key: The setting here allows you to program keys on the keypad. Press the key on the menu then the corresponding key on the keypad will start to blink, then press Enter to confirm the setting.
- d. Value Type & Value Length: These two factors influence the range of the Minimum and Maximum Value of the Limit Setting. Please note that the corresponding supporting values for CH2000 have to be 16bits. The 32bits values are not supported.
- e. Value Setting: This part is set automatically by the keypad itself.
- f. Limit Setting: Input the range the security setting here.
- g. For example, if you set Function Key as F1, Minimum Value as 0 and Maximum Value ias 4, then press F1 on Keypad Then you can press Up and Down key on the keypad to increase or decrease the value. Press Enter Key on the keypad to confirm your setting. You can also go to parameter table 01-44 to verify if your input correctly the value.
- 11. Download TP Page : Press Up or Down key on the keypad until you reach #13 PC Link.

Then press Enter on the keypad and you will see the word "Waiting" on keypad's screen. Now choose a page that you have created then go to Communication $(M) \rightarrow W$ rite to TP(W) to start downloading the page to the keypad

When you see the word Completed on the keypad's screen, that means the download is done. Then you can press ESC on the keypad to go back to the menu of the keypad.

		k ≜ bened
Page 4 YYYYM SUI	M/DD N	Town
O O O O	PC Link 1: 2170	PC Link 1: 3640
Waiting	Receiving	Completed
0%	58%	100%

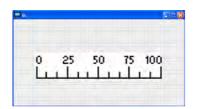
- 3) Edit Main Page
 - On the bottom right-hand corner of the HMI, click on a page number to edit or go to VIEW >HMI page to start editing main page. As shown in the image, the following objects are available. From left to right: Static Text, ASCII Display, Static Bitmap, Scale, Bar Graph, Button, Clock Display, Multi-state bit map, Units, Numeric Input and 11 geometric bitmaps and lines of different width. The application of Static Text, Static Bitmap, and geometric bitmap is the same as the editing startup page.

	0 The Dothe
	have

2. Numric/ASCII Display : To add a Numeric/ASCII Display object to a screen, double click on the object to set up Related Devices, Frame Setting , Fonts and Alignment.

Numeric/ASCII Di	splay Setting					
Refer Device]		Frame Setting Font Setting	No Frame		•
Value Type	Unsigned	~	Alignment	Align Left	•	
Value Length	16 Bits	Ŧ	🖵 Leading Zeros			
Integer Number	5	*	T Arithmetic			
Detimal Number	ļα	-	OK	Cancel		

Related Device: Choose the VFD Communication Port that you need, if you want to read output frequency (H), set the VFD Communication Port to \$2202. For other values, please refer to ACMD ModBus Comm Address List.


	Refer Device	
C PLC	🗖 Dence Name 🚺 🚊	
ে VFD	Absolute Addr. 2100	
	012345	OK
Set PLC ID 1	6789AB	Clear
TP Port COMI -	CDEF./	Close

3. Scale Setting ¹¹¹: On the Tool Bar, click on this ¹¹¹ for Scale Setting. You can also edit Scale Setting in the Property Window on the right hand side of your computer screen.

Scale Setting	
Scale Position Top Scale Side Normal Direction	Font Setting 5x8
Value Length 16 Bits 🔹	Main Scale 5
Max Value 100	Sub Scale 2
Min Value 0	UK Cancel

- i. Scale Position: Click on the drop down list to choose which position that you need to place a scale.
- ii. Scale Side: Click on the drop down list to choose if you want to number your scale from smaller number to bigger number or from big to small. Click OK to accept this setting or click Cancel to abort.
- iii. Font Setting: Click on the drop down list to choose the Font setting that you need then click OK to accept the setting or click Cancel to abort.
- iv. Value Length: Click on the drop down to choose 16bits or 32 bits. Then click OK to accept the setting or click Cancel to abort.
- v. Main Scale & Sub Scale: In order to divide the whole scale into equal parts, key in the numbers of your choices for main scale and sub scale.
- vi. Maximum value & Minimum Value are the numbers on the two ends of a scale. They can be negative numbers. But the values allowed to be input are limited by the length of value. For example, when the length of value is set to **be hexadecimal**, the maximum and the minimum value cannot be input as -4000.

Follow the Scale setting mentioned above; you will have a scale as shown below.

4. Bar Graph setting

8ar Graph Setti	ng		
Refer Device		Direction Setting From Bottom to Top	•
Value Type	Unsign	ed 🖃	
Value Length	16 Bits	•	
Max Value	65535		OK
Min Value	0		Cancel

- i. Related Device: Choose the VFD Communication Port that you need.
- ii. Direction Setting: Click on the drop down menu to choose one of the following directions: From Bottom to Top, From Top to Bottom, From Left to Right or From Right to Left.
- iii. Maximum Value & Minimum Value: They define the range covered by the maximum value and minimum value. If a value is smaller than or equal to the minimum value, then the bar graph will be blank. If a value is bigger or equal to the maximum value, then the bar graph will be full. If a value is between minimum and maximum value, then the bar graph will be filled proportionally.
- 5. Button ¹ : Currently this function only allows the Keypad to switch pages, other functions are not yet available. Text input function and Image inserted functions are not yet supported.

Double click on ¹⁶ to open set up window.

Button Type	ige Jump	•	Page Jump Setting Page No		rame Setting	Single Frame
Writt-in	1		0		font Setting Text Alignment	5x8 💌 Bitmap Alignment
🗖 Read	Ţ				Middle 💌	Middle 💌
Function Key	Ţ	Ŧ			Middle 💌	Middle
Value Length	J	Ŧ	rai [haph Input:	
Value Type		*	🕫 Before Writing 🛛 🧖	Reset		
Cument State	0	•	C After Writing	* Se	[None]	Bitmap Read
Total States	1	1	User Level 0	•		Bitmap Clear
Button Text	1				OK	Cancel

<Button Type> allows users set up buttons' functions. <Page Jump> and <Constant Setting> are the only two currently supported functions.

A [Page Jump] function setting

- Page Jump setting: After you choose the Page Jump function in the drop down list, you will see this Page Jump Setting Menu
- <Function Key> allows you to assign functions to the following keys on the KPC-CC01 keypad: F1, F2, F3, F4, Up, Down, Left and Right. Please note that the Up and Down keys are locked by TPEditor. These two keys cannot be programmed. If you want to program Up and Down keys, go to Tool→Function Key Settings (F)→Re-Define Up/Down Key(R).

ommunication Settings(C) .utoSave Setup(A)		
unction Key Setting(F)	Re-Define Up/Down Key(R)	
age Size(S) rid Setting(G)	1 2 2 2 - E (P 2 2 - E	
anguage Setting(L)	•	E TP Page
		-0;
		- Boot Page

 Button Text: This function allows user to name buttons. For example, key in <Next Page> in the empty space, a button will have the wording <Next Page> displayed on it.

B [Constant setting] function

This function is to set up the memory address' value of the VFD or PLC. When pressing the <function button> set up in before, a value will be written to the memory address of the <Constant Setting>. This function can be used as initializing a variable.

Button Setting					
Button Type O	onstant Setting 👱	Constant Serting		France Setting	Single Frame
Wine-in F Hold	\$211A			Font Serting Text Alignment Middle • Middle •	528 • Bitnap Algranent Middle • Middle •
Value Leagth	16 Bits 💌	IT GA	-1	Graph Input	
Value Type	Unsigned	C Effort Watag	if Red		
Countent State	0 .	C Afra Winng	<u>r</u> =	[None]	Bitmap Read
Tomulinte	۱ <u> </u>	User Level	0 •		Bitmap Clear
Batton Text	1		_	OK	Cinzel

6. Clock Display Setting 1: The setup window of the Clock Display is shown as the image below. Time, Day or Date can be displayed on the keypad.

Open a new file and click once in that window, you will see the following In the clock display setting, you can choose to display Time, Day or Date on the Keypad. To adjust time, go to #9 on the Keypad's menu. You can also adjust Frame Setting, Font Setting and Alignment.

Clock Display Settin	g			
	Frame Setting	No Fran	ne	•
<u></u>	Font Setting	Align Le	:ft	•
Time Association	Alignment	5x8		•
6 TP Time	· Time	⊂ Day	C Date	
C PLCTime	OK	Ca	ncel	

7. Multi-state bitmap Y: The setup window of the multi-state is shown as the image below. This object reads the bit's property value of the PLC. It defines what image or wording is when this bit is 0 or when this bit is 1. Set the initial status to be 0 or 1 to define the displayed image or wording.

Refer Device		
M0]	Graph Input	
G Bit	[None]	Bitmap Read
Total States 2		Bitmap Clear
Cunent State 0	Text Input	Font Setting
Dence Value >= Ran 1	OK	Cancel

8. Unit Measurement Click once on this Button: Open a new file and double click on that window, you will see the following

Metrology Type	Time	
	lare -	
Unit Name	ms	-

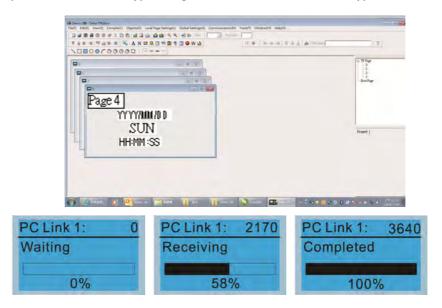
Choose from the drop down list the Metrology and the Unity Name that you need. As for Metrology, you have the following choices Length, Square Measure, Volume/Solid Measure, Weight, Speed, Time and Temperature. The unit name changes automatically when you change metrology type.

9. Numeric Input Setting

This menu allows you to provide parameters or communication ports and to input numbers.

Click once on this button

Open a new file and double click on that window, you will see the following:


Numeric Input Setting		
Refer Device Write 52100	OutLine Setting	No Frame
Function Key Anthmenc	Hori. Alignment Vert. Alignment Call Setting	Middle • Middle •
Value Type Unsigned Value Length 16 Bits	I Fail	
Value Setting Integer Number 5 Decimal Number 0	C Before Write	
Limit Setting Min Value	- User Level	0 -
Max Value 65535	OK	Cancel

- h. Related Device: There are two blank spaces to fill in, one is <Write> and another one is <Read>. Input the numbers that you want to display and the corresponding numbers of a parameter and that of a communication port. For example, input 012C to Read and Write Parameter P01-44.
- i. OutLine Setting: The Frame setting, Font setting, Vertical Alignment and Horizontal Alignment are the same as mentioned before. Click on the drop down menu and choose the setting that you need.
- j. Function key: The setting here allows you to program keys on the keypad. Press the key on the menu then the corresponding key on the keypad will start to blink, then press Enter to confirm the setting.
- k. Value Type & Value Length: These two factors influence the range of the Minimum and Maximum Value of the Limit Setting. Please note that the corresponding supporting values for CH2000 have to be 16bits. The 32bits values are not supported.
- I. Value Setting: This part is set automatically by the keypad itself.
- m. Limit Setting: Input the range the security setting here.

- n. For example, if you set Function Key as F1, Minimum Value as 0 and Maximum Value ias 4, then press F1 on Keypad Then you can press Up and Down key on the keypad to increase or decrease the value. Press Enter Key on the keypad to confirm your setting. You can also go to parameter table 01-44 to verify if your input correctly the value.
- 10. Download TP Page : Press Up or Down key on the keypad until you reach #13 PC Link.

Then press Enter on the keypad and you will see the word "Waiting" on keypad's screen. Now choose a page that you have created then go to Communication (M) \rightarrow Write to TP(W) to start downloading the page to the keypad

When you see the word Completed on the keypad's screen, that means the download is done. Then you can press ESC on the keypad to go back to the menu of the keypad.

10-4 Digital Keypad KPC-CC01 Fault Codes and Descriptions

Following fault codes and description are for digital keypad KPC-CC01 with version V1.01 and version higher.

LCM Display *	Description	Corrective Actions
Fault FrEr kpdFlash Read Er	Keypad flash memory read error	and then power on again the system. If none of the solution above works, contact your authorized local dealer.
Fault FSEr kpdFlash Save Er	Keypad flash memory save error	 An error has occurred on keypad's flash memory. 1. Press RESET on the keypad to clear errors. 2. Press RESET on the keypad to clear errors. 3. Shut down the system, wait for ten minutes, and then power on again the system. If none of the solution above works, contact your authorized local dealer.
Fault FPEr kpdFlash Pr Er	Keypad flash memory parameter error	 Errors occurred on parameters of factory setting. It might be caused by firmware update. 1. Press RESET on the keypad to clear errors. 2. Verify if there's any problem on Flash IC. 3. Shut down the system, wait for ten minutes, and then power on again the system. If none of the solution above works, contact your local authorized dealer.
Fault VFDr Read VFD Info Er	Keypad flash memory when read AC drive data error	 Keypad can't read any data sent from VFD. Verify if the keypad is properly connect to the motor drive by a communication cable such as RJ-45. Press RESET on the keypad to clear errors. Shut down the system, wait for ten minutes, and then power on again the system. If none of the solution above works, contact your local authorized dealer.
Fault CPUEr CPUError	and then power on again the system.	 A Serious error has occurred on keypad's CPU. 1. Verify if there's any problems on CPU clock? 2. Verify if there's any problem on Flash IC? 3. Verify if there's any problem on RTC IC? 4. Verify if the communication quality of the RS485 is good? 5. Shut down the system, wait for ten minutes, and then power on again the system. If none of the solution above works, contact your local authorized dealer.

Chapter 10 Digital Keypad

Warning Code

LCM Display *	Description	Corrective Actions
HAND Warning CE01 Comm Command Er	Modbus function code error	 Motor drive doesn't accept the communication command sent from keypad. 1. Verify if the keypad is properly connected to the motor drive on the communication contact by a communication cable such as RJ-45. 2. Press RESET on the keypad to clear errors. If none of the solution above works, contact your local authorized dealer.
HAND Warning CE02 Comm Address Er	Modbus data address error	 Motor rive doesn't accept keypad's communication address. 1. Verify if the keypad is properly connected to the motor drive on the communication contact by a communication cable such as RJ-45. 2. Press RESET on the keypad to clear errors. If none of the solution above works, contact your local authorized dealer.
HAND Warning CE03 Comm Data Error	Modbus data value error	 Motor drive doesn't accept the communication data sent from keypad. 1. Verify if the keypad is properly connected to the motor drive on the communication contact by a communication cable such as RJ-45. 2. Press RESET on the keypad to clear errors. If none of the solution above works, contact your local authorized dealer.
HAND Warning CE04 Comm Slave Error	Modbus slave drive error	 Motor drive cannot process the communication command sent from keypad. 1. Verify if the keypad is properly connected to the motor drive on the communication contact by a communication cable such as RJ-45. 2. Press RESET on the keypad to clear errors. 3. Shut down the system, wait for ten minutes, and then power on again the system. If none of the solution above works, contact your local authorized dealer.
HAND Warning CE10 KpdComm Time Out	Modbus transmission time-Out	 Motor drive doesn't respond to the communication command sent from keypad. 1. Verify if the keypad is properly connected to the motor drive on the communication contact by a communication cable such as RJ-45. 2. Press RESET on the keypad to clear errors. 3. Shut down the system, wait for ten minutes, and then power on again the system. If none of the solution above works, contact your local authorized dealer.
HAND Warning TPNO TP No Object	Object not supported by TP Editor	Keypad's TP Editor uses unsupported object. 1. Verify how the TP editor should use that object.

File Copy Setting Fault Description

LCM Display *	Description	Corrective Actions
File 1 Err 1 Read Only		The property of the parameter/file is read-only and cannot be written to. 1. Verify the specification on the user manual. If the solution above doesn't work, contact your local authorized dealer.
File 1 Err Write Fail	Fail to write parameter and file	An error occurred while write to a parameter/file. 1. Verify if there's any problem on the Flash IC. 2. Shut down the system, wait for ten minutes, and then power on again the system. If none of the solution above work, contact your local authorized dealer.
File 1 Err VFD Running	AC drive is in operating status	A setting cannot be made while motor drive is in operation. 1. Verify if the drive is not in operation. If the solution above doesn't work, contact your local authorized dealer.
File 1 Err Pr Lock	AC drive parameter is locked	A setting cannot be made because a parameter is locked. 1. Verify if the parameter is locked or not. If it is locked, unlock it and try to set up the parameter again. If the solution above doesn't work, contact your local authorized dealer.
File 1 Err Pr Changing	AC drive parameter changing	A setting cannot be made because a parameter is being modified. 1. Verify if the parameter is being modified. If it is not being modified, try to set up that parameter again. If the solution above doesn't work, contact your local authorized dealer.
File 1 Err Fault Code	Fault code	A setting cannot be made because an error has occurred on the motor drive. 1. Verify if there's any error occurred on the motor dive. If there isn't any error, try to make the setting again. If the solution above doesn't work, contact your local authorized dealer.
File 1 Err Warning Code	Warning code	A setting cannot be made because of a warning message given to the motor drive. 1. Verify if there's any warning message given to the motor drive. If the solution above doesn't work, contact your local authorized dealer.
File 1 Err Type Dismatch	File type dismatch	Data need to be copied are not same type, so the setting cannot be made. 1. Verify if the products' serial numbers need to be copied fall in the category. If they are in the same category, try to make the setting again. If the solution above doesn't work, contact your authorized dealer.
File 1 Err Password Lock	File is locked with password	A setting cannot be made, because some data are locked. 1. Verify if the data are unlocked or able to be unlocked. If the data are unlocked, try to make the setting again. 2. Shut down the system, wait for ten minutes, and then power on again the system. If none of the solution above works, contact your local authorized dealer.

Chapter 10 Digital Keypad

LCM Display *	Description	Corrective Actions
File 1 Err 10 Password Fail	File version dismatch	A setting cannot be made because the password is incorrect. 1. Verify if the password is correct. If the password is correct, try to make the setting again. 2. Shut down the system, wait for ten minutes, and then power on again the system. If none of the solution above works, contact your local authorized dealer.
File 1 Err Version Fail	AC drive copy function time-out	A setting cannot be made, because the version of the data is incorrect. 1. Verify if the version of the data matches the motor drive. If it matches, try to make the setting again. If none of the solution above works, contact your local authorized dealer.
File 1 Err VFD Time Out	Other keypad error	 A setting cannot be made, because data copying timeout expired. 1. Redo data copying. 2. Verify if copying data is authorized. If it is authorized, try again to copy data. 3. Shut down the system, wait for ten minutes, and then power on again the system. If none of the solution above works, contact your local authorized dealer.
File 1 Err Keypad Issue	Other AC drive error	This setting cannot be made, due to other keypad issues. (Reserved functions) If such error occurred, contact your local authorized dealer.
File 1 Err VFD Issue	File is locked with password	This setting cannot be made, due to other motor drive issues. (Reserved functions). If such error occurred, conatct your local authorized dealer.

* The content in this chapter only applies on V1.01 and above of KPC-CC01 keypad.

Chapter 11 Summary of Parameter Settings

This chapter provides summary of parameter settings for user to gather the parameter setting ranges, factory settings and set parameters. The parameters can be set, changed and reset by the digital keypad.

1) \mathcal{M} : the parameter can be set during operation

2) For more detail on parameters, please refer to Ch12 Description of Parameter Settings.

00 Drive Parameters

IM: Induction Motor; PM: Permanent Magnet Motor

Pr.	Explanation	Settings	Factory Setting
00-00	Identity Code of the AC Motor Drive	4: 230V, 1HP 5: 460 V, 1HP 6: 230V,2HP 7: 460 V, 2HP 8: 230V, 3HP 9: 460 V, 3HP 10: 230V, 5HP 11: 460 V, 5HP 12: 230V, 7.5HP 13: 460 V, 7.5HP 14: 230V, 10HP 15: 460V, 10HP 15: 460V, 15HP 17: 460V, 15HP 18: 230V, 20HP 20: 230V, 25HP 21: 460V, 20HP 20: 230V, 25HP 21: 460V, 20HP 22: 230V, 30HP 23: 460V, 30HP 24: 230V, 40HP 25: 460V, 40HP 26: 230V, 50HP 27: 460V, 50HP 28: 230V, 50HP 29: 460V, 60HP 30: 230V, 75HP 31: 460V, 75HP 31: 460V, 75HP 31: 460V, 105HP 33: 460V, 100HP 34: 230V, 125HP 35: 460V, 105HP 39: 460V, 175HP 41: 460V, 215HP 41: 460V, 215HP 41: 460V, 250HP 41: 460V, 375HP 41: 460V, 375HP 41: 460V, 375HP 41: 460V, 375HP 41: 460V, 475HP 51: 460V, 475HP 51: 460V, 475HP	Read
00-01	Display AC Motor Drive Rated Current	Display by models	Read only

	00-02	Parameter Reset	 0: No function 1: Read only 5: Reset KWH display to 0 6: Reset PLC (including CANopen Master Index) 7: Reset CANopen Index (Slave) 8: keypad lock 9: All parameters are reset to factory settings(base frequency is 50Hz) 10: All parameters are reset to factory settings (base frequency is 60Hz) 	0
×	00-03	Start-up Display Selection	0: F (frequency command) 1: H (output frequency) 2: U (multi-function display, see Pr.00-04) 3: A (output current)	0
\checkmark	00-04	Content of Multi-function Display	 3: A (output current) 0: Display output current (A) 1: Display counter value (c) 2: Display DC-BUS voltage (v) 4: Display output voltage (E) 5: Display output power angle (n) 6: Display output power in kW (P) 7: Display actual motor speed rpm (r) 8: Display estimate output torque % (t) 9: Display PG feedback (G) (refer to Pr.10-00,10-01) 10: Display PID feedback in % (b) 11: Display ACI in % (2.) 13: Display ACI in % (2.) 13: Display ACI in % (3.) 14: Display the temperature of IGBT in oC (i.) 15: Display the temperature of capacitance in oC (c.) 16: The status of digital input (ON/OFF) (i) 17: The status of digital output (ON/OFF) (o) 18: Multi-step speed (S) 19: The corresponding CPU pin status of digital input (d) 20: The corresponding CPU pin status of digital output (0.) 21: Actual motor position (PG1 of PG card) (P.) 22: Pulse input frequency (PG2 of PG card) (S.) 23: Pulse input position (PG2 of PG card) (G.) 24: Position command tracing error (E.) 25: Overload count (0.00~100.00%) (o.) 26: Ground Fault GFF (Unit :%)(G.) 27: DC Bus voltage ripple (Unit: Vdc) (r.) 28: Display PLC data D1043 (C) 29: Display PLC data D1043 (C) 29: Display PLC data plug in and Z phase signal input) (Z.) 33: Motor actual position during operation (when PG card is connected)(q) 34: Operation speed of fan (%) (F.) 35: Control Mode display: 0= Speed control mode (SPD), 1= torque control mode (TQR) (t.) 36: Present operating carrier frequency of drive (Hz) (J.) 37: Reserved 38: Display drive status (6.) 	3

			 39: Display estimated output torque, positive and negative, using Nt-m as unit (t 0.0: positive torque; -0.0: negative torque (C.) 40: Torque Command, unit %(L) 41: KWH, unit KWH(J) 42: PID Reference, unit % (h.) 43: PID offset (%) (o.) 44: PID Output Fcmd(Hz) (b.) 45: Hardware version 	
	00-05	Coefficient Gain in Actual Output Frequency	0~160.00	1
	00-06	Software Version	Read only	#.#
×	00-07	Parameter Protection Password Input	0~65535 0~3: the times of password attempts	0
×	00-08	Parameter Protection Password Setting	 0 ~ 65535 0: No password protection / password is entered correctly (Pr00-07) 1: Parameter is locked 	0
×	00-09	Reserved		
	00-10	Control Mode	0: Speed mode 1: Point-to-Point position control 2: Torque mode 3: Home mode	0
	00-11	Control of Speed Mode	 0: VF (IM V/f control) 1: VFPG (IM V/f control+ Encoder) 2: SVC(IM Sensorless vector control) 3: FOCPG (IM FOC vector control+ encoder) 4: FOCPG (PM FOC vector control + Encoder) 5: FOC Sensorless (IM field oriented sensorless vector control) 6: PM Sensorless (PM field oriented sensorless vector control) 7: IPM Sensor-less (IPM motor field oriented sensorless control) 	0
	00-12	Point-to-Point Position mode	0: Relative position 1: Absolute position	0
	00-13	Torque Mode Control	0: TQCPG (IM Torque control + Encoder) 1: TQCPG (PM Torque control + Encoder) 2: TQC Sensorless (IM Sensorless torque control)	0
	00-14	Reserved		
	00-15	Reserved		
×	00-16	Duty Selection	3: Super Heavy Duty	3
			Super Heavy Duty 230V 1-15HP 5~15KHz 20-100HP 5~15KHz	8 6
	00-17	Carrier Frequency	Super Heavy Duty 460V1-20HP5~15KHz20-100HP5~15KHz125-375HP4~10KHz	8 6 5
	00-18	Reserved		
	00-19	PLC Command Mask	Bit 0: Control command by PLC force control Bit 1: Frequency command by PLC force control Bit 2: Position command by PLC force control Bit 3: Torque command by PLC force control	Read only
×	00-20	Source of Master Frequency Command (AUTO)	0: Digital keypad 1: RS-485 serial communication 2: External analog input (Pr.03-00)	0

N	00-21	Source of the Operation Command (AUTO) Stop Method	 3: External UP/DOWN terminal 4: Pulse input without direction command (Pr.10-16 without direction) 5: Pulse input with direction command (Pr.10-16) 6: CANopen communication card 7: Reserved 8: Communication card (no CANopen card) 0: Digital keypad 1: External terminals. Keypad STOP disabled. 2: RS-485 serial communication. Keypad STOP disabled. 3: CANopen communication card 4: Reserved 5: Communication card (no CANopen card) 0: Ramp to stop 1: Coast to stop 	0
×	00-23	Control of Motor Direction	0: Enable forward/reverse 1: Reverse disable 2: Forward disable	0 Dead
	00-24	Memory of Frequency Command	Read only	Read only
	00-25	User Defined Characteristics	Bit 0~3: user defined decimal place 0000b: no decimal place 0011b: one decimal place 0011b: two decimal place 0011b: three decimal place Bit 4~15: user define on unit 000xh: Hz 001xh: rpm 002xh: % 003xh: kg 004xh: M/S 005xh: kW 006xh: HP 007xh: PPM 008xh: I / m 008xh: kg/n 008xh: kg/n 008xh: kg/n 00Bxh: kg/h 00Cxh: lb/s 00Dxh: lb/n 00Fxh: ft/s 010xh: ft/m 011xh: M 012xh: ft 013xh: degC 014xh: degF 015xh: mbar 016xh: bar 017xh: Pa 018xh: kPa 019xh: mWG 01Axh: inWG 01Axh: inWG 01Axh: inWG 01Axh: inWG 01Axh: M 01Dxh: Atm 01Exh: L/s 01Dxh: Atm 012xh: m3/s 022xh: m3/h 023xh: GPM 024xh: CFM	0

	00-26	Max. User Defined Value	0: Disable 0~65535 (when Pr.00-25 set to no decimal place) 0.0~6553.5 (when Pr.00-25 set to 1 decimal place) 0.0~655.35 (when Pr.00-25 set to 2 decimal place) 0.0~65.535 (when Pr.00-25 set to 3 decimal place)	0
	00-27	User Defined Value	Read only	Read Only
	00-28	Reserved	11	01119
	00-29	LOCAL/REMOTE Selection	 0: Standard HOA function 1: Switching Local/Remote, the drive stops 2: Switching Local/Remote, the drive runs as the REMOTE setting for frequency and operation status 3: Switching Local/Remote, the drive runs as the LOCAL setting for frequency and operation status 4: Switching Local/Remote, the drive runs as LOCAL setting when switch to Local and runs as REMOTE setting when switch to Remote for frequency and operation status. 	0
N	00-30	Source of the Master Frequency Command (HAND)	 0: Digital keypad 1: RS-485 serial communication 2: External analog input (Pr.03-00) 3: External UP/DOWN terminal 4: Pulse input without direction command (Pr.10-16 without direction) 5: Pulse input with direction command (Pr.10-16) 6: CANopen communication card 7: Reserved 8: Communication card (no CANopen card) 	0
M	00-31	Source of the Operation Command (HAND)	 0: Digital keypad 1: External terminals. Keypad STOP disabled. 2: RS-485 serial communication. Keypad STOP disabled. 3: CANopen communication card 4: Reserved 5: Communication card (not include CANopen card) 	0
×	00-32	Digital Keypad STOP Function	0: STOP key disable 1: STOP key enable	0
	00-33 ~ 00-39	Reserved		
	00-40	Homing mode	ZYX Homing mode Z pulse setting Home limit Note: Forward run = clockwise (CW) Reverse run = counterclockwise (CCW) 0: Forward run to home. Set PL forward limit as check point. 1: Reverse run (CCW) to home. Set NL reverse limit (CCWL) as check point. 2: Forward run to home. Set ORG: OFF→ON as check point. 3: Reverse to home. Set ORG: OFF→ON as check point. 4: Forward run and search for Z-pulse as check point.	0000

				 5: Forward run and search for Z-pulse as check point. 6: Forward run to home. Set ORG: ON→OFF as check point. 7: Reverse run to home. Set ORG: ON→OFF as check point. 8: Define current position as home. 	
			Y	Set X to 0, 1, 2, 3, 6, 7 first. 0: reverse run to Z pulse 1: continue forward run to Z pulse 2: Ignore Z pulse	
				When home limit is reached, set X to 2, 3, 4, 5,	
			Z	6, 7 first.0: display the error	
				1: reverse the direction	
	00-41	Homing by frequency 1	0.	00~600.00Hz	8.00
	00-42	Homing by frequency 2	0.	00~600.00Hz	2.00
	00-43 ~ 00-47	Reserved			
×	00-48	Display Filter Time (Current)	0.0	001~65.535 sec	0.100
×	00-49	Display Filter Time (Keypad)	0.0	001~65.535 sec	0.100
	00-50	Software Version (date)	Re	ead only	#####
	00-51	Deserved			
	~ 00-61	Reserved			

11-6

01 Basic Parameters

	Pr.	Explanation	Settings	Factory Setting
	01-00	Max. Operation Frequency	50.00~600.00Hz	60.00/ 50.00
	01-01	Output Frequency of Motor 1	0.00~600.00Hz	60.00/ 50.00
	01-02	Output Voltage of Motor 1	230V: 0.0V~255.0V 460V: 0.0V~510.0V	200.0 400.0
	01-03	Mid-point Frequency 1 of Motor 1	0.00~600.00Hz	3.00
×	01-04	Mid-point Voltage 1 of Motor 1	230V: 0.0V~240.0V 460V: 0.0V~480.0V	11.0 22.0
	01-05	Mid-point Frequency 2 of Motor 1	0.00~600.00Hz	0.50
×	01-06	Mid-point Voltage 2 of Motor 1	230V: 0.0V~240.0V 460V: 0.0V~480.0V	2.0 4.0
	01-07	Min. Output Frequency of Motor 1	0.00~600.00Hz	0.00
×	01-08	Min. Output Voltage of Motor 1	230V: 0.0V~240.0V 460V: 0.0V~480.0V	0.0 0.0
	01-09	Start-Up Frequency	0.00~600.00Hz	0.50
×	01-10	Output Frequency Upper Limit	0.00~600.00Hz	600.00
×	01-11	Output Frequency Lower Limit	0.00~600.00Hz	0
×	01-12	Accel. Time 1	Pr.01-45=0: 0.00~600.00 second Pr.01-45=1: 0.00~6000.0 second AC drive with power greater than 30HP: 60.00/60.0	10.00 10.0
×	01-13	Decel Time 1	Pr.01-45=0: 0.00~600.00 second Pr.01-45=1: 0.00~6000.0 second AC drive with power greater than 30HP: 60.00/60.0	10.00 10.0
×	01-14	Accel Time 2	Pr.01-45=0: 0.00~600.00 second Pr.01-45=1: 0.00~6000.0 second AC drive with power greater than 30HP: 60.00/60.0	10.00 10.0
×	01-15	Decel Time 2	Pr.01-45=0: 0.00~600.00 second Pr.01-45=1: 0.00~6000.0 second AC drive with power greater than 30HP: 60.00/60.0	10.00 10.0
×	01-16	Accel Time 3	Pr.01-45=0: 0.00~600.00 second Pr.01-45=1: 0.00~6000.0 second AC drive with power greater than 30HP: 60.00/60.0	10.00 10.0
×	01-17	Decel Time 3	Pr.01-45=0: 0.00~600.00 second Pr.01-45=1: 0.00~6000.0 second AC drive with power greater than 30HP: 60.00/60.0	10.00 10.0
×	01-18	Accel Time 4	Pr.01-45=0: 0.00~600.00 second Pr.01-45=1: 0.00~6000.0 second AC drive with power greater than 30HP: 60.00/60.0	10.00 10.0
×	01-19	Decel Time 4	Pr.01-45=0: 0.00~600.00 second Pr.01-45=1: 0.00~6000.0 second AC drive with power greater than 30HP: 60.00/60.0	10.00 10.0
*	01-20	JOG Acceleration Time	Pr.01-45=0: 0.00~600.00 second Pr.01-45=1: 0.00~6000.0 second AC drive with power greater than 30HP: 60.00/60.0	10.00 10.0
×	01-21	JOG Deceleration Time	Pr.01-45=0: 0.00~600.00 second Pr.01-45=1: 0.00~6000.0 second AC drive with power greater than 30HP: 60.00/60.0	10.00 10.0

	Pr.	Explanation	Settings	Factory Setting
×	01-22	JOG Frequency	0.00~600.00Hz	6.00
*	01-23	1st/4th Accel/decel Frequency	0.00~600.00Hz	0.00
×	01-24	S-curve Acceleration Begin Time 1	Pr.01-45=0: 0.00~25.00 second Pr.01-45=1: 0.0~250.0 second	0.20 0.2
×	01-25	S-curve Acceleration Arrival Time 2	Pr.01-45=0: 0.00~25.00 second Pr.01-45=1: 0.0~250.0 second	0.20 0.2
×	01-26	S-curve Deceleration Begin Time 1	Pr.01-45=0: 0.00~25.00 second Pr.01-45=1: 0.0~250.0 second	0.20 0.2
×	01-27	S-curve Deceleration Arrival Time 2	Pr.01-45=0: 0.00~25.00 second Pr.01-45=1: 0.0~250.0 second	0.20 0.2
	01-28	Skip Frequency 1 (upper limit)	0.00~600.00Hz	0.00
	01-29	Skip Frequency 1 (lower limit)	0.00~600.00Hz	0.00
	01-30	Skip Frequency 2 (upper limit)	0.00~600.00Hz	0.00
	01-31	Skip Frequency 2 (lower limit)	0.00~600.00Hz	0.00
	01-32	Skip Frequency 3 (upper limit)	0.00~600.00Hz	0.00
	01-33	Skip Frequency 3 (lower limit)	0.00~600.00Hz	0.00
	01-34	Zero-speed Mode	0: Output waiting 1: Zero-speed operation 2: Fmin (Refer to Pr.01-07, 01-41)	0
	01-35	Output Frequency of Motor 2	0.00~600.00Hz	60.00/ 50.00
	01-36	Output Voltage of Motor 2	230V: 0.0V~255.0V 460V: 0.0V~510.0V	200.0 400.0
	01-37	Mid-point Frequency 1 of Motor 2	0.00~600.00Hz	3.00
×	01-38	Mid-point Voltage 1 of Motor 2	230V: 0.0V~240.0V 460V: 0.0V~480.0V	11.0 22.0
	01-39	Mid-point Frequency 2 of Motor 2	0.00~600.00Hz	0.50
×	01-40	Mid-point Voltage 2 of Motor 2	230V: 0.0V~240.0V 460V: 0.0V~480.0V	2.0 4.0
	01-41	Min. Output Frequency of Motor 2	0.00~600.00Hz	0.00
×	01-42	Min. Output Voltage of Motor 2	230V: 0.0V~240.0V 460V: 0.0V~480.0V	0.0 0.0
	01-43	V/f Curve Selection	0: V/f curve determined by Pr.01-00~01-08 1: Curve to the power of 1.5 2: Curve to the power of 2	0
M	01-44	Optimal Acceleration/Deceleration Setting	 0: Linear accel. /decel. 1: Auto accel.; linear decel. 2: Linear accel.; auto decel. 3: Auto accel./decel. 4: Linear, stall prevention by auto accel./decel. (limit by Pr.01-12~01-21) 	0
	01-45	Time Unit for Accel. /Decel. and S Curve	0: Unit: 0.01 sec 1: Unit: 0.1sec	0
	01-46	CANopen Quick Stop Time	Pr. 01-45=0: 0.00~600.00 sec Pr. 01-45=1: 0.0~6000.0 sec	1.00

02 Digital Input/Output Parameters

Pr.	Explanation	Settings	Factory Setting
02-00	2-wire/3-wire Operation Control	0: 2-wire mode, power on for operation control 1: 2-wire mode 2, power on for operation control 2: 3-wire, power on for operation control	0
02-01	Multi-function Input Command 1 (MI1)	0: No function	1
02-02	Multi-function Input Command 2 (MI2)	1: Multi-step speed command 1/multi-step position command 1	2
02-03	Multi-function Input Command 3 (MI3)	2: Multi-step speed command 2/multi-step position command 2	3
02-04	Multi-function Input Command 4 (MI4)	3: Multi-step speed command 3/multi-step position command 3	4
02-05	Multi-function Input Command 5 (MI5)	4: Multi-step speed command 4/multi-step position command 4	0
02-06	Multi-function Input Command 6 (MI6)	5: Reset	0
02-07	Multi-function Input Command 7 (MI7)	6: JOG command (By KPC-CC01 or external control)	0
02-08	Multi-function Input Command 8 (MI8)	7: Acceleration/deceleration speed inhibit	0
02-26	Input terminal of I/O extension card (MI10)	8: The 1 st , 2 nd acceleration/deceleration time selection	0
02-27	Input terminal of I/O extension card (MI11)	9: The 3 rd , 4 th acceleration/deceleration time selection	0
02-28	Input terminal of I/O extension card (MI12)	10: EF Input (Pr.07-20)	0
02-29	Input terminal of I/O extension card (MI13)	11: B.B input from external (Base Block)	0
02-30	Input terminal of I/O extension card (MI14)	12: Output stop	0
02-31	Input terminal of I/O extension	13: Cancel the setting of optimal accel. /decel. time	0
	card (MI15)	14: Switch between motor 1 and motor 2	
		15: Operation speed command from AVI	
		16: Operation speed command from ACI	
		17: Operation speed command from AUI	
		18: Emergency stop (Pr.07-20)	
		19: Digital up command	
		20: Digital down command 21: PID function disabled	
		22: Clear counter	
		23: Input the counter value (MI6)	
		24: FWD JOG command	
		25: REV JOG command	
		26: TQC/FOCmodel selection	
		27: ASR1/ASR2 selection	
		28: Emergency stop (EF1)	
		29: Signal confirmation for Y-connection	
		30: Signal confirmation for Δ -connection	
		31: High torque bias (Pr.11-30) 32: Middle torque bias (Pr.11-31)	
		33: Low torque bias (Pr.11-32)	
		34: Switch between multi-step position and	
		multi-speed control	
		35: Enable single point position control	
		36: Enable multi-step position learning function (valid	
		at stop)	
		37: Full position control pulse command input enable 38: Disable EEPROM write function	
	I		

	Pr.	Explanation	Settings	Factory Setting
ľ			39: Torque command direction	
			40: Force coast to stop	_
			41: HAND switch 42: AUTO switch	-
			43: Enable resolution selection (Pr.02-48)	-
			44: Reversed direction homing	-
			45: Forward direction homing	
			46: Homing (ORG)	
			47: Homing function enable	
			48: Mechanical gear ratio switch	_
			49: Drive enable	-
			50: Master dEb action input 51: Selection for PLC mode bit0	-
			52: Selection for PLC mode bit1	-
			53: Trigger CANopen quick stop	-
			54: Reserved	
			55: Brake release	
			56: Local/Remote Selection	
			57~70: Reserved	
	02-09	UP/DOWN key mode	0: up/down by the accel. /decel. time 1: up/down constant speed (Pr.02-10)	0
	02-10	Constant speed. The Accel. /Decel. Speed of the UP/DOWN Key	0.01~1.00Hz/ms	0.01
	02-11	Digital Input Response Time	0.000~30.000 second	0.005
	02-12	Digital Input Mode Selection	0000h~FFFFh (0: N.O.; 1: N.C.)	0000
	02-13	Multi-function Output 1 RY1	0: No function	11
	02-14	Multi-function Output 2 RY2	1: Operation Indication	1
	02-16	Multi-function Output 3 (MO1)	2: Operation speed attained	0
	02-17	Multi-function Output 4 (MO2)	3: Desired frequency attained 1 (Pr.02-22)	66
	02-36	Output terminal of the I/O extension card (MO10)	4: Desired frequency attained 2 (Pr.02-24)	0
	02-37	Output Terminal of I/O Extension Card (MO11)	5: Zero speed (Frequency command)	0
	02-38	Output Terminal of I/O Extension Card (MO12)	6: Zero speed, include STOP(Frequency command)	0
	02-39	Output Terminal of I/O Extension Card (MO13)	7: Over torque 1(Pr.06-06~06-08)	0
	02-40	Output Terminal of I/O Extension Card (MO14)	8: Over torque 2(Pr.06-09~06-11)	0
	02-41	Output Terminal of I/O Extension Card (MO15)	9: Drive is ready	0
	02-42	Output Terminal of I/O Extension Card (MO16)	10: Low voltage warning (LV) (Pr.06-00)	0
	02-43	Output Terminal of I/O Extension Card (MO17)	11: Malfunction indication	0
	02-44	Output Terminal of I/O Extension Card (MO18)	12: Mechanical brake release(Pr.02-32)	0
	02-45	Output Terminal of I/O Extension Card (MO19)	13: Overheat warning (Pr.06-15)	0
	02-46	Output Terminal of I/O Extension Card (MO20)	14: Software brake signal indication(Pr.07-00)	0
			15: PID feedback error	
			16: Slip error (oSL)	

	Pr.	Explanation	Settings	Factory Setting
			 17: Terminal count value attained, does not return to 0 (Pr.02-20) 18: Preliminary count value attained, returns to 0 (Pr.02-19) 19: Base Block 20: Warning output 21: Over voltage warning 22: Over-current stall prevention warning 23: Over-voltage stall prevention warning 24: Operation mode indication 25: Forward command 26: Reverse command 27: Output when current >= Pr.02-33 (>= 02-33) 28: Output when current <=Pr.02-33 (>= 02-33) 29: Output when current <=Pr.02-33 (>= 02-34) 30: Output when frequency >= Pr.02-34 (>= 02-34) 30: Output when frequency <= Pr.02-34 (>= 02-34) 31: Y-connection for the motor coil 32: △-connection for the motor coil 33: Zero speed (actual output frequency) 34: Zero speed include stop(actual output frequency) 35: Error output selection 1(Pr.06-23) 36: Error output selection 3(Pr.06-24) 37: Error output selection 3(Pr.06-25) 38: Error output selection 3(Pr.06-26) 39: Position attained (Pr.10-19) 40: Speed attained (including Stop) 41: Multi-position attained 42: Crane function 43: Actual motor speed slower than Pr.02-47 44: Low current output (use with Pr.06-71~06-73) 45: UVW Output Electromagnetic valve Switch 46: Master dEb warning output 47: Closed brake output 48: Reserved 49: Homing action complete 50: Output for CANopen control 51: Output for CANopen control 52: Reserved 63: Advance Crane Output 64-65: Reserved 6	Setting
*	02-18	Multi-function output direction	0000h~FFFFh (0: N.O.; 1: N.C.)	0000
*	02-19	Terminal counting value attained (returns to 0)	0~65500	0
*	02-20	Preliminary counting value attained (not return to 0)	0~65500	0
*	02-21	Digital Output Gain (DFM)	1~166	1
*	02-22	Desired Frequency Attained 1	0.00~600.00Hz	60.00/ 50.00
*	02-23	The Width of the Desired Frequency Attained 1	0.00~600.00Hz	2.00
*	02-24	Desired Frequency Attained 2	0.00~600.00Hz	60.00/ 50.00
*	02-25	The Width of the Desired Frequency Attained 2	0.00~600.00Hz	2.00
	02-32	Brake Delay Time	0.000~65.000 sec.	0.000

	Pr.	Explanation	Settings	Factory Setting
×	02-33	Current Detect	0~100%	0
×	02-34	Speed Area Set	0.00~600.00Hz(Motor speed when using PG Card)	3.00
×	02-35	External Operation Control Selection after Reset and Activate	0: Disable 1: Drive runs if run command exists after reset	0
×	02-47	Zero-speed Level of Motor	0~65535 rpm	0
N	02-48	Max. Frequency of Resolution Switch	0.01~600.00Hz	60.00
×	02-49	Switch the delay time of Max. output frequency	0.000~65.000 sec.	0.000
N	02-50	Status of Multi-function Input Terminal	Monitor the status of multi-function input terminals	Read only
	02-51	Status of Multi-function Output Terminal	Monitor the status of multi-function output terminals	Read only
	02-52	Display External Output terminal occupied by PLC	Monitor the status of PLC input terminals	Read only
	02-53	Display Analog Input Terminal occupied by PLC	Monitor the status of PLC output terminals	Read only
	02-54	Display the Frequency Command Executed by External Terminal	Read only	Read only
	02-55	Reserved		
	02-56	Release Brake Check	0.000~65.000 sec	0.000 sec
	02-57	FWD Brake Current	0~100%	0
	02-58	FWD Brake Frequency	0.00~600.00Hz	0.00
	02-59	REV Release Current	0~100%	0
	02-60	REV Brake Current	0~100%	0
	02-61	REV Release Frequency	0.00~600.00Hz	0.00
	02-62	REV Brake Frequency	0.00~600.00Hz	0.00
	02-63	Speed Area Band (P02-34)	0.00~600.00Hz	0.00
	02-64	LLACC Mode	0: Disable	0
	00.05		1: Enable	0.00
	02-65	LLACC Active Frequency	0.00~600.00Hz	0.00
	02-66	LLACC FWD Active Current	0~100%	0
	02-67	LLACC REV Active Current	0~100%	0
	02-68	LLACC Delay Time	0.000~65.000 sec	0.000
	02-69	LLACC Target Frequency	0.00~01-00 Hz	0.00H
			0: No IO Card	
			1: EMC-BPS01 Card	
	02-70 IO Card Type	2: No IO Card		
		IO Card Type	3: No IO Card	0
	-		4: EMC-D611A Card	
			5: EMC-D42A Card	
			6: EMC-R6AA Card	
			7: No IO Card	

03 Analog Input/Output Parameters

	Pr.	Explanation	Settings	Factory Setting
×	03-00	Analog Input Selection (AVI)	0: No function	1
×	03-01	Analog Input Selection (ACI)	1: Frequency command (speed limit under torque control mode)	0
×	03-02	Analog Input Selection (AUI)	2: Torque command (torque limit under speed mode)	0
			3: Torque compensation command	
			4: PID target value	
			5: PID feedback signal	
			6: PTC thermistor input value	
			7: Positive torque limit	
			8: Negative torque limit	
			9: Regenerative torque limit	
			10: Positive/negative torque limit	
			11: PT100 thermistor input value	
			12: Reserved	
			13: PID Offset (%) (h.)	
			14~17: Reserved	
×	03-03	Analog Input Bias (AVI)	-100.0~100.0%	0
×	03-04	Analog Input Bias (ACI)	-100.0~100.0%	0
×	03-05	Analog Positive Voltage Input Bias (AUI)	-100.0~100.0%	0
×	03-06	Reserved		
×	03-07	Positive/negative Bias Mode (AVI)	0: No bias 1: Lower than or equal to bias	
×	03-08	Positive/negative Bias Mode (ACI)	2: Greater than or equal to bias 3: The absolute value of the bias voltage while serving	0
×	03-09	Positive/negative Bias Mode (AUI)	as the center 4: Serve bias as the center	
	03-10	Analog Frequency Command for Reverse Run	 0: Negative frequency is not valid. Forward and reverse run is controlled by digital keypad or external terminal. 1: Negative frequency is valid. Positive frequency = forward run; negative frequency = reverse run. Direction can not be switched by digital keypad or external terminal control. 	0
×	03-11	Analog Input Gain (AVI)	-500.0~500.0%	100.0
×	03-12	Analog Input Gain (ACI)	-500.0~500.0%	100.0
×	03-13	Analog Positive Input Gain (AUI)	-500.0~500.0%	100.0
×	03-14	Analog Negative Input Gain (AUI)	-500.0~500.0%	100.0
×	03-15	Analog Input Filter Time (AVI)	0.00~20.00 sec.	0.01
×	03-16	Analog Input Filter Time (ACI)	0.00~20.00 sec.	0.01
×	03-17	Analog Input Filter Time (AUI)	0.00~20.00 sec.	0.01
N	03-18	Addition Function of the Analog Input	0: Disable (AVI, ACI, AUI) 1: Enable	0

		1		
			0: Disable 1: Continue operation at the last frequency	
×	03-19	ACI Signal Loss	2: Decelerate to 0Hz	0
			3: Stop immediately and display ACE	
~	03-20	Multi-function Output 1 (AFM1)	0: Output frequency (Hz)	0
~	03-23	Multi-function Output 2 (AFM2)	1: Frequency command (Hz)	0
			2: Motor speed (Hz)	
			3: Output current (rms)	
			4: Output voltage	
			5: DC Bus voltage	
			6: Power factor	
			7: Power	
			8: Output torque 9: AVI	
			10: ACI	
			11: AUI	
			12: lq current	
			13: Iq feedback value	
			14: Id current	
			15: Id feedback value	
			16: Vq-axis voltage	
			17: Vd-axis voltage 18: Torque command	
			19: PG2 frequency command	
			20: CANopen analog output	
			21: RS485 analog output	
			22: Communication card analog output	
			23: Constant voltage/current output	
~	03-21	Gain of Analog Output 1 (AFM1)	0~500.0%	100.0
		Analog Output 1 when in REV	0: Absolute output voltage	
~	03-22	Direction (AFM1)	1: Reverse output 0V; Positive output 0-10V 2: Reverse output 5-0V; Positive output 5-10V	0
,				100.0
~	03-24	Gain of Analog Output 2 (AFM2)	0~500.0%	100.0
			0: Absolute output voltage	
~	03-25	Analog Output 2 when in REV	1: Output 0V in REV direction; output 0-10V in FWD direction	0
<i>,</i>	00 20	Direction (AFM2)	2: Output 5-0V in REV direction; output 5-10V in FWD	Ũ
			direction	
*	03-26	Reserved		
*	03-27	AFM2 Output Bias	-100.00~100.00%	0.00
			0: 0-10V	
~	03-28	AVI Selection	1: 0-20mA	0
			2: 4-20mA	
,	00.05		0: 4-20mA	
~	03-29	ACI Selection	1: 0-10V	0
			2: 0-20mA	
~	03-30	Status of PLC Output Terminal	Monitor the status of PLC output terminals	Read only
	03-31	AFM2 0-20mA Output Selection	0: 0-20mA Output 1: 4-20mA Output	0
	03-32	AFM1 DC output setting level	0.00~100.00%	0.00
	03-33	AFM2 DC Output Setting Level	0.00~100.00%	0.00
	03-34	Reserved	1	

03	8-35	AFM1 filter output time	0.00 ~ 20.00 Seconds	0.01
03	8-36	AFM2 filter output time	0.00 ~ 20.00 Seconds	0.01
	3-37 ~	Reserved		
	~ 8-43			
03	8-44	MO by AI level	0: AVI 1: ACI 2: AUI	0
03	8-45	Al Upper level	-100% ~ +100%	50%
03	8-46	AI Lower level	-100% ~ +100%	10%
	3-47 ~ 3-49	Reserved		
	3-50	Analog Input Curve Selection	0: Regular Curve 1: 3 point curve of AVI 2: 3 point curve of ACI 3: 3 point curve of AVI & ACI 4: 3 point curve of AUI 5: 3 point curve of AVI & AUI 6: 3 point curve of ACI & AUI 7: 3 point curve of AVI & ACI & AUI	0
03	8-51	AVI Low Point	Pr.03-28=0, 0.00~10.00V Pr.03-28≠0, 0.00~20.00mA	0.00
03	8-52	AVI Proportional Low Point	0.00~100.00%	0.00
03	8-53	AVI Mid Point	Pr.03-28=0, 0.00~10.00V	5.00
0.2	3-54	AVI Proportional Mid Point	Pr.03-28≠0, 0.00~20.00mA 0.00~100.00%	50.00
			Pr.03-28=0, 0.00~10.00V	
03	8-55	AVI High Point	Pr.03-28≠0, 0.00~20.00mA	10.00
03	8-56	AVI Proportional High Point	0.00~100.00%	100.00
03	8-57	ACI Low Point	Pr.03-29=1, 0.00~10.00V Pr.03-29≠1, 0.00~20.00mA	4.00
03	8-58	ACI Proportional Low Point	0.00~100.00%	0.00
03	8-59	ACI Mid Point	Pr.03-29=1, 0.00~10.00V Pr.03-29≠1, 0.00~20.00mA	12.00
03	8-60	ACI Proportional Mid Point	0.00~100.00%	50.00
03	8-61	ACI High Point	Pr.03-29=1, 0.00~10.00V Pr.03-29≠1, 0.00~20.00mA	20.00
03	8-62	ACI Proportional High Point	0.00~100.00%	100.00
03	8-63	Positive AUI Voltage Low Point	0.00~10.00V	0.00
03	3-64	Positive AUI Voltage Proportional Low Point	0.00~100.00%	0.00
03	8-65	Positive AUI Voltage Mid Point	0.00~10.00V	5.00
03	8-66	Positive AUI Voltage Proportional Mid Point	0.00~100.00%	50.00
03	8-67	Positive AUI Voltage High Point	0.00~10.00V	10.00
03	8-68	Positive AUI Voltage Proportional High Point	0.00~100.00%	100.00
03	8-69	Negative AUI Voltage Low Point	0.00~ -10.00V	0.00
03	8-70	Negative AUI Voltage Proportional Low Point	0.00~ -100.00%	0.00
03	8-71	Negative AUI Voltage Mid Point	0.00~ -10.00V	-5.00

03-72	Negative AUI Voltage Proportional Mid Point	0.00~ -100.00%	-50.00
03-73	Negative AUI Voltage High Point	0.00~ -10.00V	-10.00
03-74	Negative AUI Voltage Proportional High Point	0.00~ -100.00%	-100.00

04 Multi-step Speed Parameters

-	Pr.	Explanation	Settings	Factory Setting
×	04-00	1st Step Speed Frequency	0.00~600.00Hz	0
N	04-01	2nd Step Speed Frequency	0.00~600.00Hz	0
×	04-02	3rd Step Speed Frequency	0.00~600.00Hz	0
×	04-03	4th Step Speed Frequency	0.00~600.00Hz	0
×	04-04	5th Step Speed Frequency	0.00~600.00Hz	0
×	04-05	6th Step Speed Frequency	0.00~600.00Hz	0
×	04-06	7th Step Speed Frequency	0.00~600.00Hz	0
×	04-07	8th Step Speed Frequency	0.00~600.00Hz	0
×	04-08	9th Step Speed Frequency	0.00~600.00Hz	0
×	04-09	10th Step Speed Frequency	0.00~600.00Hz	0
×	04-10	11th Step Speed Frequency	0.00~600.00Hz	0
×	04-11	12th Step Speed Frequency	0.00~600.00Hz	0
×	04-12	13th Step Speed Frequency	0.00~600.00Hz	0
×	04-13	14th Step Speed Frequency	0.00~600.00Hz	0
×	04-14	15th Step Speed Frequency	0.00~600.00Hz	0
	04-15	Position command 1 (revolution)	-30000~30000	0
×	04-16	Position command 1 (pulse)	-32767~32767	0
	04-17	Position command 2 (revolution)	-30000~30000	0
×	04-18	Position command 2 (pulse)	-32767~32767	0
	04-19	Position command 3 (revolution)	-30000~30000	0
×	04-20	Position command 3 (pulse)	-32767~32767	0
	04-21	Position command 4 (revolution)	-30000~30000	0
×	04-22	Position command 4 (pulse)	-32767~32767	0
	04-23	Position command 5 (revolution)	-30000~30000	0
×	04-24	Position command 5 (pulse)	-32767~32767	0
	04-25	Position command 6 (revolution)	-30000~30000	0
×	04-26	Position command 6 (pulse)	-32767~32767	0
	04-27	Position command 7 (revolution)	-30000~30000	0
×	04-28	Position command 7 (pulse)	-32767~32767	0
	04-29	Position command 8 (revolution)	-30000~30000	0
×	04-30	Position command 8 (pulse)	-32767~32767	0
	04-31	Position command 9 (revolution)	-30000~30000	0
×	04-32	Position command 9 (pulse)	-32767~32767	0
	04-33	Position command 10 (revolution)	-30000~30000	0
×	04-34	Position command 10 (pulse)	-32767~32767	0
	04-35	Position command 11 (revolution)	-30000~30000	0
×	04-36	Position command 11 (pulse)	-32767~32767	0

	Pr.	Explanation	Settings	Factory Setting
	04-37	Position command 12 (revolution)	-30000~30000	0
~	04-38	Position command 12 (pulse)	-32767~32767	0
	04-39	Position command 13 (revolution)	-30000~30000	0
~	04-40	Position command 13 (pulse)	-32767~32767	0
	04-41	Position command 14 (revolution)	-30000~30000	0
~	04-42	Position command 14 (pulse)	-32767~32767	0
	04-43	Position command 15 (revolution)	-30000~30000	0
~	04-44	Position command 15 (pulse)	-32767~32767	0
	04-45 ~ 04-49	Reserved		
~	04-50	PLC Buffer 0	0~65535	0
~	04-51	PLC Buffer 1	0~65535	0
~	04-52	PLC Buffer 2	0~65535	0
~	04-53	PLC Buffer 3	0~65535	0
~	04-54	PLC Buffer 4	0~65535	0
~	04-55	PLC Buffer 5	0~65535	0
~	04-56	PLC Buffer 6	0~65535	0
~	04-57	PLC Buffer 7	0~65535	0
~	04-58	PLC Buffer 8	0~65535	0
~	04-59	PLC Buffer 9	0~65535	0
~	04-60	PLC Buffer 10	0~65535	0
~	04-61	PLC Buffer 11	0~65535	0
~	04-62	PLC Buffer 12	0~65535	0
~	04-63	PLC Buffer 13	0~65535	0
*	04-64	PLC Buffer 14	0~65535	0
*	04-65	PLC Buffer 15	0~65535	0
*	04-66	PLC Buffer 16	0~65535	0
*	04-67	PLC Buffer 17	0~65535	0
*	04-68	PLC Buffer 18	0~65535	0
*	04-69	PLC Buffer 19	0~65535	0

05 Motor Parameters

	Pr.	Explanation	Settings	Factory Setting
	05-00	Motor Auto Tuning	 0: No function 1: Rolling test for induction motor(IM) (Rs, Rr, Lm, Lx, no-load current) 2: Static test for induction motor(IM) 3: No function 4: Rolling test for PM motor magnetic pole 5: Rolling test for PM motor 6: Rolling test for IM motor flux curve 12: FOC Sensorless inertia estimation 13: High frequency and blocked rotor test for PM motor 	0
	05-01	Full-load Current of Induction Motor 1(A)	10~120% of drive's rated current	#.##
×	05-02	Rated Power of Induction Motor 1(kW)	0~655.35kW	#.##
N	05-03	Rated Speed of Induction Motor 1 (rpm)	0~65535 1710(60Hz 4poles) ; 1410(50Hz 4 poles)	1710
	05-04	Pole Number of Induction Motor	2~20	4
	05-05	No-load Current of Induction Motor 1 (A)	0~ Pr.05-01 factory setting	#.##
	05-06	Stator Resistance (Rs) of Induction Motor 1	0~65.535Ω	#.###
	05-07	Rotor Resistance (Rr) of Induction Motor 1	0~65.535Ω	#.###
	05-08	Magnetizing Inductance (Lm) of Induction Motor 1	0~6553.5mH	#.#
	05-09	Stator Inductance (Lx) of Induction Motor 1	0~6553.5mH	#.#
	05-10 ~ 05-12	Reserved		
	05-13	Full-load Current of Induction Motor 2 (A)	10~120%	#.##
×	05-14	Rated Power of Induction Motor 2 (kW)	0~655.35kW	#.##
×	05-15	Rated Speed of Induction Motor 2 (rpm)	0~65535 1710(60Hz 4 poles) ; 1410(50Hz 4 poles)	1710
	05-16	Pole Number of Induction Motor 2	2~20	4
	05-17	No-load Current of Induction Motor 2 (A)	0~ Pr.05-01 factory setting	#.##
	05-18	Stator Resistance (Rs) of Induction Motor 2	0~65.535Ω	#.###
	05-19	Rotor Resistance (Rr) of Induction Motor 2	0~65.535Ω	#.###
	05-20	Magnetizing Inductance (Lm) of Induction Motor 2	0~6553.5mH	#.#
	05-21	Stator Inductance (Lx) of Induction Motor 2	0~6553.5mH	#.#
×	05-22	Induction Motor 1/ 2 Selection	1: motor 1 2: motor 2	1
M	05-23	Frequency for Y-connection/△-connection Switch of Induction Motor	0.00~600.00Hz	60.00
×	05-24	Y-connection/△-connection Switch of Induction Motor	0: Disable 1: Enable	0

		· · · · · · · · · · · · · · · · · · ·	
05-25	Delay Time for Y-connection/△-connection Switch of Induction Motor	0.000~60.000 sec.	0.200
05-26	Accumulative Watt-second of Motor in Low Word (W-sec)	Read only	#.#
05-27	Accumulative Watt-second of Motor in High Word (W-sec)	Read only	#.#
05-28	Accumulative Watt-hour of Motor (W-Hour)	Read only	#.#
05-29	Accumulative Watt-hour of Motor in Low Word (KW-Hour)	Read only	#.#
05-30	Accumulative Watt-hour of Motor in High Word (KW-Hour)	Read only	#.#
05-31	Accumulative Motor Operation Time (Min)	00~1439	0
05-32	Accumulative Motor Operation Time (day)	00~65535	0
05-33	Induction Motor and Permanent Magnet Motor Selection	0: Induction Motor 1: Permanent Magnet Motor 2: IPM	0
05-34	Full-load current of Permanent Magnet Motor	0.00~655.35Amps	0.00
05-35	Rated Power of Permanent Magnet Motor	0.00~655.35kW	0.00
05-36	Rated speed of Permanent Magnet Motor	0~65535rpm	2000
05-37	Pole number of Permanent Magnet Motor	0~65535	10
05-38	Inertia of Permanent Magnet Motor	0.0~6553.5 kg.cm ²	0.0
05-39	Stator Resistance of PM Motor	0.000~65.535Ω	0.000
05-40	Permanent Magnet Motor Ld	0.00~655.35mH	0.000
05-41	Permanent Magnet Motor Lq	0.00~655.35mH	0.000
05-42	PG Offset angle of PM Motor	0.0~360.0°	0.0
05-43	Ke parameter of PM Motor	0~65535 (Unit: V/1000rpm)	0

06 Protection Parameters

	Pr.	Explanation	Settings	Factory Setting
*	06-00	Low Voltage Level	230V: Frame A to D: 150.0~220.0Vdc Frame E and frames above E: 190.0~220.0V 460V: Frame A to D: 300.0~440.0Vdc Frame E and frames above E: 380.0~440.0V	180.0 200.0 360.0 400.0
*	06-01	Over-voltage Stall Prevention	0: Disabled 230V: 0.0~450.0Vdc 460V: 0.0~900.0Vdc	380.0 760.0
~	06-02	Selection for Over-voltage Stall Prevention	0: Traditional over-voltage stall prevention 1: Smart over-voltage prevention	0
*	06-03	Over-current Stall Prevention during Acceleration	Supper Heavy Duty: 0~180%(100%: drive's rated current)	150
*	06-04	Over-current Stall Prevention during Operation	Super Heavy Duty: 0~200%(100%: drive's rated current)	120 150
*	06-05	Accel. /Decel. Time Selection of Stall Prevention at Constant Speed	0: by current accel/decel time 1: by the 1st accel/decel time 2: by the 2nd accel/decel time 3: by the 3rd accel/decel time 4: by the 4th accel/decel time 5: by auto accel/decel	0
×	06-06	Over-torque Detection Selection (OT1)	 0: No function 1: Over-torque detection during constant speed operation, continue to operate after detection 2: Over-torque detection during constant speed operation, stop operation after detection 3: Over-torque detection during operation, continue to operate after detection 4: Over-torque detection during operation, stop operation after detection 	0
*	06-07	Over-torque Detection Level (OT1)	10~250% (100%: drive's rated current)	120
*	06-08	Over-torque Detection Time (OT1)	0.0~60.0 sec.	0.1
*	06-09	Over-torque Detection Selection (OT2)	 0: No function 1: Over-torque detection during constant speed operation, continue to operate after detection 2: Over-torque detection during constant speed operation, stop operation after detection 3: Over-torque detection during operation, continue to operation after detection 4: Over-torque detection during operation, stop operation after detection 	0
~	06-10	Over-torque Detection Level (OT2)	10~250% (100%: drive's rated current)	120
~	06-11	Over-torque Detection Time (OT2)	0.0~60.0 sec.	0.1
~	06-12	Current Limit	0~250% (100%: drive's rated current)	150
*	06-13	Electronic Thermal Relay Selection (Motor 1)	0: Inverter motor 1: Standard motor 2: Disable	2
~	06-14	Electronic Thermal Characteristic for Motor 1	30.0~600.0 sec.	60.0
*	06-15	Heat Sink Over-heat (OH) Warning	0.0~110.0℃	85.0

Pr.	Explanation	Settings	Factor Setting
06-16	Stall Prevention Limit Level	0~100% (Pr.06-03, Pr.06-04)	50
06-17	Present Fault Record	0: No fault record	0
06-18	Second Most Recent Fault Record	1: Over-current during acceleration (ocA)	0
06-19	Third Most Recent Fault Record	2: Over-current during deceleration (ocd)	0
06-20	Fourth Most Recent Fault Record	3: Over-current during constant speed(ocn)	0
06-21	Fifth Most Recent Fault Record	4: Ground fault (GFF)	0
06-22	Sixth Most Recent Fault Record	5: IGBT short-circuit (occ) 6: Over-current at stop (ocS) 7: Over-voltage during acceleration (ovA) 8: Over-voltage during deceleration (ovA) 9: Over-voltage during constant speed (ovn) 10: Over-voltage during acceleration (LvA) 11: Low-voltage during deceleration (LvA) 12: Low-voltage during deceleration (LvA) 13: Low-voltage during deceleration (LvA) 13: Low-voltage during deceleration (LvA) 13: Low-voltage during deceleration (LvA) 14: Stop mid-low voltage (LvS) 15: Phase loss protection (OrP) 16: IGBT over-heat (OH1) 17: Capacitance over-heat (OH2) 18: tH10 (TH1 open: IGBT over-heat protection error) 19: tH20 (TH2 open: capacitance over-heat protection error) 20: Reserved 21: Drive over-load (oL) 22: Electronics thermal relay 1 (EoL1) 23: Electronics thermal relay 2 (EoL2) 24: Motor overheat (OH3) (PTC) 25: Reserved 26: Over-torque 1 (ot1) 27: Over-torque 2 (ot2) 28: Low current (uC) 29: Home limit error (CF1) 31: Memory write-in error (cF1) 31: Memory read-out error (cF2) 32: Reserved 33: U-phase current detection error (cd1) 34: V-phase current detection error (cd3) 36: Clamp current detection error (cd3) 36: Clamp current detection error (Hd0) 37: Over-current detection error (Hd1) 38: Over-voltage detection error (Hd3) 40: Auto tuning error (AUE) 41: PID feedback loss (AFE) 42: PG feedback stall (PGF3) 45: PG stip error (PGF4) 46: PG ref loss (PGF2) 44: PG ref loss (PGF2) 44: PG ref loss (PGF2) 44: PG ref loss (PGF2) 44: Analog current input loss (ACE) 49: External fault input (EF) 50: Emergency stop (EF1) 51: External Base Block (bb) 52: Password error (PcodE)	0

	Pr.	Explanation	Settings	Factory Setting
			53: Reserved	
			54: Communication error (CE1)	1
			55: Communication error (CE2)	1
			56: Communication error (CE3)	-
			57: Communication error (CE4)	-
			58: Communication Time-out (CE10)	-
			59: PU Time-out (CP10)	1
			60: Brake transistor error (bF)	1
			61: Y-connection/△-connection switch error (ydc)	-
			62: Decel. Energy Backup Error (dEb)	-
			63: Slip error (oSL)	-
			64: Electromagnet switch error (ryF)	-
				-
			65 : PG Card Error (PGF5)	-
			66~67: Reserved	_
			68: Sensorless estimated speed has wrong direction	_
			69: Sensorless estimated speed is over-speed	
			70: Sensorless estimated speed deviated	
			71: Reserved	
			72: STO loss 1	1
			73: External safety gate S1	1
			74~75: Reserved	-
			76: STO	-
			77: STO loss 2	-
			78: STO loss 3	-
				-
			79: U phase over current (Uocc)	4
			80: V phase over current (Vocc)	_
			81: W phase over current (Wocc)	_
			82: U phase output phase loss (OPHL)	
			83: V phase output phase loss (OPHL)	
			84: W phase output phase loss (OPHL)	
			85: PG-02U ABZ hardware disconnection	1
			86: PG-02U UVW hardware disconnection	-
			87~89: Reserved	-
			90: Inner PLC function is forced to stop	-
			100: Reserved	-
				-
			101: CANopen software disconnect1 (CGdE)	-
			102: CAN open software disconnect2 (CHbE)	-
			103: CANopen synchronous error (CSYE)	-
			104: CANopen hardware disconnect (CbFE)	_
			105: CANopen index setting error (CldE)	
			106: CANopen slave station number setting error (CAdE)	
			107: CANopen index setting exceed limit (CFrE)	1
			111: Internal communication overtime error(InrCOM)	-
	06-23	Fault Output Option 1	0~65535(refer to bit table for fault code)	0
	06-24	Fault Output Option 2	0~65535(refer to bit table for fault code)	0
	06-25	Fault Output Option 3	0~65535(refer to bit table for fault code)	0
	06-26	Fault Output Option 4	0~65535(refer to bit table for fault code)	0
/	06-27	Electronic Thermal Relay Selection 2 (Motor 2)	0: Inverter motor 1: Standard motor 2: Disable	2
,	06-28	Electronic Thermal Characteristic for Motor 2	30.0~600.0 sec	60.0
	06-29	PTC Detection Selection	0: Warn and keep operation 1: Warn and ramp to stop 2: Warn and coast to stop 3: No warning	0

Pr.	Explanation	Settings	Factory Setting
06-30	PTC Level	0.0~100.0%	50.0
06-31	Frequency Command for Malfunction	0.00~655.35 Hz	Read only
06-32	Output Frequency at Malfunction	0.00~655.35 Hz	Read only
06-33	Output Voltage at Malfunction	0.0~6553.5 V	Read only
06-34	DC Voltage at Malfunction	0.0~6553.5 V	Read only
06-35	Output Current at Malfunction	0.00~655.35 Amp	Read only
06-36	IGBT Temperature at Malfunction	0.0~6553.5 ℃	Read only
06-37	Capacitance Temperature at Malfunction	0.0~6553.5 ℃	Read only
06-38	Motor Speed in rpm at Malfunction	0~65535	Read only
06-39	Torque Command at Malfunction	0~65535	Read only
06-40	Status of Multi-function Input Terminal at Malfunction	0000h~FFFFh	Read only
06-41	Status of Multi-function Output Terminal at Malfunction	0000h~FFFFh	Read only
06-42	Drive Status at Malfunction	0000h~FFFFh	Read only
06-43	Reserved	11	Uniy
06-44	STO Alarm Latch	0: STO Alarm Latch 1: STO Alarm no Latch	0
06-45	Treatment to Output Phase Loss Detection (OPHL)	0: Warn and keep operation 1: Warn and ramp to stop 2: Warn and coast to stop 3: No warning	3
06-46	Deceleration Time of Output Phase Loss	0.000~65.535 sec	0.500
06-47	Current Bandwidth	0.00~655.35%	1.00
06-48	DC Brake Time of Output Phase Loss	0.000~65.535 sec	0.100
06-49	Reserved		
06-50	Reserved		
06-51	Reserved		
06-52	Reserved		
06-53	Treatment for the detected Input Phase Loss (OrP)	0: warn and ramp to stop 1: warn and coast to stop	0
06-54	Reserved	l l	
06-55	Derating Protection	 0: constant rated current and limit carrier wave by load current and temperature 1: constant carrier frequency and limit load current by setting carrier wave 2: constant rated current(same as setting 0), but close current limit 	0
06-56	PT100 Detected Level 1	0.000~10.000V	5.000
06-57	PT100 Detected Level 2	0.000~10.000V	7.000
06-58	PT100 Level 1 Frequency Protect	0.00~600.00Hz	0.00

Pr.	Explanation	Settings	Factory Setting
06-59	Reserved		
06-60	Software Detection GFF Current Level	0.0~6553.5 %	60.0
06-61	Software Detection GFF Filter Time	0.0~6553.5 %	0.10
06-62	Disable Level of dEb	230V series: 0.0~220.0 Vdc 460V series: 0.0~440.0 Vdc	180.0 /360.0
06-63	Fault Record 1 (Day)	0~65535 days	Read only
06-64	Fault Record 1 (Min)	0~1439 min	Read only
06-65	Fault Record 2 (Day)	0~65535 days	Read
06-66	Fault Record 2 (Min)	0~1439 min	Read
06-67	Fault Record 3 (Day)	0~65535 days	Read
06-68	Fault Record 3 (Min)	0~1439 min	Read
06-69	Fault Record 4 (Day)	0~65535 days	Read
06-70	Fault Record 4 (Min)	0~1439 min	Read
06-71	Low Current Setting Level	0.0 ~ 6553.5 %	0.0
06-72	Low Current Detection Time	0.00 ~ 655.35sec	0.00
06-73	Treatment for low current	 0 : No function 1 : Warn and coast to stop 2 : Warn and ramp to stop by 2nd deceleration time 3 : Warn and operation continue 	0

07 Special Parameters

	Pr.	Explanation	Settings	Factory Setting	
/	07-00	Software Brake Level	230V: 350.0~450.0Vdc 460V: 700.0~900.0Vdc	380.0 760.0	
1	07-01	DC Brake Current Level	0~100%	0	
1	07-02	DC Brake Time at Start-up	0.0~60.0 sec.	0.0	
,	07-03	DC Brake Time at Stop	0.0~60.0 sec.	0.0	
,	07-04	Startup Frequency for DC Brake	0.00~600.00Hz	0.00	
,	07-05	Maximum Power Loss Duration	1~200%	100	
,	07-06	Restart after Momentary Power Loss	0: Stop operation 1: Speed search for last frequency command 2: Speed search for minimum output frequency	0	
,	07-07	Maximum Power Loss Duration	0.1~20.0 sec.	2.0	
,	07-08	Base Block Time	0.1~5.0 sec.	0.5	
,	07-09	Current Limit for Speed Search	20~200%	50	
,	07-10	Treatment to Restart After Fault	0: Stop operation 1: Speed search starts with current speed 2: Speed search starts with minimum output frequency	0	
,	07-11	Number of Times of Auto Restart After Fault	0~10	0	
,	07-12	Speed Search during Start-up	0: Disable 1: Speed search for maximum output frequency 2: Speed search for start-up motor frequency 3: Speed search for minimum output frequency		
,	07-13	Decel. Time to Momentary Power Loss	0: Disable 1~6: DCBUS control, Auto decel. time	0	
,	07-14	DEB Return Time	0.0~25.0 sec.	0.0	
	07-15	Dwell Time at Accel.	0.00 ~ 600.00 sec.	0.00	
	07-16	Dwell Frequency at Accel.	0.00 ~ 600.00Hz	0.00	
	07-17	Dwell Time at Decel.	0.00 ~ 600.00 sec.	0.00	
	07-18	Dwell Frequency at Decel.	0.00 ~ 600.00Hz	0.00	
(07-19	Fan Cooling Control	 0: Fan always ON 1: 1 minute after the AC motor drive stops, fan will be OFF 2: When the AC motor drive runs, the fan is ON. When the AC motor drive stops, the fan is OFF 3: Fan turns ON when preliminary heat sink temperature (around 60°C) is attained. 4: Fan always OFF 	0	
(07-20	Emergency Stop (EF) & Force to Stop Selection	0: Coast stop 1: By deceleration Time 1 2: By deceleration Time 2 3: By deceleration Time 3 4: By deceleration Time 4 5: System Deceleration 6: Automatic Deceleration	0	
,	07-21	Auto Energy-saving Operation	0: Disable 1: Enable	0	
,	07-22	Energy-saving Gain	10~1000%	100	

	Pr.	Explanation	Settings	Factory Setting
*	07-23	Auto Voltage Regulation(AVR) Function	0: Enable AVR 1: Disable AVR 2: Disable AVR during deceleration	0
*	07-24	Filter Time of Torque Compensation (V/F and SVC control mode)	0.001~10.000 sec.	0.020
*	07-25	Filter Time of Slip Compensation (V/F and SVC control mode)	0.001~10.000 sec.	0.100
~	07-26	Torque Compensation Gain (V/F and SVC control mode)	0~10	0
~	07-27	Slip Compensation Gain (V/F and SVC control mode)	0.00~10.00	0.00
~	07-28	Reserved		
~	07-29	Slip Deviation Level	0.0~100.0%	0
~	07-30	Detection Time of Slip Deviation	0.0~10.0 sec.	1.0
*	07-31	Over Slip Treatment	0: Warn and keep operation 1: Warn and ramp to stop 2: Warn and coast to stop 3: No warning	0
~	07-32	Motor Hunting Gain	0~10000	1000
	07-33	Auto Reset Time for Restart after Fault	0.0~6000.0 sec.	60.0

08 High-function PID Parameters

	Pr.	Explanation	Settings	Factory Setting	
N	08-00	Input Terminal for PID Feedback	 0: No function 1: Negative PID feedback: on analogue input acc. To setting 5 of Pr. 03-00 to Pr.03-02. 2: Negative PID feedback from PG card (Pr.10-15, skip direction) 3: Negative PID feedback from PG card (Pr.10-15) 4: Positive PID feedback from external terminal AVI (Pr.03-00) 5: Positive PID feedback from PG card (Pr.10-15, skip direction) 6: Positive PID feedback from PG card (Pr.10-15) 7: Negative PID feedback from communication protocol 8: Positive PID feedback from communication protocol 	0	
×	08-01	Proportional Gain (P)	0.0~500.0%	1.0	
×	08-02	Integral Time (I)	0.00~100.00 sec.	1.00	
×	08-03	Derivative Control (D)	0.00~1.00 sec.	0.00	
×	08-04	Upper Limit of Integral Control	0.0~100.0%	100.0	
×	08-05	PID Output Frequency Limit	0.0~110.0%	100.0	
	08-06	PID feedback value by communication protocol	0.00~200.00%	0.00	
×	08-07	PID Delay Time	0.0~2.5 sec.	0.0	
*	08-08	Feedback Signal Detection Time	0.0~3600.0 sec.	0.0	
×	08-09	Feedback Signal Fault Treatment	0: Warn and keep operation 1: Warn and ramp to stop 2: Warn and coast to stop 3: Warn and operate at last frequency	0	
×	08-10	Sleep Reference Point	0.00 ~ 600.00Hz	0.00	
×	08-11	Wakeup Reference Point	0.00 ~ 600.00Hz	0.00	
×	08-12	Sleep Time	0.0 ~ 6000.0 sec.	0.0	
×	08-13	PID Deviation Level	1.0 ~ 50.0%	10.0	
×	08-14	PID Deviation Time	0.1~300.0 sec.	5.0	
×	08-15	Filter Time for PID Feedback	0.1~300.0 sec.	5.0	
×	08-16	PID Compensation Selection	0: Parameter setting 1: Reserved	0	
×	08-17	PID Compensation	-100.0~+100.0%	0	
	08-18	Setting of Sleep Mode Function	0: Follow PID output command 1: Follow PID feedback signal	0	
	08-19	Wakeup Integral Limit	0.0~200.0%	50.0	
	08-20	PID Mode Selection	0: Serial connection 1: Parallel connection	0	
	08-21	Enable PID to Change Operation Direction	0: Operation direction can be changed 1: Operation direction can not be changed	0	
	08-22	Wakeup Delay Time	0.00~600.00 Seconds	0.00	
	08-23PID Control FlagBit 0 = 1, PID reverse running must follow the setting of Pr00-23. Bit 0 = 0, PID reverse running follow PID's calculated value.				

09 Communication Parameters

	Pr.	Explanation	Settings	Factory Setting
×	09-00	COM1 Communication Address	1~254	1
×	09-01	COM1 Transmission Speed	4.8~115.2Kbps	9.6
*	09-02	COM1 Transmission Fault Treatment	0: Warn and continue operation 1: Warn and ramp to stop 2: Warn and coast to stop 3: No warning and continue operation	3
~	09-03	COM1 Time-out Detection	0.0~100.0 sec.	0.0
*	09-04	COM1 Communication Protocol	1: 7N2 (ASCII) 2: 7E1 (ASCII) 3: 7O1 (ASCII) 4: 7E2 (ASCII) 5: 7O2 (ASCII) 6: 8N1 (ASCII) 7: 8N2 (ASCII) 8: 8E1 (ASCII) 9: 8O1 (ASCII) 10: 8E2 (ASCII) 11: 8O2 (ASCII) 12: 8N1 (RTU) 13: 8N2 (RTU) 14: 8E1 (RTU) 15: 8O1 (RTU) 16: 8E2 (RTU) 17: 8O2 (RTU)	1
*	09-05	Reserved		
N	09-08 09-09	Response Delay Time	0.0~200.0ms	2.0
~	09-10	Main Frequency of the Communication	0.00~600.00Hz	60.00
×	09-11	Block Transfer 1	0~65535	0
×	09-12	Block Transfer 2	0~65535	0
~	09-13	Block Transfer 3	0~65535	0
*	09-14	Block Transfer 4	0~65535	0
*	09-15	Block Transfer 5	0~65535	0
*	09-16	Block Transfer 6	0~65535	0
*	09-17	Block Transfer 7	0~65535	0
*	09-18	Block Transfer 8	0~65535	0
*	09-19	Block Transfer 9	0~65535	0
*	09-20	Block Transfer 10	0~65535	0
*	09-21	Block Transfer 11	0~65535	0
*	09-22	Block Transfer 12	0~65535	0
*	09-23	Block Transfer 13	0~65535	0
*	09-24	Block Transfer 14	0~65535	0
*	09-25	Block Transfer 15	0~65535	0
*	09-26	Block Transfer 16	0~65535	0

Pr.	Explanation	Settings	Factory Setting
09-27	Deserved		
~ 09-29	Reserved		
09-30	Communication Decoding Method	0: Decoding Method 1 1: Decoding Method 2	1
09-31	Internal Communication Protocol	0: Modbus 485 -1: Internal Communication Slave 1 -2: Internal Communication Slave 2 -3: Internal Communication Slave 3 -4: Internal Communication Slave 4 -5: Internal Communication Slave 5 -6: Internal Communication Slave 6 -7: Internal Communication Slave 7 -8: Internal Communication Slave 8 -9: Reserved -10: Internal Communication Master -11: Reserve -12: Internal PLC Control	0
09-32	Reserved		
09-33	PLC command force to 0	0~65535	0
09-34	Reserved		
09-35	PLC Address	1~254	2
09-36	CANopen Slave Address	0: Disable 1~127	0
09-37	CANopen Speed	0: 1M 1: 500k 2: 250k 3: 125k 4: 100k (Delta only) 5: 50k	0
09-38	Reserved		
09-39	CANopen Warning Record	bit 0: CANopen Guarding Time out bit 1: CANopen Heartbeat Time out bit 2: CANopen SYNC Time out bit 3: CANopen SDO Time out bit 4: CANopen SDO buffer overflow bit 5: Can Bus Off bit 6: Error protocol of CANopen	0
09-40	CANopen Decoding Method	0: Delta defined decoding method 1: CANopen DS402 Standard	1
09-41	CANopen Communication Status	0: Node Reset State 1: Com Reset State 2: Boot up State 3: Pre Operation State 4: Operation State 5: Stop State	Read Only
09-42	CANopen Control Status	 0: Not ready for use state 1: Inhibit start state 2: Ready to switch on state 3: Switched on state 4: Enable operation state 7: Quick Stop Active state 13: Err Reaction Activation state 14: Error state 	Read Only

Pr.	Explanation	Settings	Factory Setting		
09-43	Reset CANopen Index	bit0: reset address 20XX to 0. bit1: reset address 264X to 0 bit2: reset address 26AX to 0 bit3: reset address 60XX to 0	65535		
09-44	Reserved	·			
09-45	CANopen Master Function	0: Disable 1: Enable	0		
09-46	CANopen Master Address	1~127	100		
09-47 ~ 09-59	Reserved				
09-60	Identifications for Communication Card	0: No communication card 1: DeviceNet Slave 2: Profibus-DP Slave 3: CANopen Slave/Master 4: Modbus-TCP Slave 5: Ethernet/IP Slave 6~8: Reserved	##		
09-61	Firmware Version of Communication Card	Read only	##		
09-62	Product Code	Read only	##		
09-63	Error Code	Read only	##		
09-64		1			
~ 09-69	Reserved				
09-70	Address of Communication Card	DeviceNet: 0-63 Profibus-DP: 1-125	1		
09-71	Setting of DeviceNet Speed	Standard DeviceNet: 0: 125Kbps 1: 250Kbps 2: 500Kbps Non standard DeviceNet: (Delta Only) 0: 10Kbps 1: 20Kbps 2: 50Kbps 3: 100Kbps 4: 125Kbps 5: 250Kbps 5: 250Kbps 6: 500Kbps 7: 800Kbps 8: 1Mbps 0: Disable In this mode, baud rate can only be 0,1,2,3 in	2		
09-72	Other Setting of DeviceNet Speed	 standard DeviceNet speed 1: Enable In this mode, the baud rate of DeviceNet can be same as CANopen (0-8). 	0		
09-73	Reserved				
09-74	Reserved				
09-75	IP Configuration of the Communication Card	0: Static IP 1: Dynamic IP (DHCP)	0		
09-76	IP Address 1 of the Communication Card	0~255	0		
09-77	IP Address 2 of the Communication Card	0~255	0		

Pr.	Explanation	Settings	Factory Setting		
09-78	IP Address 3 of the Communication Card	0~255	0		
09-79	IP Address 4 of the Communication Card	0~255	0		
09-80	Address Mask 1 of the Communication Card	0~255	0		
09-81	Address Mask 2 of the Communication Card	0~255	0		
09-82	Address Mask 3 of the Communication Card	0~255	0		
09-83	Address Mask 4 of the Communication Card	0~255	0		
09-84	Getway Address 1 of the Communication Card	0~255	0		
09-85	Getway Address 2 of the Communication Card	0~255	0		
09-86	Getway Address 3 of the Communication Card	0~255	0		
09-87	Getway Address 4 of the Communication Card	0~255	0		
09-88	Password for Communication Card (Low word)	0~255	0		
09-89	Password for Communication Card (High word)	0~255	0		
09-90	Reset Communication Card	0: No function 1: Reset, return to factory setting	0		
09-91	Additional Setting for Communication Card	 Bit0: Enable IP filter Bit 1: Enable to write internet parameters (1bit). This bit will change to disable when it finishes saving the internet parameter updates. Bit 2: Enable login password (1bit). This bit will be changed to disable when it finishes saving the internet parameter updates. 	0		
09-92	Status of Communication Card	Bit 0: password enable When the communication card is set with			

10 Speed Feedback Control Parameters

IM: Induction Motor; PM: Permanent Magnet Motor

	Pr.	Explanation	Settings	Factory Setting
	10-00	Encoder Type Selection	0: Disable 1: ABZ 2: ABZ (Delta Encoder for Delta servo motor) 3: Resolver 4: ABZ/UVW 5: MI8 single phase pulse input	0
	10-01	Encoder Pulse	1~20000	600
	10-02	Encoder Input Type Setting	 0: Disable 1: Phase A leads in a forward run command and phase B leads in a reverse run command 2: Phase B leads in a forward run command and phase A leads in a reverse run command 3: Phase A is a pulse input and phase B is a direction input. (low input=reverse direction, high input=forward direction) 4: Phase A is a pulse input and phase B is a direction input. (low input=forward direction, high input=forward direction) 5: Single-phase input 	0
~	10-03	Output Setting for Frequency Division (denominator)	1~255	1
~	10-04	Electrical Gear at Load Side A1	1~65535	100
~	10-05	Electrical Gear at Motor Side B1	1~65535	100
~	10-06	Electrical Gear at Load Side A2	1~65535	100
~	10-07	Electrical Gear at Motor Side B2	1~65535	100
~	10-08	Treatment for Encoder Feedback Fault	0: Warn and keep operation 1: Warn and ramp to stop 2: Warn and coast to stop	2
~	10-09	Detection Time of Encoder Feedback Fault	0.0~10.0sec 0: No function	1.0
~	10-10	Encoder Stall Level	0~120% 0: No function	115
~	10-11	Detection Time of Encoder Stall	0.0 ~ 2.0sec	0.1
~	10-12	Treatment for Encoder Stall	0: Warn and keep operation 1: Warn and ramp to stop 2: Warn and coast to stop	2
~	10-13	Encoder Slip Range	0~50% (0: disable)	50
~	10-14	Detection Time of Encoder Slip	0.0~10.0sec	0.5
~	10-15	Treatment for Encoder Stall and Slip Error	0: Warn and keep operation 1: Warn and ramp to stop 2: Warn and coast to stop	2
~	10-16	Pulse Input Type Setting	 0: Disable 1: Phase A leads in a forward run command and phase B leads in a reverse run command 2: Phase B leads in a forward run command and phase A leads in a reverse run command 3: Phase A is a pulse input and phase B is a direction input. (L=reverse direction, H=forward direction). 4: Phase A is a pulse input and phase B is a direction input. (L=forward direction, H=reverse direction). 	0
~	10-17	Electrical Gear A	1~65535	100
~	10-18	Electrical Gear B	1~65535	100

	Pr.	Explanation	Settings	Factory Setting
~	10-19	Positioning for Encoder Position	0~65535pulse	0
~	10-20	Range for Encoder Position Attained	0~65535pulse	10
~	10-21	Filter Time (PG2)	0~65.535 sec	0.100
	10-22	Speed Mode (PG2)	0: Electronic Frequency 1: Mechanical Frequency (base on pole pair)	0
	10-23	Reserved		
~	10-24	FOC&TQC Function Control	0~65535	0
~	10-25	FOC Bandwidth of Speed Observer	1.0~100.0Hz	40.0
~	10-26	FOC Minimum Stator Frequency	0.0~2.0%fN	2.0
~	10-27	FOC Low-pass Filter Time Constant	1~1000ms	50
~	10-28	FOC Excitation Current Rise Time	33~100%Tr	100
~	10-29	Top Limit of Frequency Deviation	0.00~100.00Hz	20.00
	10-30	Resolver Pole Pair	1~50	1
~	10-31	I/F Mode, current command	0~150%Irated (Rated current % of the drive)	40
~	10-32	PM Sensorless Observer Bandwidth for High Speed Zone	0.00~600.00Hz	5.00
	10-33	Reserved		
~	10-34	PM Sensorless Observer Low-pass Filter Gain	0.00~655.35 Hz	1.00
	10-35	ARM(Kp)	1~3	1
	10-36	ARM(Ki)	1~3	1
~	10-37	PM Sensorless Control Word	0000~FFFFh	0000
	10-38	Reserved		
~	10-39	Frequency when switch from I/F Mode to PM sensorless mode.	0.00~600.00Hz	20.00
*	10-40	Frequency when switch from PM sensorless observer mode to V/F mode.	0.00~600.00Hz	20.00
~	10-41	I/F mode, low pass-filter time	0.0~6.0sec	0.2
~	10-42	Initial Angle Detection Time	0~20ms	5
~	10-43	PG card version	0~655.35	Read only
	10-44 ~ 10-48	Reserved		
~	10-49	Zero Voltage Time while Start Up	0~65.353 sec.	0.2 sec.
~	10-50	Reverse Angle Limit (Electrical angle)	0~30.00 degree	10.00
~	10-51	Injection Frequency	0~2000Hz	500Hz
~	10-52	Injection Magnitude	0.0~200.0V	15/30V

11 Advanced Parameters

IM: Induction Motor; PM: Permanent Magnet Motor

	Pr.	Explanation	Settings	Factory Setting
*	11-00	System Control	bit 0: Auto tuning for ASR and APR bit 1: Inertia estimate (only for FOCPG mode) bit 2: Zero servo bit 3: Dead Time compensation closed Bit 7: Selection to save or not save the frequency Bit 8: Maximum speed of point to point position control	0
*	11-01	Per Unit of System Inertia	1~65535 (256=1PU)	400
*	11-02	ASR1/ASR2 Switch Frequency	5.00~600.00Hz	7.00
×	11-03	ASR1 Low-speed Bandwidth	1~40Hz (IM)/ 1~100Hz (PM)	10
~	11-04	ASR2 High-speed Bandwidth	1~40Hz (IM)/ 1~100Hz (PM)	10
~	11-05	Zero-speed Bandwidth	1~40Hz (IM)/ 1~100Hz (PM)	10
×	11-06	ASR Control (P) 1	0~40Hz (IM)/ 1~100Hz (PM)	10
*	11-07	ASR Control (I) 1	0.000~10.000 sec	0.100
~	11-08	ASR Control (P) 2	0~40Hz (IM)/ 0~100Hz (PM)	10
~	11-09	ASR Control (I) 2	0.000~10.000 sec	0.100
×	11-10	P Gain of Zero Speed	0~40Hz (IM)/ 0~100Hz (PM)	10
×	11-11	I Gain of Zero Speed	0.000~10.000 sec	0.100
*	11-12	Gain for ASR Speed Feed Forward	0~100%	0
~	11-13	PDFF Gain	0~200%	30
~	11-14	Low-pass Filter Time of ASR Output	0.000~0.350 sec	0.008
~	11-15	Notch Filter Depth	0~20db	0
~	11-16	Notch Filter Frequency	0.00~200.00Hz	0.0
~	11-17	Forward Motor Torque Limit	0~500%	200
*	11-18	Forward Regenerative Torque Limit	0~500%	200
~	11-19	Reverse Motor Torque Limit	0~500%	200
~	11-20	Reverse Regenerative Torque Limit	0~500%	200
~	11-21	Gain Value of Flux Weakening Curve for Motor 1	0~200%	90
~	11-22	Gain Value of Flux Weakening Curve for Motor 2	0~200%	90
~	11-23	Speed Response of Flux Weakening Area	0~150%	65
*	11-24	APR Gain	0.00~40.00Hz (IM)/ 0~100.00Hz (PM)	10.00
~	11-25	Gain Value of APR Feed Forward	0~100	30
*	11-26	APR Curve Time	0.00~655.35 sec	3.00
*	11-27	Max. Torque Command	0~500%	100
*	11-28	Source of Torque Offset	0: No function 1: Analog signal input (Pr.03-00) 2: RS485 communication (Pr.11-29) 3: Control by external terminal (Pr.11-30~11-32)	0

	Pr.	Explanation	Settings	Factory Setting
~	11-29	Torque Offset Setting	0~100%	0.0
*	11-30	High Torque Offset	0~100%	30.0
~	11-31	Middle Torque Offset	0~100%	20.0
~	11-32	Low Torque Offset	0~100%	10.0
*	11-33	Source of Torque Command	0: Digital keypad 1: RS-485 communication (Pr.11-34) 2: Analog input (Pr.03-00) 3: CANopen 4: Reserved 5: Communication extension card	0
*	11-34	Torque Command	-100.0~+100.0% (Pr.11-27*11-34)	0
~	11-35	Filter Time of Torque Command	0.000~1.000sec	0.000
*	11-36	Speed Limit Selection	 0: Set by Pr.11-37 (Forward speed limit) and Pr.11-38 (Reverse speed limit) 1: Set by Pr.11-37,11-38 and Pr.00-20 (Source of Master Frequency Command) 2: Set by Pr.00-20 (Source of Master Frequency Command). 	0
~	11-37	Forward Speed Limit (torque mode)	0~120%	10
~	11-38	Reverse Speed Limit (torque mode)	0~120%	10
	11-39	Zero Torque Command Mode	0: Torque mode 1: Speed mode	0
	11-40	Command Source of Point-to-Point Position Control	0: External terminal 1: Reserved 2: RS485 3: CAN 4: PLC 5: Communication card	0
	11-41	Reserved		
	11-42	System Control Flags	0000~FFFFh	0000
	11-43	Max. Frequency of Point- to-Point Position Control	0.00~327.67Hz	10.00
	11-44	Accel. Time of Point-to Point Position Control	0.00~655.35 sec	1.00
	11-45	Decel. Time of Point-to Point Position Control	0.00~655.35 sec	3.00

Chapter 12 Description of Parameter Settings

00 Drive Parameters

✓ This parameter can be set during operation.

GG - GG Identity Code of the AC Motor Drive

Factory Setting: #.#

Settings Read Only

B C - **C C Display AC Motor Drive Rated Current**

Factory Setting: #.#

Settings Read Only

Pr. 00-00 displays the identity code of the AC motor drive. Using the following table to check if Pr.00-01 setting is the rated current of the AC motor drive. Pr.00-01 corresponds to the identity code Pr.00-00.

230V Series										
Frame		A	١			В		С		
kW	0.75	1.5	2.2	3.7	5.5	7.5	11	15	18.5	
HP	1.0	2.0	3.0	5.0	7.5	10	15	20	25	
Pr.00-00	4	6	8	10	12	14	16	18	20	
Rated Current for Super Heavy Duty (A)	5	8	11	17	25	33	49	65	75	
Frame		D			Ē	F				
kW	22	30	37	45	50	75				
HP	30	40	50	60	75	100				
Pr.00-00	22	24	26	28	30	32				
Rated Current for Super Heavy Duty (A)	90	120	146	180	215	255				

460V Series														
Frame	A						В				C			
kW	0.75	1.5	2.	2 3	3.7	5.5	7.5	11	15	5 1	8.5	22	30	
HP	1	2	3	3	5	7.5	10	15	20) 2	25	30	40	
Pr.00-00	5	7	9		11	13	15	17	19	2	21	23	25	
Rated Current for Super Heavy Duty (A)	3.0	4.0	6.	0 9	9.0	12	18	24	32	2 3	38	45	60	
Frame	D					E		F (Э Н				
kW	37	45	55	75	90	110	132	160	185	220	280)		
HP	50	60	75	100	125	150	175	215	250	300	375	5		
Pr.00-00	27	29	31	33	35	37	39	41	43	45	47			
Rated Current for Super Heavy Duty (A)	73	91	110	150	180	220	250	310	370	450	550)		

Parameter Reset

Factory Setting: 0

Settings 0: No Function 1: Write protection for parameters 5: Reset KWH display to 0 6: Reset PLC (including CANopen Master Index) 7: Reset CANopen Index (Slave) 8: keypad lock 9: All parameters are reset to factory settings(base frequency is 50Hz) 10: All parameters are reset to factory settings (base frequency is 60Hz) When it is set to 1, all parameters are read only except Pr.00-02~00-08 and it can be used with password setting for password protection. It needs to set Pr.00-02 to 0 before changing other parameter settings. When it is set to 9 or 10: all parameters are reset to factory settings. If password is set in Pr.00-08, input the password set in Pr.00-07 to reset to factory settings. When it is set to 5, KWH display value can be reset to 0 even when the drive is operating. Pr. 05-26, 05-27, 05-28, 05-29, 05-30 reset to 0. When it is set to 6: clear internal PLC program (includes the related settings of PLC internal CANopen master) When it is set to 7: reset the related settings of CANopen slave.

00-03 Start-up Display Selection Factory setting: 0 Settings 0: Display the frequency command (F) 1: Display the actual output frequency (H) 2: Display User define (U) 3: Output current (A)

I This parameter determines the start-up display page after power is applied to the drive. User defined choice display according to the setting in Pr.00-04.

🗡 | 🛛 🕄 – 🕄 4 | Content of Multi-function Display

> 0: Display output current (A) Settings

- 1: Display counter value (c)
- 2: Display actual output frequency (H.)
- 3: Display DC-BUS voltage (v)
- 4: Display output voltage (E)
- 5: Display output power angle (n)
- 6: Display output power in kW (P)
- 7: Display actual motor speed rpm (r = 00: positive speed; -00 negative speed)
- 8: Display estimate output torque % (t = 00: positive torque; -00 negative torque) (t)

Factory setting: 3

- 9: Display PG feedback (G) (refer to Note 1)
- 10: Display PID feedback in % (b)
- 11: Display AVI in % (1.), 0~10V/4-20mA/0-20mA corresponds to 0~100% (Refer to Note 2)
- 12: Display ACI in % (2.), 4~20mA/0~10V/0-20mA corresponds to 0~100% (Refer to Note 2)
- 13: Display AUI in % (3.), -10V~10V corresponds to -100~100%(Refer to Note 2)
- 14: Display the temperature of IGBT in oC (i.)
- 15: Display the temperature of capacitance in oC (c.)
- 16: The status of digital input (ON/OFF) refer to Pr.02-12 (i) (Refer to Note3)
- 17: Display digital output status ON/OFF (Pr.02-18) (o) (refer to NOTE 4)
- 18: Display the multi-step speed that is executing (S)
- 19: The corresponding CPU pin status of digital input (d) (refer to NOTE 3)
- 20: The corresponding CPU pin status of digital output (0.) (refer to NOTE4)
- 21: Actual motor position (PG1 of PG card). When the motor direction changes or the drive stops, the counter will start from 0 (display value restarts counting from 0) (Max. 65535) (P.)
- 22: Pulse input frequency (PG2 of PG card) (S.)
- 23: Pulse input position (PG2 of PG card) (max. 65535) (q.)
- 24: Position command tracing error (E.)
- 25: Overload counting (0.00~100.00%) (o.) (Refer to Note 6)
- 26: GFF Ground Fault (Unit :%)(G.)
- 27: DC Bus voltage ripple (Unit: Vdc)(r.)
- 28: Display PLC register D1043 data (C) display in hexadecimal
- 29: Display PM motor pole section (EMC-PG01U application) (4.)
- 30 : Display output of user defined (U)
- 31 : H page x 00-05 Display user Gain(K)
- 32: Number of actual motor revolution during operation (PG card plug in and Z phase signal input) (Z.)
- 33: Motor actual position during operation (when PG card is connected)(q)
- 34: Operation speed of fan(%) (F.)
- 35: Control Mode display: 0= Speed control mode (SPD), 1= torque control mode (TQR) (t.)
- 36: Present operating carrier frequency of drive (Hz) (J.)
- 37: Reserved
- 38: Display drive status (6.) (Refer to Note 7)
- 40: Torque command, unit: %(L.)
- 41: KWH display, unit: KWH(J)
- 42: PID reference, unit: %(h.)

- 43: PID offset, unit: %(o.)
- 44: PID output frequency, unit: Hz(b.)
- 45: Hardware version

1. When Pr.10-01 is set to 1000 and Pr.10-02 is set to 1/2, the display range for PG feedback will be from 0 to 4000.

When Pr.10-01 is set to 1000 and Pr.10-02 is set to 3/4/5, the display range for PG feedback will be from 0 to 1000.

Home position: If it has Z phase, Z phase will be regarded as home position. Otherwise, home position will be the encoder start up position.

- It can display negative values when setting analog input bias (Pr.03-03~03-10). Example: assume that AVI input voltage is 0V, Pr.03-03 is 10.0% and Pr.03-07 is 4 (Serve bias as the center).
- 3. Example: If REV, MI1 and MI6 are ON, the following table shows the status of the terminals. 0: OFF, 1: ON

Terminal	MI15	MI14	MI13	MI12	MI11	MI10	MI8	MI7	MI6	MI5	MI4	MI3	MI2	MI1	REV	FWD
Status	0	0	0	0	0	0	0	0	1	0	0	0	0	1	1	0

MI10~MI15 are the terminals for extension cards (Pr.02-26~02-31).

If REV, MI1 and MI6 are ON, the value is 0000 0000 1000 0110 in binary and 0086h in HEX. When Pr.00-04 is set to "16" or "19", it will display "0086h" with LED U is ON on the keypad KPC-CE01. The setting 16 is the status of digital input by Pr.02-12 setting and the setting 19 is the corresponding CPU pin status of digital input, the FWD/REV action and the three-wire MI are not controlled by Pr.02-12. User can set to 16 to monitor digital input status and then set to 19 to check if the wire is normal.

 Assume that RY1: Pr.02-13 is set to 9 (Drive ready). After applying the power to the AC motor drive, if there is no other abnormal status, the contact will be ON. The display status will be shown as follows.
 N.O. switch status:

Terminal		Rese	erved			Rese	erved			Rese	erved		MO2	MO1	Reserved	RY2	RY1
Status	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1

At the meanwhile, if Pr.00-04 is set to 17 or 20, it will display in hexadecimal "0001h" with LED U is ON on the keypad. The setting 17 is the status of digital output by Pr.02-18 setting and the setting 20 is the corresponding CPU pin status of digital output. User can set 17 to monitor the digital output status and then set to 20 to check if the wire is normal.

- 5. Setting 8: 100% means the motor rated torque. Motor rated torque = (motor rated power $x60/2\pi$)/motor rated speed
- 6. If Pr.00-04 = 25, when display value reaches 100.00%, the drive will show "oL" as an overload warning.
- 7. If Pr.00-04 = 38,

Bit 0: The drive is running forward.

- Bit 1: The drive is running backward.
- Bit 2: The drive is ready.
- Bit 3: Errors occurred on the drive.
- Bit 4: The drive is running.
- Bit 5: Warnings on the drive.

Coefficient Gain in Actual Output Frequency

Factory Setting: 1

Factory Setting: #.#

Factory Setting: 0

This parameter is to set coefficient gain in actual output frequency. Set Pr.00-04= 31 to display the calculation result on the screen (calculation = output frequency * Pr.00-05).

Software Version

Settings Read only

B - **B** - **B** Parameter Protection Password Input

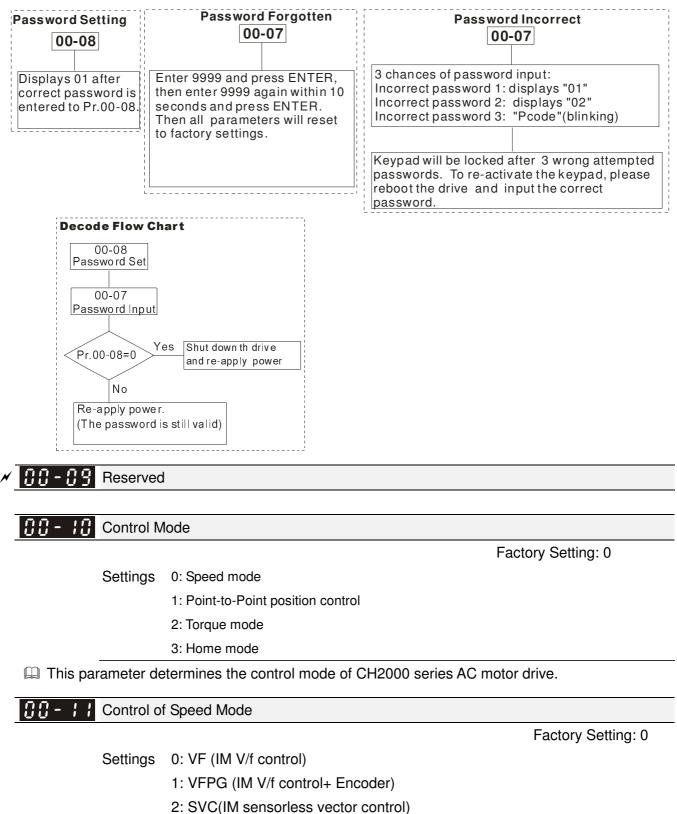
Settings 1~9998, 10000~65535

Display 0~3 (the times of password attempts)

- This parameter allows user to enter their password (which is set in Pr.00-08) to unlock the parameter protection and to make changes to the parameter.
- Pr.00-07 and Pr.00-08 are used to prevent the personal misoperation.
- When the user have forgotten the password, clear the setting by input 9999 and press ENTER key, then input 9999 again and press Enter within 10 seconds. After decoding, all the settings will return to factory setting.

✓ **33 - 38** Parameter Protection Password Setting

Factory Setting: 0


Settings 1~9998, 10000~65535

- 0: No password protection / password is entered correctly (Pr00-07)
- 1: Password has been set
- To set a password to protect your parameter settings. If the display shows 0, no password is set nor password has been correctly entered in Pr.00-07. All parameters can then be changed, including Pr.00-08. The first time you can set a password directly. After successful setting of password the display will show 1. Be sure to write down the password for later use. To cancel the parameter lock, set the parameter to 0 after inputting correct password into Pr. 00-07.
- How to retrieve parameter protection after decoding by Pr.00-07:

Method 1: Re-enter the password to Pr.00-08 (input the password once). Method 2: After reboots, password function will be recovered.

Method 3: Input any value into Pr.00-07 (Do not enter the password).

Password Decode Flow Chart

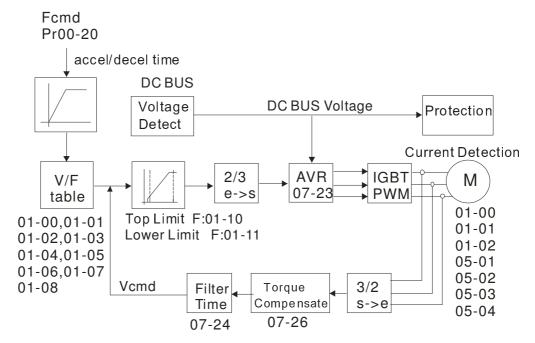
- 3: FOCPG (IM FOC vector control+ encoder)
- 4: FOCPG (PM FOC vector control + Encoder)
- 5: FOC Sensorless (IM field oriented sensorless vector control)
- 6 : PM Sensorless (PM field oriented sensorless vector control)
- 7 : IPM Sensor-less (IPM motor field oriented sensor-less control)

Description: This parameter determines the control method of the AC motor drive:

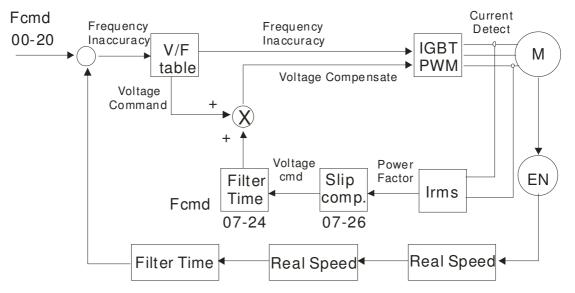
0: (IM V/f control): user can design proportion of V/f as required and can control multiple motors simultaneously.

1: (IM V/f control + Encoder): user can use optional PG card with encoder for the closed-loop speed control.

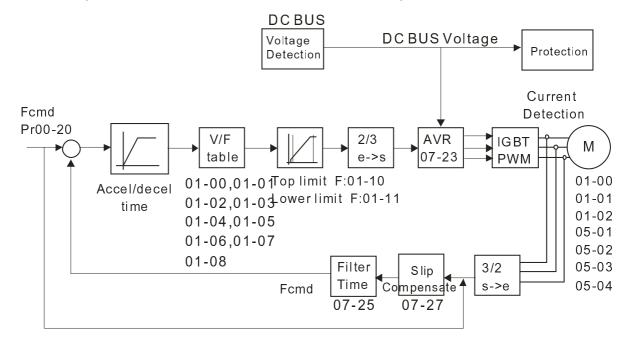
2: (IM Sensorless vector control): get the optimal control by the auto-tuning of motor parameters.

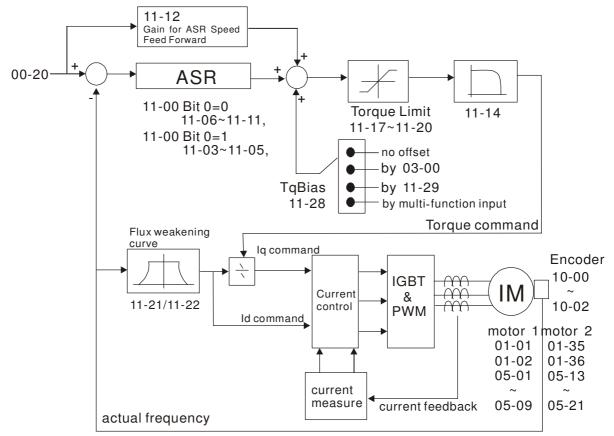

3: (IM FOC vector control+ encoder): besides torque increases, the speed control will be more accurate (1:1000).

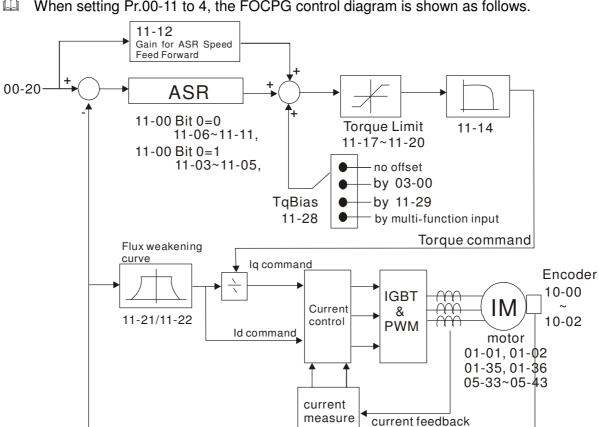
4: (PM FOC vector control + Encoder): besides torque increases, the speed control will be more accurate (1:1000).


5: FOC Sensorless: IM field oriented sensorless vector control

6: PM Sensorless (PM field oriented sensorless vector control)

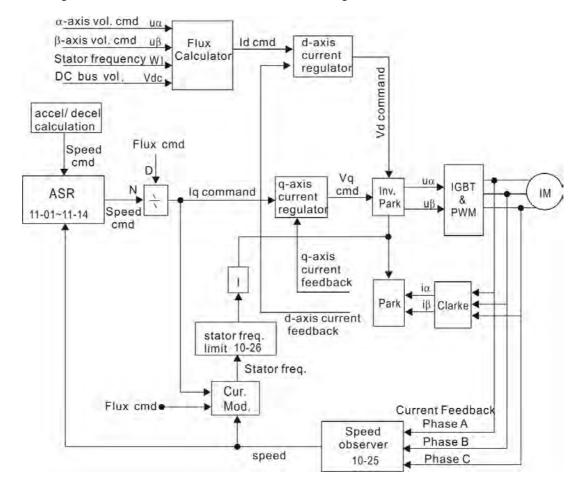

When setting Pr.00-11 to 0, the V/F control diagram is shown as follows.


When setting Pr.00-11 to 1, the V/F control + encoder diagram is shown as follows.

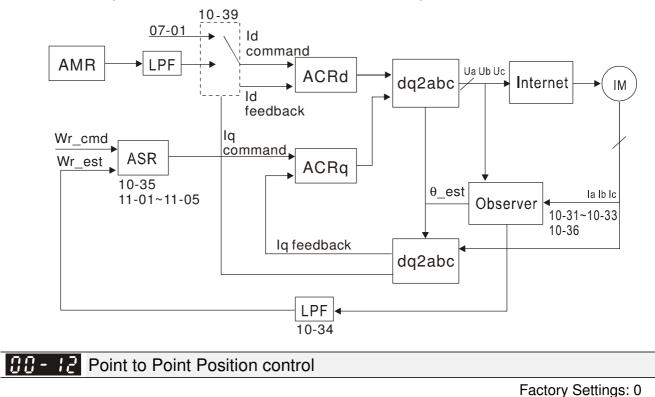


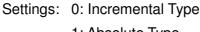
When setting Pr.00-11 to 2, the sensorless vector control diagram is shown as follows.

When setting Pr.00-11 to 3, the FOCPG control diagram is shown as follows.

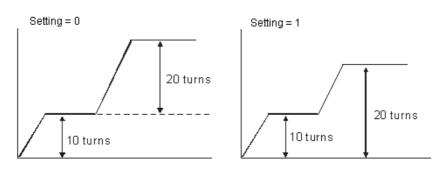


When setting Pr.00-11 to 4, the FOCPG control diagram is shown as follows.


When setting Pr.00-11 to 5, FOC sensorless control diagram is shown as follows.


actual frequency

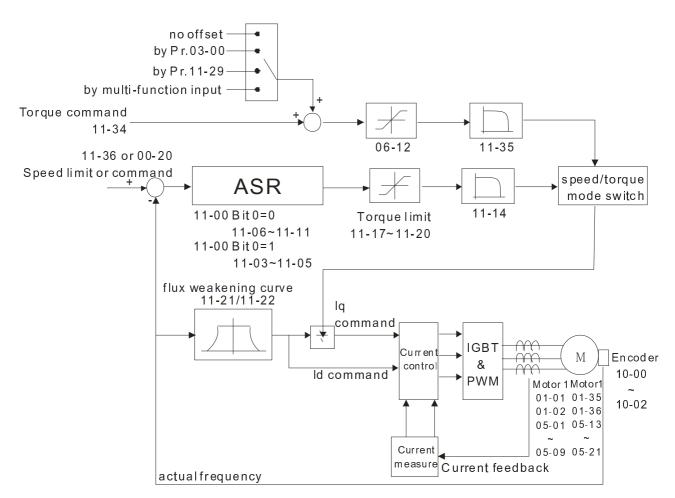
Chapter 12 Description of Parameter Settings


When setting Pr.00-11 to 6, PM FOC sensorless control diagram is shown as follows:

1: Absolute Type

 \square Pr. 00-12 = 0 is incremental type P2P; Pr.00-12 = 1 is absolute type P2P

✓ **33 - 13** Control of Torque Mode


Factory Setting: 0

Settings 0: TQCPG (IM Torque control + Encoder)

1: TQCPG (PM Torque control + Encoder)

2: TQC Sensorless (IM Sensorless torque control)

I TQCPG control diagram is shown in the diagram below:

I TQC Sensorless control diagram is shown in the following diagram:

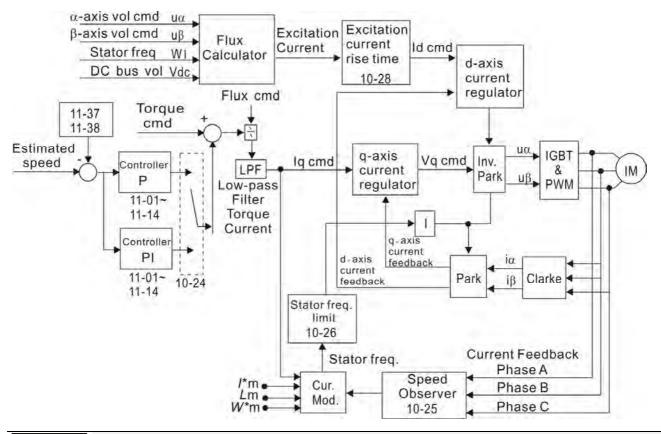


 Image: Second state
 Image: Second state

 Image:

00-15 Reserved

33 - 15 Load Selection

Settings 3: Super Heavy Duty

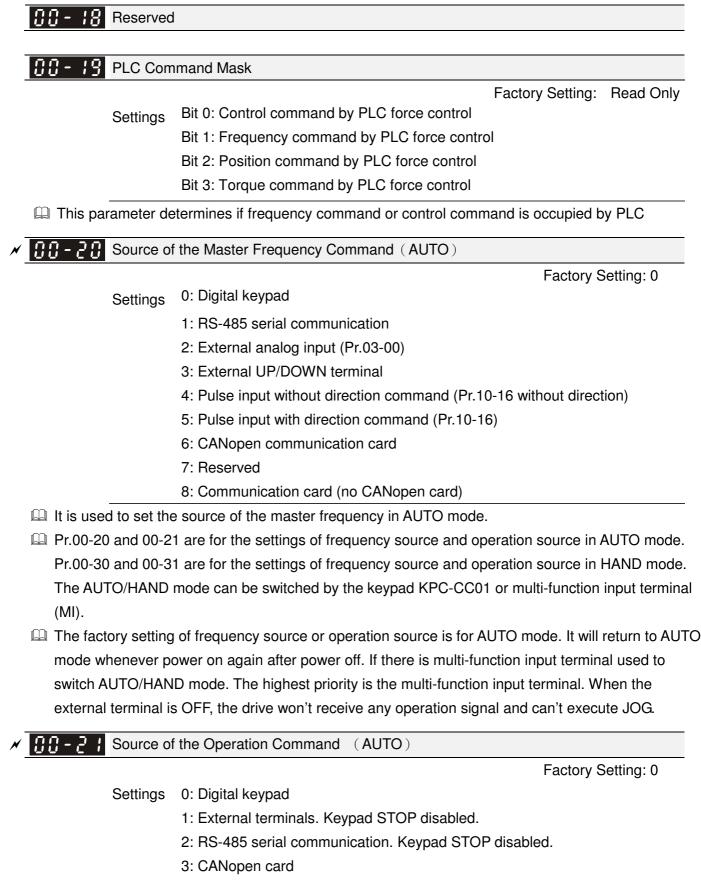
Super Heavy Duty: over load, rated output current 200% in 3 second (150%, 1 minute). Refer to Pr.00-17 for the setting of carrier wave. Refer to chapter specifications or Pr.00-01 for the rated current.

G - **Carrier Frequency**

Factory setting: Table below

Factory Setting: 3

Settings 2~15kHz

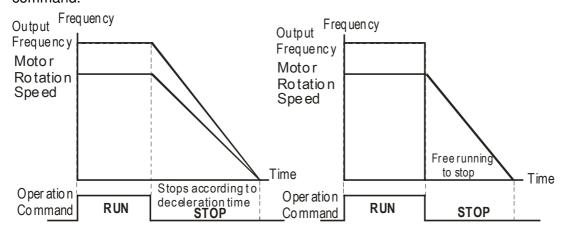

Description: This parameter determinates the PWM carrier frequency of the AC motor drive.

230V Series					
Models	1-15HP [0.75-11kW]	20-100HP [15-75kW]			
Setting Range	05~15kHz	05~15kHz			
Super Heavy Duty	8kHz	6kHz			
Factory Setting					

460V Series					
Models	1-20HP [0.75-15kW]	25-100HP [18.5-75kW]	125-375HP [90-280kW]		
Setting Range	05~15kHz	05~15kHz	04~10kHz		
Super Heavy Duty	8kHz	6kHz	5kHz		
Factory Setting					

	Carrier Frequency	Acoustic Noise	Electromagnetic Noise or Leakage Current	Heat Dissipation	Current Wave
	1kHz	Significant	Minimal	Minimal	
	8kHz	Ĩ	Î I	Î	
-	15kHz	Ļ			
		Minimal	Significant	Significant	

- From the table, we see that the PWM carrier frequency has a significant influence on the electromagnetic noise, AC motor drive heat dissipation, and motor acoustic noise. Therefore, if the surrounding noise is greater than the motor noise, lower the carrier frequency is good to reduce the temperature rise. Although it is quiet operation in the higher carrier frequency, the entire wiring and interference resistance should be considerate.
- When the carrier frequency is higher than the factory setting, it needs to protect by decreasing the carrier frequency. See Pr.06-55 for the related setting and details.


- 4: Reserved
- 5: Communication card (not includes CANopen card)
- It is used to set the source of the operation frequency in AUTO mode.
- When the operation command is controlled by the keypad KPC-CC01, keys RUN, STOP and JOG (F1) are valid.

Settings 0: Ramp to stop

1:Coast to stop

The parameter determines how the motor is stopped when the AC motor drive receives a valid stop command.

Rampto Stop and Coast to Stop

- Ramp to stop: the AC motor drive decelerates from the setting of deceleration time to 0 or minimum output frequency (Pr. 01-09) and then stop (by Pr.01-07).
- Coast to stop: the AC motor drive stops the output instantly upon a STOP command and the motor free runs until it comes to a complete standstill.

(1) It is recommended to use "ramp to stop" for safety of personnel or to prevent material from being wasted in applications where the motor has to stop after the drive is stopped. The deceleration time has to be set accordingly.

(2) If the motor free running is allowed or the load inertia is large, it is recommended to select "coast to stop". For example, blowers, punching machines and pumps

The stop method of the torque control is also set by Pr.00-22.

Control of Motor Direction

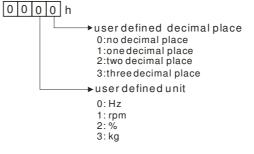
Factory Setting: 0

Settings 0: Enable forward/ reverse

- 1: Disable reverse
- 2: Disable forward
- This parameter enables the AC motor drives to run in the forward/reverse Direction. It may be used to prevent a motor from running in a direction that would consequently injure the user or damage the equipment.

Memory of Frequency Command

Factory Setting: Read Only


Settings Read only

If keypad is the source of frequency command, when Lv or Fault occurs the present frequency command will be saved in this parameter.

User Defined Characteristics

		Factory Setting: 0
o	Bit 0~3: user defined decimal place	r dotory Cotting: o
Settings	0000b: no decimal place	
	0001b: one decimal place	
	0010b: two decimal place	
	0011b: three decimal place	
	Bit 4~15: user defined unit	
	000xh: Hz	
	001xh: rpm	
	002xh: %	
	003xh: kg	
	004xh: M/S	
	005xh: kW	
	006xh: HP	
	007xh: PPM	
	008xh: l / m	
	009xh: kg/s 00Axh: kg/m	
	00Bxh: kg/h	
	00Cxh: lb/s	
	00Dxh: lb/m	
	00Exh: lb/h	
	00Fxh: ft/s	
	010xh: ft/m	
	011xh: M	
	012xh: ft	
	013xh: degC	
	014xh: degF	
	015xh: mbar	
	016xh: bar	
	017xh: Pa	
	018xh: kPa	
	019xh: mWG	
	01Axh: inWG	
	01Bxh: ftWG	
	01Cxh: Psi	
	01Dxh: Atm	
	01Exh: L/s	
	01Fxh: L/m	
	020xh: L/h	
	021xh: m3/s	
	022xh: m3/h	
	023xh: GPM	
	024xh: CFM	

- Bit 0~3: Control F page, unit of user defined value (Pr00-04 =d10, PID feedback) and the decimal point of Pr00-26 which supports up to 3 decimal points.
- Bit 4~15: Control F page, unit of user defined value (Pr00-04=d10, PID feedback) and the display units of Pr00-26 which supports up to 4 units

33 - 25 Max. User Defined Value

Factory Setting: 0

Settings 0: Disable

0~65535 (when Pr.00-25 set to no decimal place) 0.0~6553.5 (when Pr.00-25 set to 1 decimal place)

0.0~655.35 (when Pr.00-25 set to 2 decimal place)

0.0~65.535 (when Pr.00-25 set to 3 decimal place)

When Pr.00-26 is NOT set to 0. The user defined value is enabled. The value of this parameter should correspond to the frequency setting at Pr.01-00.

Example:

When the frequency at Pr. 01-00=60.00Hz, the max. user defined value at Pr. 00-26 is 100.0%. That also means Pr.00-25 is set at 0021h to select % as the unit.

The drive will display as Pr.00-25 setting when Pr.00-25 is properly set and Pr.00-26 is not 0.

User Defined Value

Settings Read only

Factory Setting: Read only

Pr.00-27 will show user defined value when Pr.00-26 is not set to 0.

User defined function is valid when:

1. Pr.00-20 is set to digital keypad control

2. RS-285 communication input control.

3. PID function enabled

Reserved

- 2 2 LOCAL/REMOTE Selection

Factory Setting: 0

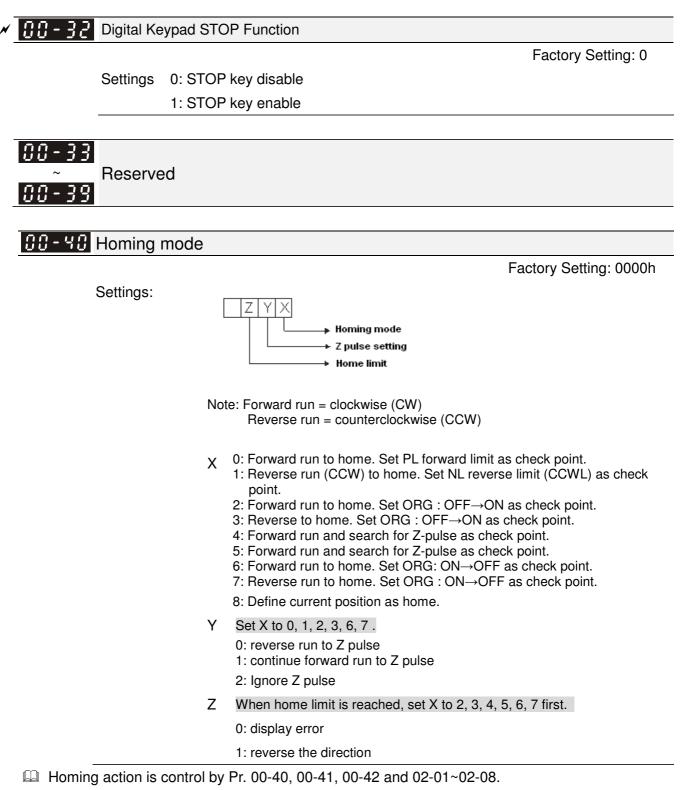
Settings 0: Standard HOA function

- 1: Switching Local/Remote, the drive stops
- 2: Switching Local/Remote, the drive runs as the REMOTE setting for frequency and operation status
- 3: Switching Local/Remote, the drive runs as the LOCAL setting for frequency and operation status
- 4: Switching Local/Remote, the drive runs as LOCAL setting when switch to Local and runs as REMOTE setting when switch to Remote for frequency and operation status.
- The factory setting of Pr.00-29 is 0 (standard Hand-Off-Auto function). The AUTO frequency and source of operation can be set by Pr.00-20 and Pr.00-21, and the HAND frequency and source of operation can be set by Pr.00-30 and Pr.00-31. AUTO/HAND mode can be selected or switched by using digital keypad (KPC-CC01) or setting multi-function input terminal MI= 41, 42.
- When external terminal MI is set to 41 and 42 (AUTO/HAND mode), the settings Pr.00-29=1,2,3,4 will be disabled. The external terminal has the highest priority among all command, Pr.00-29 will always function as Pr.00-29=0, standard HOA mode.

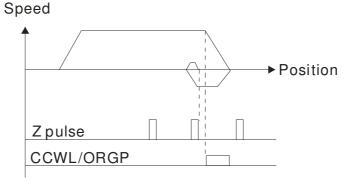
- When Pr.00-29 is not set to 0, Local/Remote function is enabled, the top right corner of digital keypad (KPC-CC01) will display "LOC" or "REM" (the display is available when KPC-CC01 is installed with firmware version higher than version 1.021). The LOCAL frequency and source of operation can be set by Pr.00-20 and Pr.00-21, and the REMOTE frequency and source of operation can be set by Pr.00-30 and Pr.00-31. Local/Remote function can be selected or switched by using digital keypad (KPC-CC01) or setting external terminal MI=56. The AUTO key of the digital keypad now controls for the REMOTE function and HAND key now controls for the LOCAL function.
- When MI is set to 56 for LOC/REM selection, if Pr.00-29 is set to 0, then the external terminal is disabled.
- When MI is set to 56 for LOC/REM selection, if Pr.00-29 is not set to 0, the external terminal has the highest priority of command and the ATUO/HAND keys will be disabled.

Source of the Master Frequency Command (HAND)

Factory Setting: 0

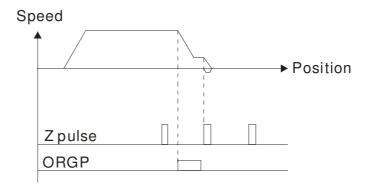

- Settings 0: Digital keypad
 - 1: RS-485 serial communication
 - 2: External analog input (Pr.03-00)
 - 3: External UP/DOWN terminal
 - 4: Pulse input without direction command (Pr.10-16 without direction)
 - 5: Pulse input with direction command (Pr.10-16)
 - 6: CANopen communication card
 - 7: Reserved
 - 8: Communication card (no CANopen card)

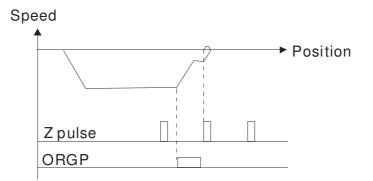
It is used to set the source of the master frequency in HAND mode.

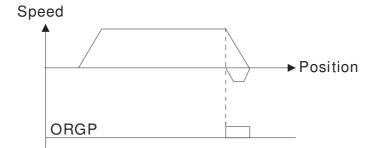

✓ 33 - 3 ↓ Source of the Operation Command (HAND)

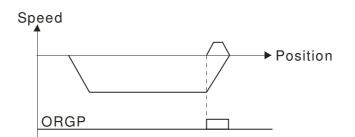
Factory Setting: 0

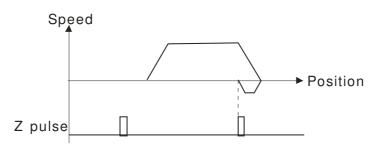
- Settings 0: Digital keypad
 - 1: External terminals. Keypad STOP disabled.
 - 2: RS-485 serial communication. Keypad STOP disabled.
 - 3: CANopen communication card
 - 4: Reserved
 - 5: Communication card (not include CANopen card
- It is used to set the source of the operation frequency in HAND mode.
- Pr.00-20 and 00-21 are for the settings of frequency source and operation source in AUTO mode.
 Pr.00-30 and 00-31 are for the settings of frequency source and operation source in HAND mode.
 The AUTO/HAND mode can be switched by the keypad KPC-CC01 or multi-function input terminal (MI).
- The factory setting of frequency source or operation source is for AUTO mode. It will return to AUTO mode whenever power on again after power off. If there is multi-function input terminal used to switch AUTO/HAND mode. The highest priority is the multi-function input terminal. When the external terminal is OFF, the drive won't receive any operation signal and can't execute JOG.

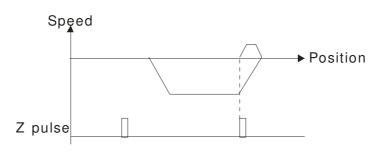

1. When Y=0, X=0 or Y=0, X=2


2. When Y=0, X=1 or Y=0, X=3


3. When Y=1, X=2


4. When Y=1, X=3


5. When Y=2, X=2


6. When Y=2, X=3

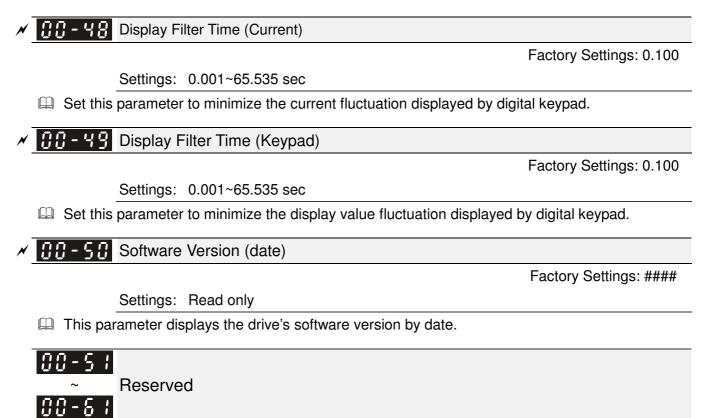
7. When Y=2, X=4

8. When Y=2, X=5

30 - 4 1 Homing by Frequency 1

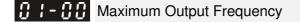
Factory Setting: 8.00

Settings 0.00~600.00Hz


CONTRACT Homing by Frequency 2

Factory Setting: 2.00

Settings 0.00~600.00Hz


- Control by Multi-function Input Terminal Pr. 02-01~02-08 (44~47).
 - 44: Reverse direction homing
 - 45: Forward direction homing
 - 46: Homing (ORG)
 - 47: Homing function enabled
- If the drive is not control by CAN or PLC, set Pr.00-10 =1 (Control mode = P2P position control) and set external output terminal to 47 (homing function enable) for homing.
- When Pr.00-10 is set to 3, after homing is complete, user must set control mode setting Pr.00-10 to 1 in order to perform P2P position control.

00-43 ~ Reserved

Group 1 Basic Parameters

✓ This parameter can be set during operation.

Factory Setting: 60.00/50.00

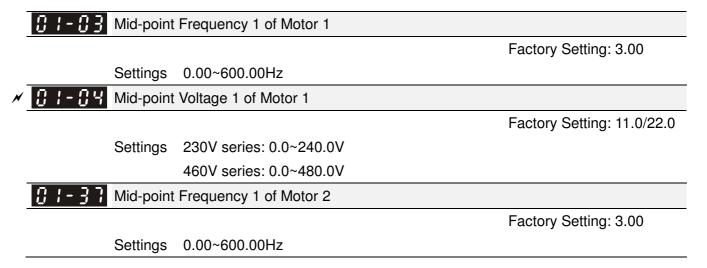
Settings 50.00~600.00Hz

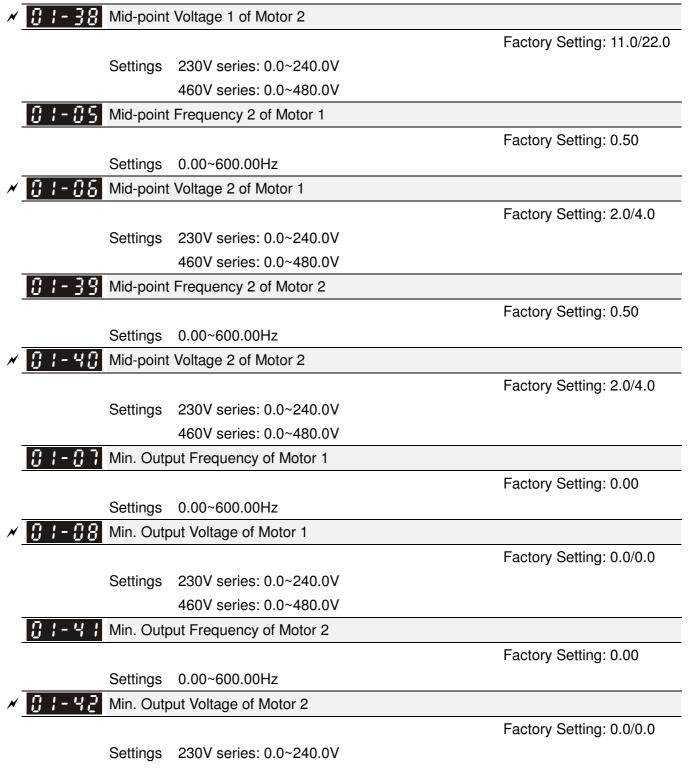
This parameter determines the AC motor drive's Maximum Output Frequency. All the AC motor drive frequency command sources (analog inputs 0 to +10V, 4 to 20mA, 0 to 20mAand ±10V) are scaled to correspond to the output frequency range.

Image: Image:

Factory Setting: 60.00/50.00

Settings 0.00~600.00Hz

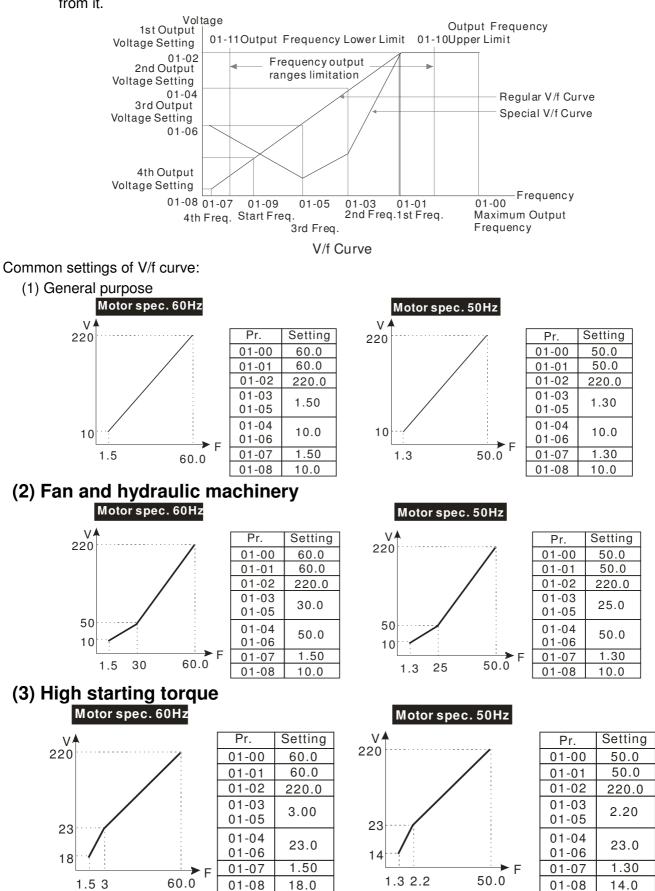

- This value should be set according to the rated frequency of the motor as indicated on the motor nameplate. If the motor is 60Hz, the setting should be 60Hz. If the motor is 50Hz, it should be set to 50Hz.
- **3** I **3 2**Output Voltage of Motor 1 (base frequency and motor rated frequency)**3** I **3 5**Output Voltage of Motor 2 (base frequency and motor rated frequency)


Factory Setting: 200.0/400.0

Settings 230V series: 0.0~255.0V

460V series: 0.0~510.0V

- This value should be set according to the rated voltage of the motor as indicated on the motor nameplate. If the motor is 220V, the setting should be 220.0. If the motor is 200V, it should be set to 200.0.
- There are many motor types in the market and the power system for each country is also difference. The economic and convenience method to solve this problem is to install the AC motor drive. There is no problem to use with the different voltage and frequency and also can amplify the original characteristic and life of the motor.



460V series: 0.0~480.0V

- V/f curve setting is usually set by the motor's allowable loading characteristics. Pay special attention to the motor's heat dissipation, dynamic balance, and bearing lubricity, if the loading characteristics exceed the loading limit of the motor.
- There is no limit for the voltage setting, but a high voltage at low frequency may cause motor damage, overheat, and stall prevention or over-current protection. Therefore, please use the low voltage at the low frequency to prevent motor damage.
- Pr.01-35 to Pr.01-42 is the V/f curve for the motor 2. When multi-function input terminals Pr.02-01~02-08 and Pr.02-26 ~Pr.02-31 are set to 14 and enabled, the AC motor drive will act as the 2nd V/f curve.

The V/f curve for the motor 1 is shown as follows. The V/f curve for the motor 2 can be deduced from it.

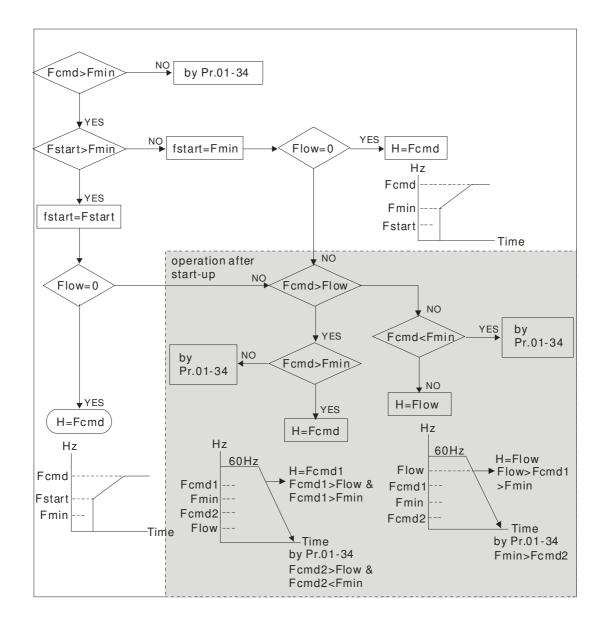
Start-Up Frequency

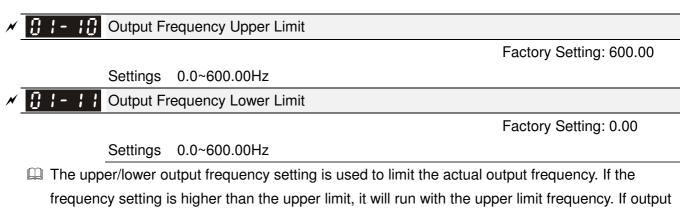
Factory Setting: 0.50

- When start frequency is higher than the min. output frequency, drives' output will be from start frequency to the setting frequency. Please refer to the following diagram for details.
- E Fcmd=frequency command,

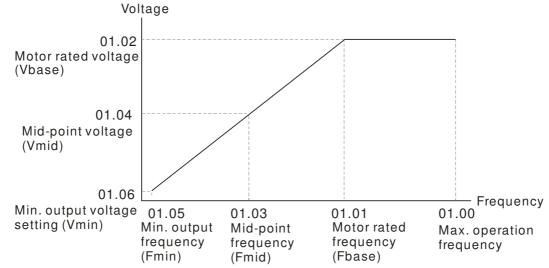
Settings

Fstart=start frequency (Pr.01-09),


fstart=actual start frequency of drive,


Fmin=4th output frequency setting (Pr.01-07/Pr.01-41),

0.0~600.00Hz

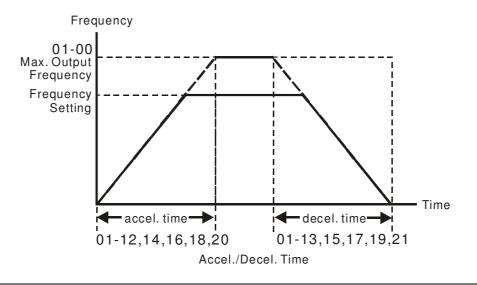

Flow=output frequency lower limit (Pr.01-11)

- Generation Femd>Fmin and Femd<Fstart:
 - \square If Flow<Fcmd $\,^{,-}\,$ drive will run with Fcmd directly.
 - If Flow>=Fcmd, drive will run with Fcmd firstly, then, accelerate to Flow according to acceleration time.
- The drive's output will stop immediately when output frequency has reach to Fmin during deceleration.

- frequency lower than output frequency lower limit and frequency setting is higher than min. frequency, it will run with lower limit frequency. The upper limit frequency should be set to be higher than the lower limit frequency.
- \square Pr.01-10 setting must be \ge Pr.01-11 setting.
- Upper output frequency will limit the max. Output frequency of drive. If frequency setting is higher than Pr.01-10, the output frequency will be limited by Pr.01-10 setting.
- When the drive starts the function of slip compensation (Pr.07-27) or PID feedback control, drive output frequency may exceed frequency command but still be limited by this setting.
- Related parameters: Pr.01-00 Max. Operation Frequency and Pr.01-11 Output Frequency Lower Limit

- Lower output frequency will limit the min. output frequency of drive. When drive frequency command or feedback control frequency is lower than this setting, drive output frequency will limit by the lower limit of frequency.
- When the drive starts, it will operate from min. output frequency (Pr.01-05) and accelerate to the setting frequency. It won't limit by lower output frequency setting.
- The setting of output frequency upper/lower limit is used to prevent personal misoperation, overheat due to too low operation frequency or damage due to too high speed.
- If the output frequency upper limit setting is 50Hz and frequency setting is 60Hz, max. output frequency will be 50Hz.
- If the output frequency lower limit setting is 10Hz and min. operation frequency setting (Pr.01-05) is 1.5Hz, it will operate by 10Hz when the frequency command is greater than Pr.01-05 and less than 10Hz. If the frequency command is less than Pr.01-05, the drive will be in ready status and no output.

□ If the frequency output upper limit is 60Hz and frequency setting is also 60Hz, it won't exceed 60Hz even after slip compensation. If the output frequency needs to exceed 60Hz, it can increase output frequency upper limit or max. operation frequency.


N	01-12	Accel. Time 1
×	01-13	Decel. Time 1
×	01-14	Accel. Time 2
×	01-15	Decel. Time 2
×	01-16	Accel. Time 3
×	01-17	Decel. Time 3
×	01-18	Accel. Time 4
×	01-19	Decel. Time 4
N	01-20	JOG Acceleration Time
×	01-21	JOG Deceleration Time

Factory Setting: 10.00/10.0 Factory Setting for AC drive with power greater than 30HP: 60.00/60.0

Settings Pr.01-45=0: 0.00~600.00 seconds

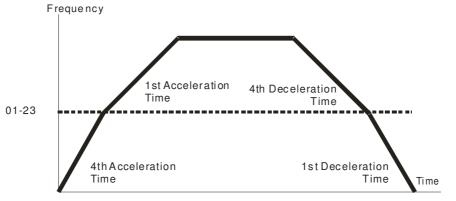
Pr.01-45=1: 0.00~6000.00 seconds

- The Acceleration Time is used to determine the time required for the AC motor drive to ramp from 0Hz to Maximum Output Frequency (Pr.01-00).
- The Deceleration Time is used to determine the time require for the AC motor drive to decelerate from the Maximum Output Frequency (Pr.01-00) down to 0Hz.
- The Acceleration/Deceleration Time is invalid when using Pr.01-44 Optimal Acceleration/Deceleration Setting.
- The Acceleration/Deceleration Time 1, 2, 3, 4 are selected according to the Multi-function Input Terminals settings. The factory settings are Accel./Decel. time 1.
- When enabling torque limits and stalls prevention function, actual accel./decel. time will be longer than the above action time.
- Please note that it may trigger the protection function (Pr.06-03 Over-current Stall Prevention during Acceleration or Pr.06-01 Over-voltage Stall Prevention) when the setting of accel./decel. time is too short.
- Please note that it may cause motor damage or drive protection enabled due to over current during acceleration when the setting of acceleration time is too short.
- Please note that it may cause motor damage or drive protection enabled due to over current during deceleration or over-voltage when the setting of deceleration time is too short.
- It can use suitable brake resistor (see Chapter 06 Accessories) to decelerate in a short time and prevent over-voltage.
- When enabling Pr.01-24~Pr.01-27, the actual accel./decel. time will be longer than the setting.

JOG Frequency

Factory Setting: 6.00

Settings 0.00~600.00Hz


- Both external terminal JOG and key "F1" on the keypad KPC-CC01 can be used. When the jog command is ON, the AC motor drive will accelerate from 0Hz to jog frequency (Pr.01-22). When the jog command is OFF, the AC motor drive will decelerate from Jog Frequency to zero. The Jog Accel./Decel. time (Pr.01-20, Pr.01-21) is the time that accelerates from 0.0Hz to Pr.01-22 JOG Frequency.
- The JOG command can't be executed when the AC motor drive is running. In the same way, when the JOG command is executing, other operation commands are invalid except forward/reverse commands and STOP key on the digital keypad.
- It does not support JOG function in the optional keypad KPC-CE01.

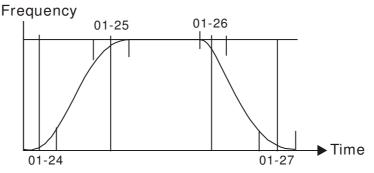
✓ [] : - 2 3 1st/4th Accel./decel. Frequency

Factory Setting: 0.00

Settings 0.00~600.00Hz

- □ The transition from acceleration/deceleration time 1 to acceleration/deceleration time 4, may also be enabled by the external terminals. The external terminal has priority over Pr. 01-23.
- When using this function, please set S-curve acceleration time as 0 if 4th acceleration time is set too short.

 $1\,st/4th\,A\,cceleration/Deceleration\,Frequency\,S\,witching$

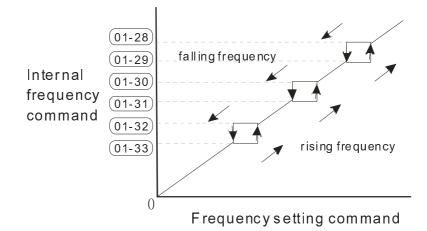

	C !- 24 S-curve Acceleration Begin Time 1
N	C :- 25 S-curve Acceleration Arrival Time 2
×	C :- 28 S-curve Deceleration Begin Time 1
×	C - 2 7 S-curve Deceleration Arrival Time 2

Factory Setting: 0.20/0.2

```
Settings Pr.01-45=0: 0.00~25.00 seconds
Pr.01-45=1: 0.00~250.0 seconds
```

- It is used to give the smoothest transition between speed changes. The accel./decel. curve can adjust the S-curve of the accel./decel. When it is enabled, the drive will have different accel./decel. curve by the accel./decel. time.
- In the S-curve function is disabled when accel./decel. time is set to 0.
- $\label{eq:when Pr.01-12, 01-14, 01-16, 01-18 } \ensuremath{\mathbb{Pr}.01-24} \ensuremath{\text{and Pr}.01-25}, \\ \ensuremath{\mathsf{The Actual Accel. Time}} = \ensuremath{\mathsf{Pr}.01-12, 01-14, 01-16, 01-18} + (\ensuremath{\mathsf{Pr}.01-24} + \ensuremath{\mathsf{Pr}.01-25})/2 \\ \ensuremath{\mathbb{Pr}.01-24} + \ensuremath{\mathsf{Pr}.01-24} + \ensuremath{\mathsf{Pr}.01-25})/2 \\ \ensuremath{\mathbb{Pr}.01-24} + \ensuremath{\mathsf{Pr}.01-24} + \ensuremath{\mathsf{Pr}.01-25})/2 \\ \ensuremath{\mathbb{Pr}.01-24} + \ensuremath{\mathsf{Pr}.01-24} + \ensuremath{\mathsf{Pr}.01-25})/2 \\ \ensuremath{\mathbb{Pr}.01-24} + \ensuremath{\mathsf{Pr}.01-24} + \ensuremath{\mathsf{Pr}.01-24} + \ensuremath{\mathsf{Pr}.01-25} + \ensuremath{\mathsf{Pr}.01-24} + \e$
- $\label{eq:when Pr.01-13, 01-15, 01-17, 01-19} \\ \geq Pr.01-26 \ and \ Pr.01-27,$

The Actual Decel. Time = Pr.01-13, 01-15, 01-17, 01-19 + (Pr.01-26 + Pr.01-27)/2



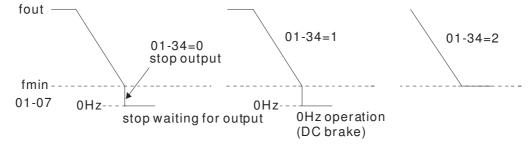
C I - 28 Skip Frequency 1 (upper limit)
C I - 29 Skip Frequency 1 (lower limit)
Skip Frequency 2 (upper limit)
Skip Frequency 2 (lower limit)
C I - 32 Skip Frequency 3 (upper limit)
Skip Frequency 3 (lower limit)

Factory Setting: 0.00

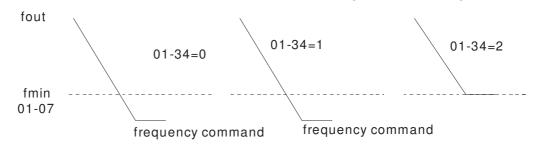
Settings 0.00~600.00Hz

- These parameters are used to set the skip frequency of the AC drive. But the frequency output is continuous. There is no limit for the setting of these six parameters and can be used as required.
- The skip frequencies are useful when a motor has vibration at a specific frequency bandwidth. By skipping this frequency, the vibration will be avoided. It offers 3 zones for use.
- □ These parameters are used to set the skip frequency of the AC drive. But the frequency output is continuous. The limit of these six parameters is 01-28≥01-29≥01-30≥01-31≥01-32≥01-33. This function will be invalid when setting to 0.0.
- The setting of frequency command (F) can be set within the range of skip frequencies. In this moment, the output frequency (H) will be limited by these settings.
- When accelerating/decelerating, the output frequency will still pass the range of skip frequencies.

G ! -] ! Zero-speed Mode


Factory Setting: 0

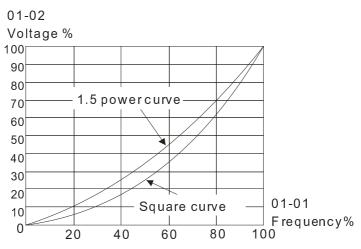
Settings 0: Output waiting


1: Zero-speed operation

2: Fmin (Refer to Pr.01-07, 01-41)

- Description When the frequency is less than Fmin (Pr.01-07 or Pr.01-41), it will operate by this parameter.
- When it is set to 0, the AC motor drive will be in waiting mode without voltage output from terminals U/V/W.
- When setting 1, it will execute DC brake by Vmin(Pr.01-08 and Pr.01-42) in V/f, FOC Sensorless, and SVC modes. It executes zero-speed operation in VFPG and FOCPG mode.
- When it is set to 2, the AC motor drive will run by Fmin (Pr.01-07, Pr.01-41) and Vmin (Pr.01-08, Pr.01-42) in V/F, VFPG, SVC, FOC Sensorless and FOCPG modes.
- In V/F, VFPG, SVC and FOC Sensorless modes

In FOCPG mode, when Pr.01-34 is set to 2, it will act according Pr.01-34 setting.



V/f Curve Selection

Factory Setting: 0

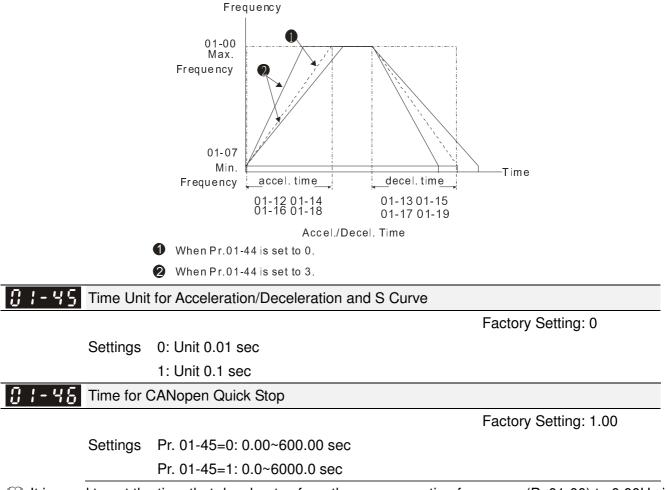
Settings 0: V/f curve determined by group 01

- 1: 1.5 power curve
- 2: Square curve
- When setting to 0, refer to Pr.01-01~01-08 for motor 1 V/f curve. For motor 2, please refer to Pr.01-35~01-42.
- \square When setting to 1 or 2, 2nd and 3rd voltage frequency setting are invalid.
- If motor load is variable torque load (torque is in direct proportion to speed, such as the load of fan or pump), it can decrease input voltage to reduce flux loss and iron loss of the motor at low speed with low load torque to raise the entire efficiency.
- When setting higher power V/f curve, it is lower torque at low frequency and is not suitable for rapid acceleration/deceleration. It is recommended NOT to use this parameter for the rapid acceleration/deceleration.

A Generation Acceleration/Deceleration Setting
 A

Factory Setting: 0

Settings 0: Linear accel./decel.


1: Auto accel., linear decel.

2: Linear accel., auto decel.

- 3: Auto accel./decel. (auto calculate the accel./decel. time by actual load)
- 4: Stall prevention by auto accel./decel. (limited by 01-12 to 01-21)
- Setting 0 Linear accel./decel.: it will accelerate/decelerate according to the setting of Pr.01-12~01-19.
- Setting to Auto accel./decel.: it can reduce the mechanical vibration and prevent the complicated auto-tuning processes. It won't stall during acceleration and no need to use brake resistor. In addition, it can improve the operation efficiency and save energy.
- Setting 3 Auto accel./decel. (auto calculate the accel./decel. time by actual load): it can auto detect the load torque and accelerate from the fastest acceleration time and smoothest start current to the setting frequency. In the deceleration, it can auto detect the load re-generation and stop the motor smoothly with the fastest decel. time.

Chapter 12 Description of Parameter Settings

Setting 4 Stall prevention by auto accel./decel. (limited by 01-12 to 01-21): if the acceleration/deceleration is in the reasonable range, it will accelerate/decelerate by Pr.01-12~01-19. If the accel./decel. time is too short, the actual accel./decel. time is greater than the setting of accel./decel. time.

It is used to set the time that decelerates from the max. operation frequency (Pr.01-00) to 0.00Hz in CANopen control.

02 Digital Input/Output Parameter

✓ This parameter can be set during operation.

2-wire/3-wire Operation Control

Factory Setting: 0

Settings 0: 2 wire mode 1

- 1:2 wire mode 2
 - 2: 3 wire mode

 $\hfill\square$ It is used to set the operation control method:

Pr.02-00	Control Circuits of the External Terminal
0 2-wire mode 1 FWD/STOP REV/STOP	FWD/STOP REV/STOP GOV FWD:("OPEN":STOP) ("CLOSE":FWD) REV:("OPEN": STOP) DCM ("CLOSE": REV) DCM VFD-CH
1 2-wire mode 2 RUN/STOP REV/FWD	RUN/STOP FWD/REV CO FWD/REV CO FWD/REV CO CLOSE": RUN) REV:("OPEN": STOP) ("CLOSE": RUN) CLOSE": REV) DCM VFD-CH
2 3-wire operation control	Image: Construction of the second state of the second s

B 2 - **B 1** Multi-function Input Command 1 (MI1) (MI1= STOP command when in 3-wire operation control)

Factory Setting: 1

Factory Setting: 2

B2-B3 Multi-function Input Command 3 (MI3)

Factory Setting: 3

B2-B4 Multi-function Input Command 4 (MI4)

Factory Setting: 4

82-85	Multi-function Input Command 5 (MI5)
88-88	Multi-function Input Command 6 (MI6)
02-07	Multi-function Input Command 7 (MI7)
02-08	Multi-function Input Command 8 (MI8)
82-28	Input terminal of I/O extension card (MI10)
02-23	Input terminal of I/O extension card (MI11)
85-28	Input terminal of I/O extension card (MI12)
82-28	Input terminal of I/O extension card (MI13)

B 2 - **3 B** Input terminal of I/O extension card (MI14)

Factory Setting: 0

Settings

0: no function

1: multi-step speed command 1/multi-step position command 1

2: multi-step speed command 2/multi-step position command 2

3: multi-step speed command 3/multi-step position command 3

4: multi-step speed command 4/multi-step position command 4 5: Reset

6: JOG command (By KPC-CC01 or external control)

7: acceleration/deceleration speed not allow

8: the 1st, 2nd acceleration/deceleration time selection

9: the 3rd, 4th acceleration/deceleration time selection

10: EF Input (Pr.07-20)

11: B.B input from external (Base Block)

12: Output stop

13: cancel the setting of the optimal acceleration/deceleration time

14: switch between motor 1 and motor 2

15: operation speed command from AVI

16: operation speed command from ACI

17: operation speed command from AUI

18: Emergency stop (Pr.07-20)

19: Digital up command

20: Digital down command

21: PID function disabled

22: Clear counter

23: Input the counter value (MI6)

24: FWD JOG command

25: REV JOG command

26: FOCG/TQC model selection

27: ASR1/ASR2 selection

28: Emergency stop (EF1)

29: Signal confirmation for Y-connection

30: Signal confirmation for Δ -connection

31: High torque bias (Pr.11-30)

32: Middle torque bias (Pr.11-31)

33: Low torque bias (Pr.11-32)

34: Switch between multi-step position and multi-speed control

35: Enable position control

36: Enable multi-step position learning function (valid at stop)

37: Enable pulse position input command

38: Disable write EEPROM function

39: Torque command direction

40: Force coast to stop

41: HAND switch

42: AUTO switch

43: Enable resolution selection (Pr.02-48)

44: Reverse direction homing

45: Forward direction homing

46: Homing ORG

47: Homing function enable

48: Mechanical gear ratio switch

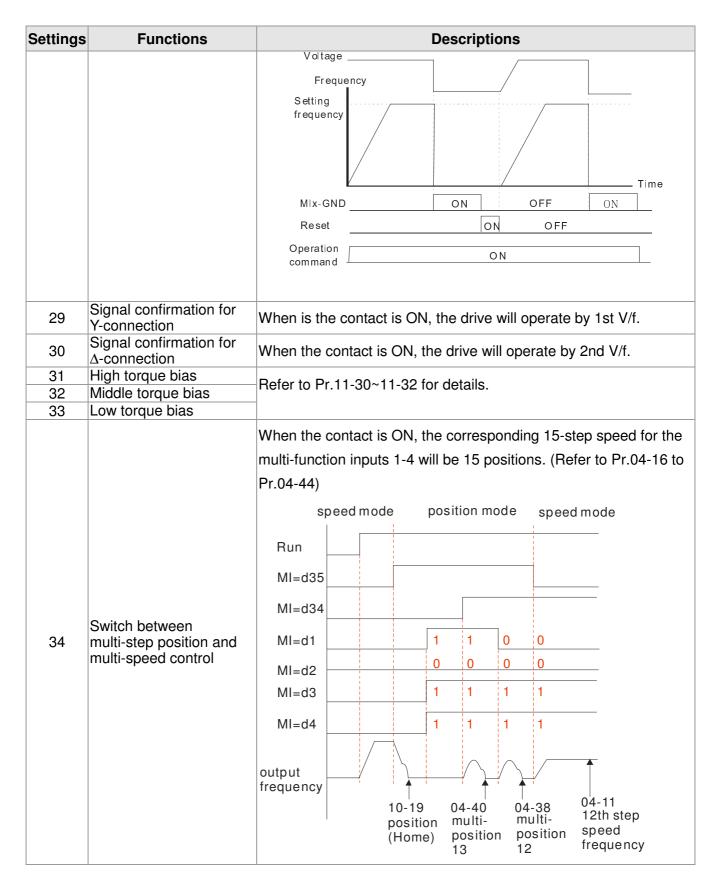
49: Drive enable

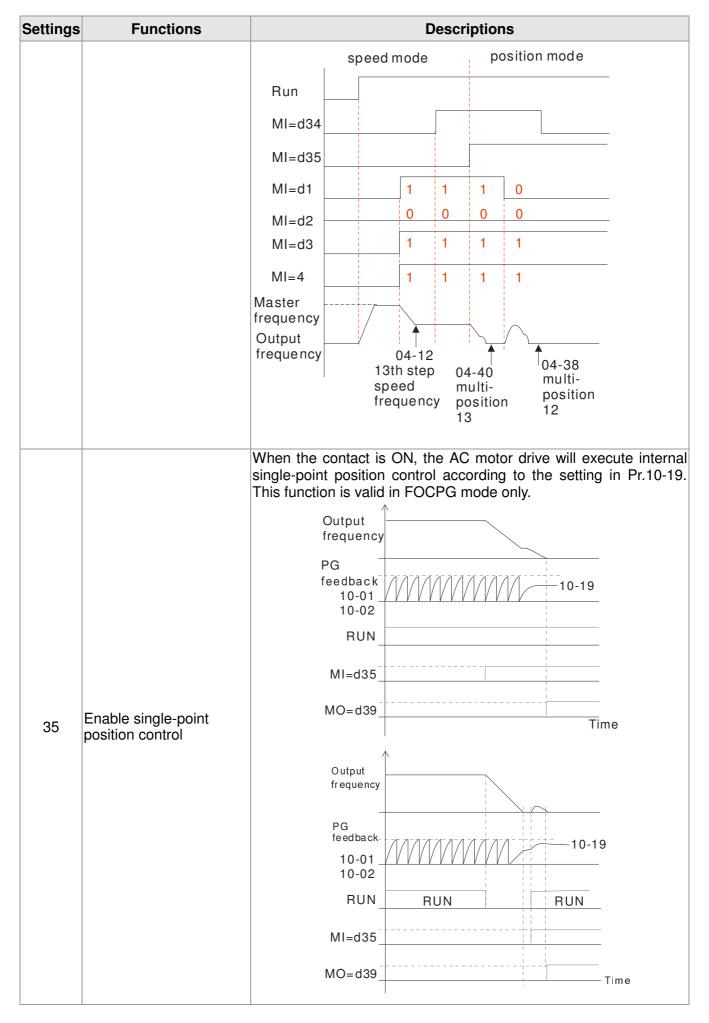
50: Master dEb action input

51: Selection for PLC mode bit0

52: Selection for PLC mode bit1

53: Trigger CANopen quick stop


54: Reserved 55: Brake Release 56: Local/Remote Selection 57~70: Reserve


- I This parameter selects the functions for each multi-function terminal.
- The terminals of Pr.02-26~Pr.02-29 are virtual and set as MI10~MI13 when using with optional card EMC-D42A. Pr.02-30~02-31 are virtual terminals.
- When being used as a virtual terminal, it needs to change the status (0/1: ON/OFF) of bit 8-15 of Pr.02-12 by digital keypad KPC-CC01 or communication.
- If Pr.02-00 is set to 3-wire operation control. Terminal MI1 is for STOP contact. Therefore, MI1 is not allowed for any other operation.
- Summary of function settings (Take the normally open contact for example, ON: contact is closed, OFF: contact is open)

Settings	Functions	Descriptions					
0	No Function						
1	Multi-step speed command 1/multi-step position command 1						
2	Multi-step speed command 2/ multi-step position command 2	15 step speeds could be conducted through the digital status of the 4 terminals, and 16 in total if the master speed is included. (Refer to Parameter set 4)					
3	Multi-step speed command 3/ multi-step position command 3						
4	Multi-step speed command 4/ multi-step position command 4						
5	Reset	t After the error of the drive is eliminated, use this terminal to res					
6	JOG Command	This function is valid when the source of operation command is external terminals. Before executing this function, it needs to wait for the drive stop completely. During running, it can change the operation direction and STOP key on the keypad is valid. Once the external terminal receives OFF command, the motor will stop by the JOG deceleration time. Refer to Pr.01-20~01-22 for details.					
		of motor 1 JOG accel. time JOG accel. time 01-20 01-21					
7	Acceleration/deceleration Speed Inhibit	When this function is enabled, acceleration and deceleration is					

Settings	Functions	Descriptions
		Frequency
		Setting frequency Accel. inhibit area Accel. inhibit area Accual operation frequency Decel. inhibit area Mlx-GND ON ON ON ON ON ON ON
		MIx-GND ON ON ON Operation ON OFF
	The stand is a stand	comman d
8	The 1 st , 2 nd acceleration or deceleration time selection	The acceleration/deceleration time of the drive could be selected from this function or the digital status of the terminals; there are 4 acceleration/deceleration speeds in total for selection.
9	The 3 rd , 4 th acceleration or deceleration time selection	
10	EF Input (EF: External fault)	For external fault input. Motor drive will decelerate by Pr.07-20 setting, keypad will show EF. (it will have fault record when external fault occurs). Until the causes of fault are eliminated, the drive can keep running after resetting.
11	External B.B. Input (Base Block)	When this contact is ON, output of the drive will be cut off immediately, and the motor will be free run and keypad will display B.B. signal. Refer to Pr.07-08 for details.
12	Output Stop (Output pause)	If this contact is ON, output of the drive will be cut off immediately, and the motor will then be free run. And once it is turned to OFF, the drive will accelerate to the setting frequency.
		MIX-GNDON OFF ON
		Operation ON
13	Cancel the setting of the optimal accel./decel. time	Before using this function, Pr.01-44 should be set to 01/02/03/04 first. When this function is enabled. OFE is for auto mode and ON
14	Switch between drive settings 1 and 2	When the contact is ON: use motor 2 parameters. OFF: use motor 1 parameters.
15	Operation speed command form AVI	When the contact is ON, the source of the frequency will force to be AVI. (If the operation speed commands are set to AVI, ACI and AUI at the same time. The priority is $AVI > ACI > AUI$)
16	Operation speed command form ACI	When the contact is ON, the source of the frequency will force to be ACI. (If the operation speed commands are set to AVI, ACI and AUI at the same time. The priority is $AVI > ACI > AUI$)
17	Operation speed command form AUI	When this function is enabled, the source of the frequency will force to be AUI. (If the operation speed commands are set to AVI, ACI and AUI at the same time. The priority is AVI>ACI>AUI)
18	Emergency Stop (07-20)	When the contact is ON, the drive will ramp to stop by Pr.07-20 setting.

Settings	Functions	Descriptions
19	Digital Up command	When the contact is ON, the frequency will be increased and decreased. If this function is constantly ON, the frequency will be increased/decreased by Pr.02-09/Pr.02-10.
20	Digital Down command	
21	PID function disabled	When the contact is ON, the PID function is disabled.
22	Clear counter	When the contact is ON, it will clear current counter value and display "0". Only when this function is disabled, it will keep counting upward.
23	Input the counter value (multi-function input command 6)	The counter value will increase 1 once the contact is ON. It needs to be used with Pr.02-19.
24	FWD JOG command	This function is valid when the source of operation command is external terminals. When the contact is ON, the drive will execute forward Jog command. When execute JOG command under torque mode, the drive will automatically switch to speed mode; after JOG command is done, the drive will return to torque mode.
25	REV JOG command	This function is valid when the source of operation command is external terminals. When the contact is ON the drive will execute reverse Jog command. When execute JOG command under torque mode, the drive will automatically switch to speed mode; after JOG command is done, the drive will return to torque mode.
26	FOCPG/TQCPG mode selection	When the contact is ON: TQCPG mode. When the contact is OFF: FOCPG mode. RUN/STOP command Multi-function input terminal is set to 26 (torque/speed mode switch) 03-00-02=1 (AVI/AUI/ACI is command frequency command) Control control control control control speed speed speed speed speed speed control contro
27	ASR1/ASR2 selection	When the contact is ON: speed will be adjusted by ASR 2 setting. OFF: speed will be adjusted by ASR 1 setting. Refer to Pr.11-02 for details.
28	Emergency stop (EF1)	When the contact is ON, the drive will execute emergency stop and display EF1 on the keypad. The motor won't run and be in the free run until the fault is cleared after pressing RESET" (EF: External Fault)

Settings	Functions	Descriptions
		When the contact is ON/OFF, the drive will base the multi-function inputs 1-4 ON/OFF status to find the corresponding multi-step positions and write current motor position into such corresponding multi-step position.
		$1011_{2}=11$ $1010_{2}=10$ $corresponds$ $corresponds to$ $to Pr.04-36$ $Pr.04-34$
		MI=d1 1 0 0
36	Enable multi-step position learning function	MI=d2
	(valid at stop)	MI=d3
		MI=d4
		MI=d36
		Writing the motor position into the Pr.04-36 Writing the motor position into the Pr.04-34
		When Pr.00-20 is set to 4 or 5 and this contact is ON, the input pulse of PG card is position command. When using this function, it is recommended to set Pr.11-25 to 0. Example: please refer to the following diagram when using this faction with MI=d35 return to home position,.
		MI=d35
07	Full position control	MO=d39
37	pulse command input enable	MI=d37
		pulse command internal positioning
		output frequency
38	Disable EEPROM write function (Parameters written	When this contact is ON, write to EEPROM is disabled. (Changed parameters will not be saved after power off)
	disable)	
39	Torque command direction	For torque control (Pr.00-10=2), when torque command is AVI or ACI, the contact is ON and it is negative torque. When this contact is ON during the operation, the drive will free run

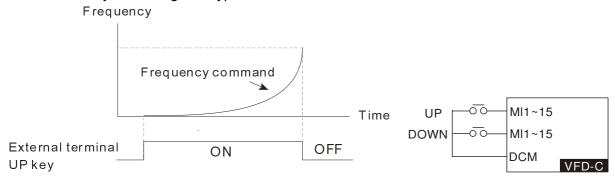
Settings	Functions	Descriptions					
41	HAND switch	 When MI is switched to off status, it executes a STOP command., If MI is switched to off during operation, the drive will also stop. 					
42	AUTO switch	 2. Using keypad KPC-CC01 to switch between HAND/AUTO, the drive will stop first then switch to the HAND or AUTO status. 3. On the digital keypad KPC-CC01, it will display current drive status (HAND/OFF/AUTO). Bit 1 Bit 0 OFF 0 OFF 0 AUTO 0 HAND 1 OFF 1 					
43	Enable resolution selection	Refer to Pr.02-48 for details.					
44	Reverse direction NLhoming	Signal input for reverse direction limit switch. When this terminal is ON, the drive will react to the setting in Pr.00-40, 00-41, 00-42 accordingly to execute homing in a reverse direction (counter clockwise). Note: NL means input terminal detection is negative-edge triggered or be regarded as NO(Normal Open)					
45	Forward direction PL homing	Signal input for forward direction limit switch. When this terminal is ON, the drive will react to the setting in Pr.00-40, 00-41, 00-42 accordingly to execute homing in a forward direction (clockwise). Note: PL means input terminal detection is positive-edge triggered or be regarded as NC(Normal Close)					
46	Homing ORG	ORG point input. When this terminal is ON, the drive will refer to the setting in Pr.00-40, 00-41, 00-42 accordingly to execute homing.					
47	Homing function enable	Pr.00-10 = 3 (homing mode), if the external terminal MIx=47 is OFF, the drive will ignore the home command and execute Point to Point position control.					
48	Mechanical gear ratio switch	When this contact is ON, the mechanical gear ratio switch will be the second group A2/B2 (refer to Pr.10-08 and Pr.10-09).					
49	Drive enable	When drive=enable, RUN command is valid. When drive= disable, RUN command is invalid. When drive is in operation, motor coast to stop. This function will interact with MO=51					
50	Master dEb action input	Input the message setting in this parameter when dEb occurs to Master. This will ensure dEb also occurs to Slave, then Master and Slave will stop simultaneously.					
51	Selection for PLC mode bit0	PLC statusBit 1Bit 0Disable PLC function (PLC 0)00					
52	Selection for PLC mode bit1	Disable PLC function (PLC 0)00Trigger PLC to operation (PLC 1)01Trigger PLC to stop (PLC 2)10No function11					
53	Enable CANopen quick stop	When this function is enabled under CANopen control, it will change to quick stop. Refer to Chapter 15 for more details.					
54	Reserved						
55	Brake Release	 #MI=55 needs to be used with Pr02-56. After setting the value (time) of Pr02-56, if there is no signal input, motor drive will show error Brk, and mechanical brake will be enabled immediately. #The default setting of Pr02-56 is 0. If the value is not 0, the brake signal checking will be activated. If there is no signal input after 					

Settings	Functions			Descrip	otions
			ting (Pr02-56) any other sett		will show Brk error, no matter if ake control
		Run comm	(output i to	q.>=Pr02-34 and rrent>=Pr02-33)	
		Output Fr MO=63		Pr02-32	
		- MI=55 -	i	Pr02-56	cal delay time After setting time is reached, if there is no brake release signal Motor drive will display Brk error
56	LOCAL/REMOTE Selection	Pr.00-2 When F will disp	9) Pr.00-29 is not	t set to 0, on status. (It wi	DCAL/REMOTE mode(refer to the digital keypad KPC-CC01 it Il display on the KPC-CC01 if the
	LUGAL/REMUTE SEIECTION			Bit 0	
			REM	0	
			LOC	1	
57~70	Reserved				

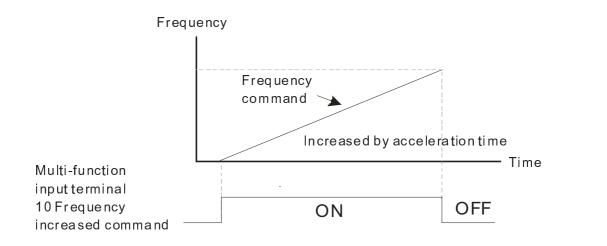
✓ ⑦ 2 - ⑦ 9 UP/DOWN Key Mode

Factory Setting: 0

Settings 0: Up/down by the accel/decel time


1: Up/down constant speed (Pr.02-10)

✓ 32 - 13 Constant speed. The Accel. /Decel. Speed of the UP/DOWN Key


Factory Setting: 0.01

Settings 0.01~1.00Hz/ms

- These settings are used when multi-function input terminals are set to 19/20. Refer to Pr.02-09 and 02-10 for the frequency up/down command.
- Pr.02-09 set to 0: it will increase/decrease frequency command (F) by the external terminal UP/DOWN key as shown in the following diagram. In this mode, it also can be controlled by UP/DOWN key on the digital keypad.

Pr.02-09 set to 1: it will increase/decrease frequency command (F) by the setting of acceleration/deceleration (Pr.01-12~01-19) and only be valid during operation.

✓ B2 - 11 Digital Input Response Time

Factory Setting: 0.005

Settings 0.000~30.000 sec

- This parameter is used to set the response time of digital input terminals FWD, REV and MI1~MI8.
- It is used for digital input terminal signal delay and confirmation. The delay time is confirmation time to prevent some uncertain interference that would cause error in the input of the digital terminals. Under this condition, confirmation for this parameter would improve effectively, but the response time will be somewhat delayed.
- When using MI8 as encoder pulse feedback input, this parameter will not be referred

Factory Setting: 0000

Settings 0000h~FFFFh (0:N.O; 1:N.C)

- Description of this parameter is in hexadecimal.
- This parameter is to set the status of multi-function input signal (0: Normal Open ; 1: Normal Close) and it is not affected by the SINK/SOURCE status.
- Bit0 is for FWD terminal, bit1 is for REV terminal and bit2 to bit15 is for MI1 to MI14.
- User can change terminal status by communicating.

For example, MI1 is set to 1 (multi-step speed command 1), MI2 is set to 2 (multi-step speed command 2). Then the forward + 2^{nd} step speed command=1001(binary)=9 (Decimal). Pr.02-12=9 needs to be set by communication to run forward with 2nd step speed. No need to wire any multi-function terminal.

Bit15	bit14	bit13	bit12	bit11	bit10	bit9	bit8	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
MI14	MI13	MI12	MI11	MI10	MI9	MI8	MI7	MI6	MI5	MI4	MI3	MI2	MI1	\ge	\searrow

32-13 Multi-function Output 1 (Relay1)

Factory Setting: 11

2 - 14 Multi-function Output 2 (Relay2)

Factory Setting: 1

N	<u>87 - 19</u>	Multi-function Output 3 (MO1)	
			Factory Setting: 66
×	02-13	Multi-function Output 4 (MO2)	
			Factory Setting: 0
×	82-38	Output terminal of I/O extension card (MO10) or (RA10)	
×	02-33	Output terminal of I/O extension card (MO11) or (RA11)	
×	86-28	Output terminal of I/O extension card (MO12) or (RA12)	
×	82-38	Output terminal of I/O extension card (MO13) or (RA13)	
×	02-40	Output terminal of I/O extension card (MO14) or (RA14)	
×	82-41	Output terminal of I/O extension card (MO15) or (RA15)	
×	82-42	Output terminal of I/O extension card (MO16)	
×	02-43	Output terminal of I/O extension card (MO17)	
×	02-44	Output terminal of I/O extension card (MO18)	
×	02-45	Output terminal of I/O extension card (MO19)	
N	82-48	Output terminal of the I/O extension card (MO20)	

Factory Setting: 0

Settings

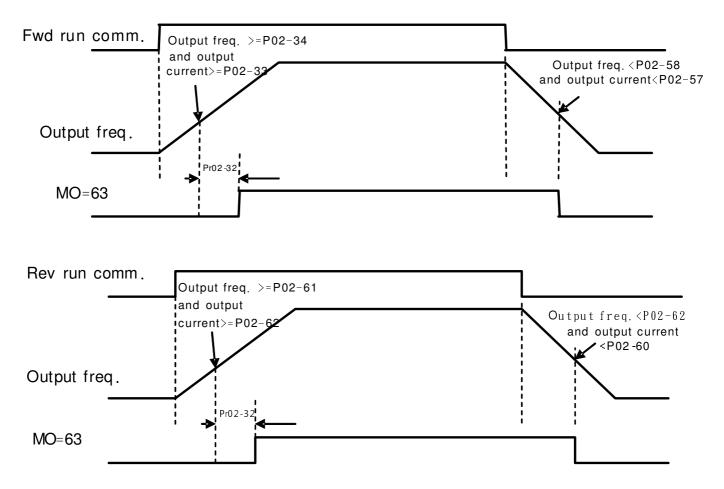
0: No function

- 1: Operation Indication
- 2: Operation speed attained
- 3: Desired frequency attained 1 (Pr.02-22)
- 4: Desired frequency attained 2 (Pr.02-24)
- 5: Zero speed (Frequency command)
- 6: Zero speed, include STOP(Frequency command)
- 7: Over torque 1(Pr.06-06~06-08)
- 8: Over torque 2(Pr.06-09~06-11)

9: Drive is ready

- 10: Low voltage warning (LV) (Pr.06-00)
- 11: Malfunction indication
- 12: Mechanical brake release(Pr.02-32)
- 13: Overheat warning (Pr.06-15)
- 14: Software brake signal indication(Pr.07-00)
- 15: PID feedback error
- 16: Slip error (oSL)
- 17: Terminal count value attained (Pr.02-20; not return to 0)
- 18: Preliminary count value attained (Pr.02-19; returns to 0)
- 19: Base Block
- 20: Warning output
- 21: Over voltage warning
- 22: Over-current stall prevention warning
- 23: Over-voltage stall prevention warning

- 24: Operation mode indication
- 25: Forward command
- 26: Reverse command
- 27: Output when current >= Pr.02-33 (>= 02-33)
- 28: Output when current <= Pr.02-33 (<= 02-33)
- 29: Output when frequency >= Pr.02-34 (>= 02-34)
- 30: Output when frequency <= Pr.02-34 (<= 02-34)
- 31: Y-connection for the motor coil
- 32: \triangle -connection for the motor coil
- 33: Zero speed (actual output frequency)
- 34: Zero speed include stop(actual output frequency)
- 35: Error output selection 1(Pr.06-23)
- 36: Error output selection 2(Pr.06-24)
- 37: Error output selection 3(Pr.06-25)
- 38: Error output selection 4(Pr.06-26)
- 39: Position attained (Pr.10-19)
- 40: Speed attained (including Stop)
- 41: Multi-position attained
- 42: Crane function
- 43: Actual motor speed slower than Pr.02-47
- 44: Low current output (Pr.06-71 to Pr.06-73)
- 45: UVW Output Electromagnetic valve On/Off Switch
- 46: Master dEb action output
- 47: Closed brake output
- 48: Reserved
- 49: Homing action complete
- 50: Output for CANopen control
- 51: Output for communication card
- 52: Output for RS485
- 53~62: Reserved
- 63: Advance Crane Output
- 64~65: Reserved
- 66: SO N.O. output
- 67: Analog signal level achieved
- 68: SO. N.C output
- This parameter is used for setting the function of multi-function terminals.
- Pr.02-36~Pr.02-41 requires additional extension cards to display the parameters, the choices of optional cards are EMC-D42A and EMC-R6AA.
- The optional card EMC-D42A provides 2 output terminals and can be used with Pr.02-36~02-37.
- The optional card EMC-R6AA provides 6 output terminals and can be used with Pr.02-36~02-41.
- Summary of function settings (Take the normally open contact for example, ON: contact is closed, OFF: contact is open)


Settings	Functions	Descriptions			
0	No Function				
1	Operation Indication	Active when the drive is not at STOP.			
2	Master Frequency Attained	Active when the AC motor drive reaches the output frequency setting.			
3	Desired Frequency Attained 1 (Pr.02-22)	Active when the desired frequency (Pr.02-22) is attained.			
4	Desired Frequency Attained 2 (Pr.02-24)	Active when the desired frequency (Pr.02-24) is attained.			
5	Zero Speed (frequency command)	Active when frequency command =0. (the drive should be at RUN mode)			
6	Zero Speed with Stop (frequency command)	Active when frequency command =0 or stop.			
7	Over Torque 1	Active when detecting over-torque. Refer to Pr.06-07 (over-torque detection level-OT1) and Pr.06-08 (over-torque detection time-OT1). Refer to Pr.06-06~06-08.			
8	Over Torque 2	Active when detecting over-torque. Refer to Pr.06-10 (over-torque detection level-OT2) and Pr.06-11 (over-torque detection time-OT2). Refer to Pr.06-09~06-11.			
9	Drive Ready	Active when the drive is ON and no abnormality detected.			
10	Low voltage warn (Lv)	Active when the DC Bus voltage is too low. (refer to Pr.06-00 low voltage level)			
11	Malfunction Indication	Active when fault occurs (except Lv stop).			
12	Mechanical Brake Release (Pr.02-32)	When drive runs after Pr.02-32, it will be ON. This function should be used with DC brake and it is recommended to use contact "b"(N.C).			
13	Overheat	Active when IGBT or heat sink overheats to prevent OH turn o the drive. (refer to Pr.06-15)			
14	Software Brake Signal Indication	Active when the soft brake function is ON. (refer to Pr.07-00)			
15	PID Feedback Error	Active when the feedback signal is abnormal.			
16	Slip Error (oSL)	Active when the slip error is detected.			
17	Terminal Count Value Attained (Pr.02-20; not return to 0)	Active when the counter reaches Terminal Counter Value (Pr.02-19). This contact won't active when Pr.02-20>Pr.02-19.			
18	Preliminary Counter Value Attained (Pr.02-19; returns to 0)	Active when the counter reaches Preliminary Counter Value (Pr.02-19).			
19	External Base Block input (B.B.)	Active when the output of the AC motor drive is shut off during base block.			
20	Warning Output	Active when the warning is detected.			
21	Over-voltage Warning	Active when the over-voltage is detected.			
22	Over-current Stall Prevention Warning	Active when the over-current stall prevention is detected.			
23	Over-voltage Stall prevention Warning	Active when the over-voltage stall prevention is detected.			
24	Operation Mode Indication	Active when the operation command is controlled by external terminal. (Pr.00-20≠0)			
25	Forward Command	Active when the operation direction is forward.			
26	Reverse Command	Active when the operation direction is reverse.			
27	Output when Current >= Pr.02-33	Active when current is >= Pr.02-33.			
28	Output when Current <= Pr.02-33	Active when current is <= Pr.02-33			
29	Output when frequency >= Pr.02-34	Active when frequency is >= Pr.02-34.			
30	Output when Frequency <= Pr.02-34	Active when frequency is <= Pr.02-34.			
31	Y-connection for the Motor Coil	Active when PR.05-24 is less than Pr.05-23 and time is more than Pr.05-25.			

Settings	Functions	Descriptions							
32				is higher than	n Pr.05-23 an	d time is more			
- 52			than Pr.05-25.						
33	Zero Speed (actual output frequency)		Active when the actual output frequency is 0. (the drive should be at RUN mode)						
34	Zero Speed with Stop (actual output frequency)	Active whe	en the actual c	output frequer	icy is 0 or Sto	р.			
35	Error Output Selection 1 (Pr.06-23)	Active whe	en Pr.06-23 is	ON.					
36	Error Output Selection 2 (Pr.06-24)	Active whe	en Pr.06-24 is	ON.					
37	Error Output Selection 3 (Pr.06-25)	Active whe	en Pr.06-25 is	ON.					
38	Error Output Selection 4 (Pr.06-26)	Active whe	en Pr.06-26 is	ON.					
39	Position Attained (Pr.10-19)		en the PG pos						
40	Speed Attained (including zero speed)	stop.	•		•	ency setting or			
		outputted. multi-positi current sta	User can set any three multi-function input terminals to 41. The current position action status of these three terminals will be outputted. Example: if setting Pr.02-36~02-38 to 41 and only the multi-position of the second point has been done. Therefore, current status is RA (ON), RA (OFF) and MO1 (OFF). In this way, their status is 010. Bit0 is RA and so on.						
				Pr.02-16=41		Pr.02-13=41			
		Pr.04-16	0	0	0	1			
		Pr.04-18	0	0	1	0			
		Pr.04-20	0	0	1	1			
41	Multi-position Attained	Pr.04-22 0 1 0 0							
		Pr.04-24 Pr.04-26	0	1	0	0			
		Pr.04-28	0	1	1	1			
		Pr.04-30	1	0	0	0			
		Pr.04-32	1	0	0	1			
		Pr.04-34	1	0	1	0			
		Pr.04-36	1	0	1	1			
		Pr.04-38	1	1	0	0			
		Pr.04-40	1	1	0	1			
		Pr.04-42	1	1	1	0			
		Pr.04-44	1	1	1	1			
42	Crane Function	This function needs to be used with Pr02-32, Pr02-33, Pr02-34, Pr02-57 and Pr.02-58. The brake will be released when output frequency and current reach the setting level after brake delay time. When output frequency>= Pr02-34 and output current>= Pr02-33, MO=42 will be activated after time setting at Pr02-32 When output frequency< Pr02-58, or output current <pr02-57, MO=42 will not be activate. See crane output time sequence chart for reference</pr02-57, 							
43	Motor Zero-speed Output (Pr.02-47)		en motor actua	•					
44	Low Current Output	This function	on needs to b	e used with P	r.06-71 ~ Pr.0	6-73			
45	UVW Phase Magnet Contractor ON/ OFF Switch	 Under MO=45 magnet For br Pr.02-3 	FOCPG cont (electromagr tic contactor w ake control, 1=T1 sec	rol mode, se netic contract ill follow the dr set MO=12 (mechanical	t MI=49 (driv or On/Off sw ive status to b (mechanical I brake delay	e enable) and itch), then the			

Settings	Functions		C	escriptions		
		level except 0 and set $Pr.07-02 = T2$ (DC brake time at start up) and $Pr.07-03 = T2$ (DC brake current at stop). It is recommend to set $T2 > T1$ and try to activate brake control during zero-speed status.				
		Enable Contactor		<u>ON</u> ON		
			AC Driver U(T1) V(T2) W(T3)	MC MOx=45 MIx	Motor IM 3~	
46	Master dEb signal output	When dEb arises at Master, MO will send a dEb signal to Slave. Then Slave will follow Master's command and decelerate to stop simultaneously.				
47	Brake Release at Stop	be ON if the be OFF when		ess than Pr.0 ime exceeds	Output Frequency	
		Multi-funct Out MO=c	put		→ 02-32 ← Time	
48	Reserved					
49	Homing Action Complete	Controlled by For example,	homing action CANopen mu , if to control R table of the C	Ilti-output tern Y2, then the I	Pr02-14 = 50.	
		physical terminal	Setting of related parameters	Attribute	Corresponding Index	
50	Output for CANopen control	RY1	P2-13 = 50	RW	The bit 0 at 2026-41	
		RY2	P2-14 = 50	RW	The bit 1 at 2026-41	
		MO1	P2-16 = 50	RW	The bit 2 at 2026-41	
		MO2	P2-17 = 50	RW	The bit 3 at 2026-41	
		MO10		RW	The bit 4 at 2026-41	
		RY10	P2-36=50		The bit 5 at 2026-41	

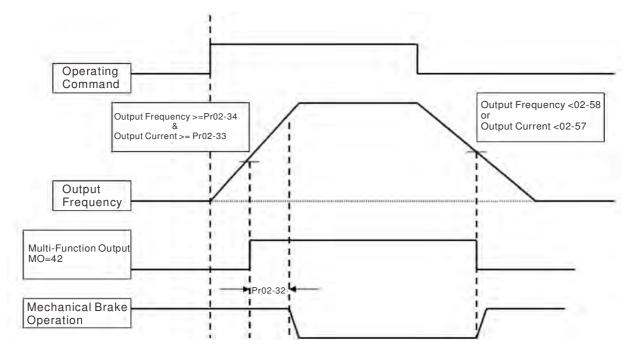
Settings	Functions	Descriptions					
		MO11	D0 07 50		The bit 6 at 2026-41		
		RY11	P2-37 = 50	RW	The bit 7 at 2026-41		
		RY12	P2-38 = 50	RW	The bit 8 at 2026-41		
		RY13	P2-39 = 50	RW	The bit 9 at 2026-41		
		RY14	P2-40 = 50	RW	The bit 10 at 2026-41		
		RY15	P2-41= 50	RW	The bit 0 at 2026-41		
		Refer to Cha	apter 15-3-5 fo	or more informa	ation		
		For commun (CMC-MOD	ication output 01, CMC-EIP	t of communica	ation cards and CMC-DN01)		
		physical terminal	Setting of related parameters	Attribute	Corresponding Address		
		RY1	P2-13 = 51	RW	The bit 0 2640		
		RY2	P2-14 = 51	RW	The bit 1 2640		
			P2-15 = 51	RW	The bit 2 2640		
51	Output for communication card	MO1	P2-16 = 51	RW	The bit 3 2640		
		MO2	P2-17 = 51	RW	The bit 4 2640		
		MO3	P2-18 = 51	RW	The bit 5 2640		
		MO4	P2-19 = 51	RW	The bit 6 2640		
		MO5	P2-20 = 51	RW	The bit 7 2640		
		MO6	P2-21 = 51	RW	The bit 8 2640		
		MO7	P2-22 = 51	RW	The bit 9 2640		
		MO8	P2-23 = 51	RW	The bit 10 2640		
52	Output for RS-485	For RS-485	output				
53~62	Reserved	1	•				
63	Advance Crane Output	Pr02-57~Pr0 The brake w reach the se This function)2- 62. ill be released tting level aften n separates th	er brake delay i ne brake contro	requency and current		
	-				e sequence chart for		
64~65	Reserved						
66	SO N.O. output	Drive	status	Safety ou N.O. (MO=66)	tput status N.C. (MO=68)		
68	SO N.C. output	S	nal run TO ~STL3	Open Close Close	Close Open Open		
67	Analog signal level achieved				Pr.03-45 AI upper level. hat Pr.03-46 AI lower		

Once the operating command is given, then when the output frequency and output current reach the setting level, the brake will be released after brake delay time.

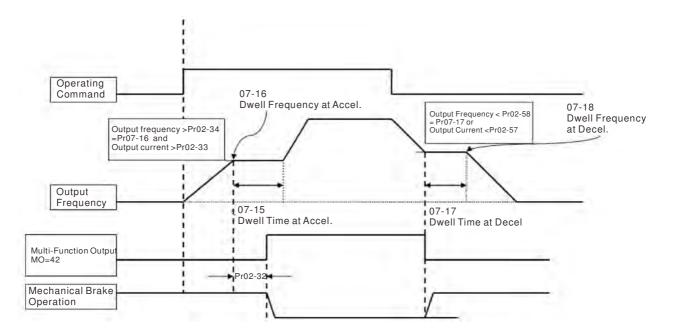
During the operation, if the frequency command is less than the brake releasing frequency, reset manually frequency command to MAX (brake releasing frequency, brake holding frequency) to operate.

Once the brake is released, it will not be held unless a stop command is give or certain errors are occurred.

Once the stop operating command is given, then when the output frequency or output current is lower than the setting level, the brake holding operation will hold immediately the brake without delay time.


#To FWD brake releasing: Send operating command then set output frequency >= Pr02-34 and set output current >= Pr02-33, delay Pr02-32 to release brake.

#To REV brake releasing: Send operating command then set output frequency >= Pr02-61 and set output current >= Pr02-59, delay Pr02-32 to release brake.


#To FWD brake holding: Send stop operating command and set output frequency < Pr02-58 or set output current < Pr02-57, release immediately the brake.

#To REV brake holding: Send stop operating command and set output frequency < Pr02-62 or set output currency < Pr02-60, release immediately the brake.

Crane Application:

It is recommended to use Dwell function as shown in the following:

Multi-function Output Setting

Factory Setting: 0000

Settings 0000h~FFFFh (0:N.O.; 1:N.C.)

- Description: The setting of this parameter is in hexadecimal.
- This parameter is set via bit setting. If a bit is 1, the corresponding output acts in the opposite way. Example:

If Pr02-13=1 and Pr02-18=0, Relay 1 is ON when the drive runs and is open when the drive is stopped.

If Pr02-13=1 and Pr02-18=1, Relay 1 is open when the drive runs and is closed when the drive is stopped.

Bit setting

bit15	bit14	bit13	bit12	bit11	bit10	bit9	bit8	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
MO20	MO19	MO18	MO17	MO16	MO15	MO14	MO13	MO12	MO11	MO10	MO2	MO1	Reserved	RY2	RY1

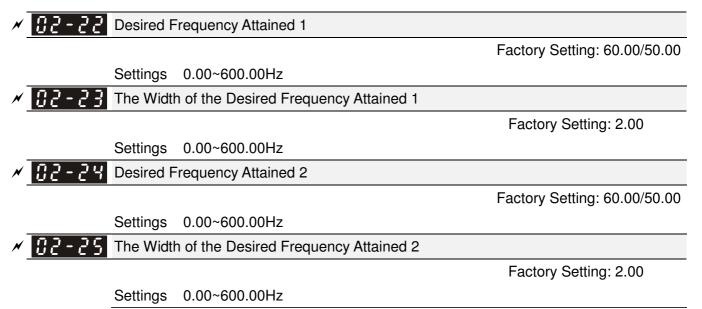
X 32 - 19 Terminal Counting Value Attained (return to 0)

Factory Setting: 0

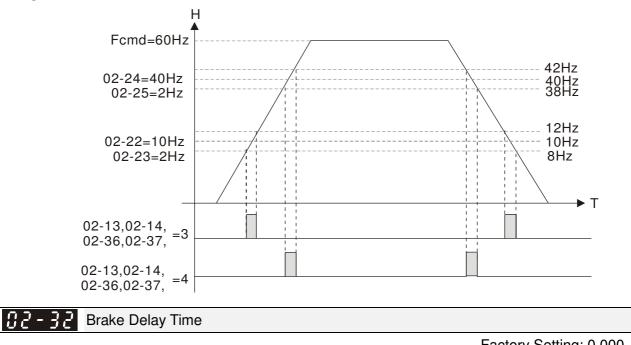
Settings 0~65535

- The counter trigger can be set by the multi-function terminal MI6 (set Pr.02-06 to 23). Upon completion of counting, the specified output terminal will be activated (Pr.02-13~02-14, Pr.02-36, 02-37 is set to 18). Pr.02-19 can't be set to 0.
- When the display shows c5555, the drive has counted 5,555 times. If display shows c5555•, it means that real counter value is between 55,550 to 55,559.

Preliminary Counting Value Attained (not return to 0)

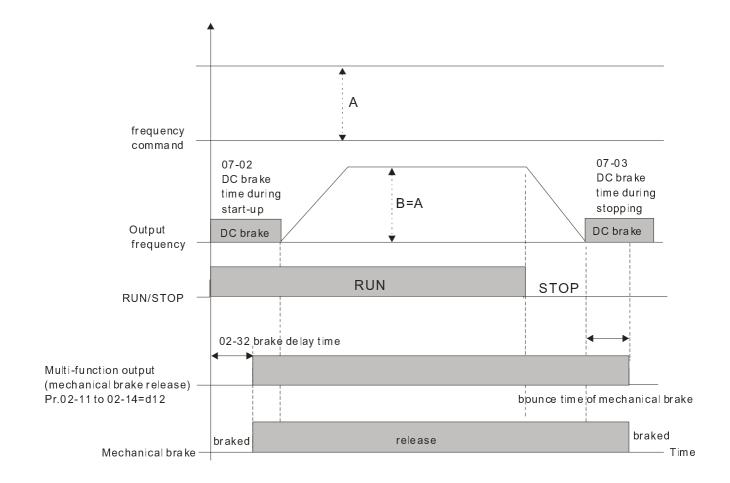

Factory Setting: 0

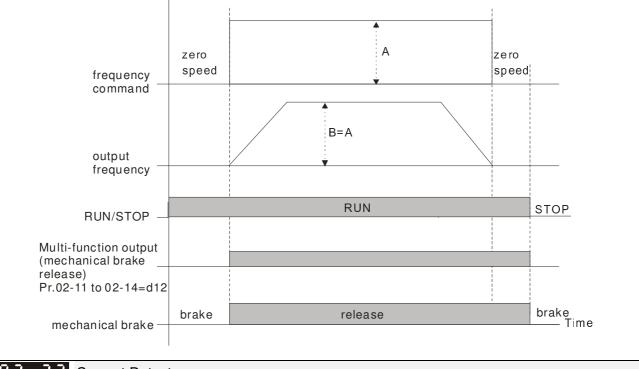
Settings 0~65535


When the counter value counts from 1 and reaches this value, the corresponding multi-function output terminal will be activated, provided one of Pr. 02-13, 02-14, 02-36, 02-37 set to 17 (Preliminary Count Value Setting). This parameter can be used for the end of the counting to make the drive runs from the low speed to stop.

[00-04=01]	-0003 c0004	c0085 c800 ;	
TRG [02-06=23] Counter Trigger		C0002	→ .0ms ec
(output signal)			The width of triggersignal
Preliminary Counter Value	02-20=3		
RY1Pr.02-13=17 02-13, 02-14, 02-36, 02-37	,		
		02-19=5	
Terminal Counter Value 02-14=17			
RY2Pr.02-14=18			
[] 2 - 2 Digital Output Gain (DFM)			
		Fa	ctory Setting: 1
Settings 1~166			

It is used to set the signal for the digital output terminals (DFM-DCM) and digital frequency output (pulse X work period=50%). Output pulse per second = output frequency X Pr.02-21.


Once output frequency reaches desired frequency and the corresponding multi-function output terminal is set to 3 or 4 (Pr.02-13, 02-14, 02-36, and 02-37), this multi-function output terminal will be ON.

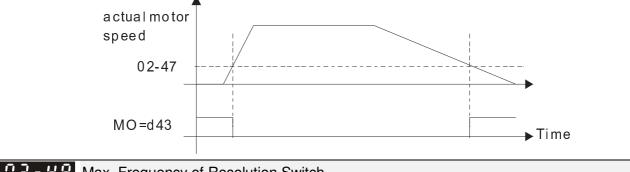

Settings 0.000~65.000 sec

Factory Setting: 0.000

When the AC motor drive runs after Pr.02-32 delay time, the corresponding multi-function output terminal (12: mechanical brake release) will be ON. It is recommended to use this function with DC brake.

If this parameter is used without DC brake, it will be invalid. Refer to the following operation timing.

Current Detect


Factory Setting: 0

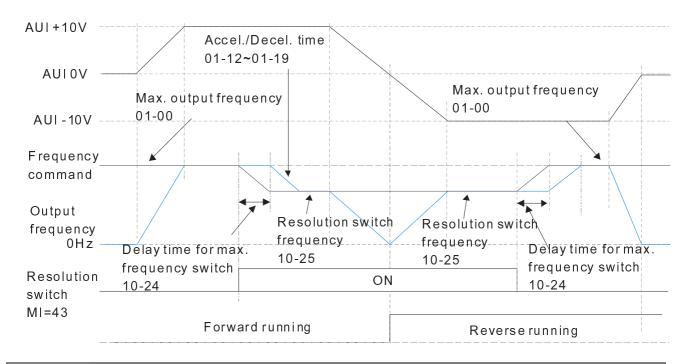
Settings 0~100%

When output current is higher or equal to Pr.02-33, it will activate multi-function output terminal (Pr.02-13, 02-14, 02-16, and 02-17 is set to 27).

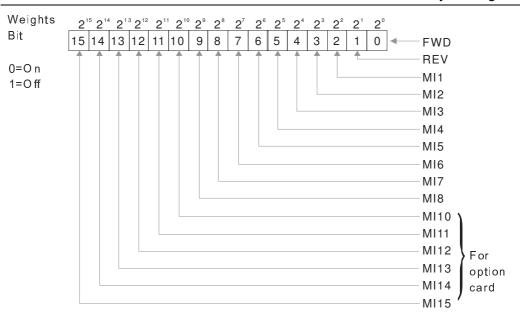

When output current is lower or equal to Pr.02-33, it will activate multi-function output terminal (Pr.02-13, 02-14, 02-16, and 02-17 is set to 28).

172 - 24 Speed Area Set Factory Setting: 3.00 Settings 0.00~600.00Hz When output frequency is higher or equal to Pr.02-34, it will activate the multi-function terminal (Pr.02-13, 02-14, 02-16, 02-17 is set to 29). When output frequency is lower or equal to Pr.02-34, it will activate the multi-function terminal (Pr.02-13, 02-14, 02-16, 02-17 is set to 30). External Operation Control Selection after Reset and Activate × 82-3 Factory Setting: 0 Settings 0: Disable 1: Drive runs if the run command still exists after reset or re-boots. Setting 1: Status 1: After the drive is powered on and the external terminal for RUN keeps ON, the drive will run. Status 2: After clearing fault once a fault is detected and the external terminal for RUN keeps ON, the drive can run after pressing RESET key. <u>112 - 4</u> Zero-speed Level of Motor Factory Setting: 0 Settings 0~65535 rpm This parameter should be used with the multi-function output terminals (set to 43). It needs to be used with PG cared and motor with encoder feedback. This parameter is used to set the level of motor zero-speed. When the actual speed is lower than this setting, the corresponding multi-function output terminal 43 will be ON as shown as follows.

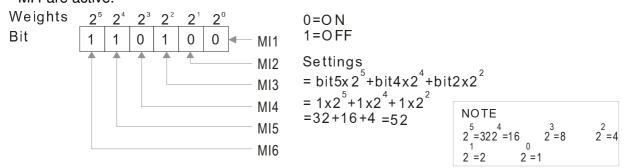
Max. Frequency of Resolution Switch


Factory Setting: 60.00

Factory Setting: 0.000


Settings 0.000~65.000 sec

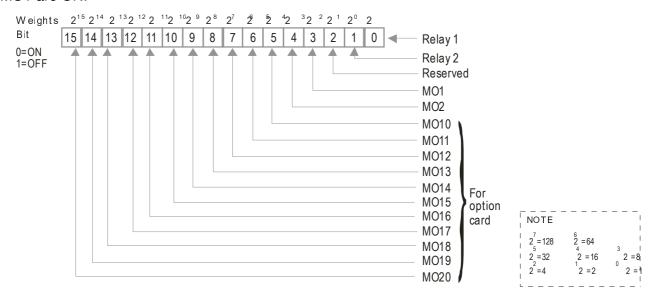
It is used to improve the unstable speed or unstable position due to the insufficient of analog resolution. It needs to be used with external terminal (set to 43). After setting this parameter, it needs to adjust the analog output resolution of controller simultaneously by this setting.


32 - 53 Display the Status of Multi-function Input Terminal

Factory Setting: Read only

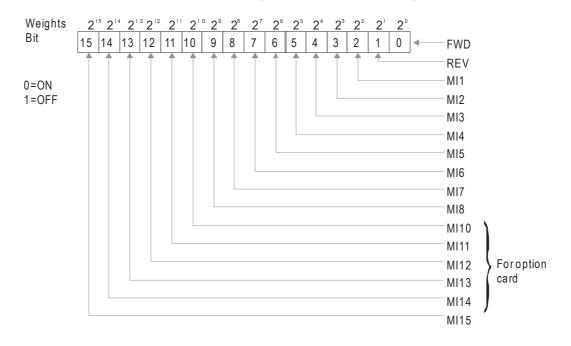
Given For Example:

If Pr.02-50 displays 0034h (Hex), i.e. the value is 52, and 110100 (binary). It means MI1, MI3 and MI4 are active.

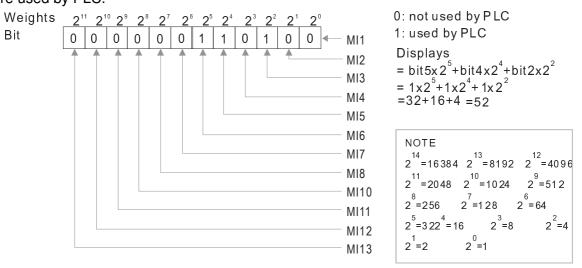


Factory Setting: Read only

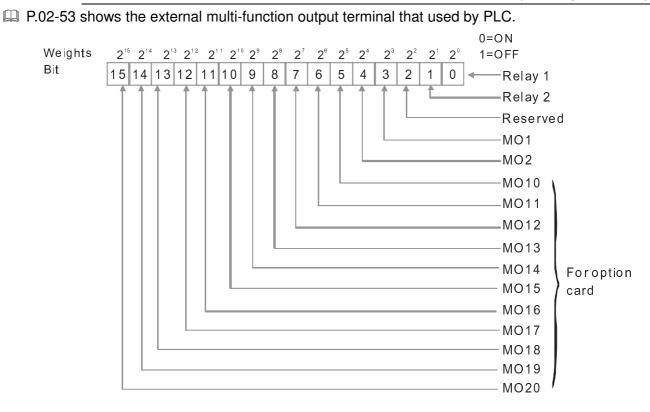
Given For Example:


If Pr.02-51 displays 000Bh (Hex), i.e. the value is 11, and 1011 (binary). It means RY1, RY2 and MO1 are ON.

32-52 Display External Output terminal occupied by PLC

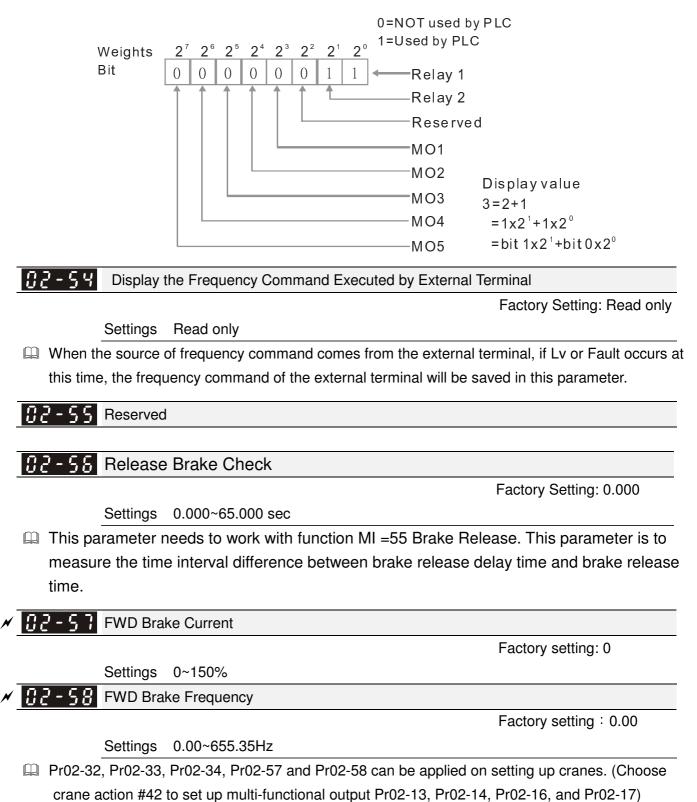

Factory Setting: Read only

P.02-52 shows the external multi-function input terminal that used by PLC.

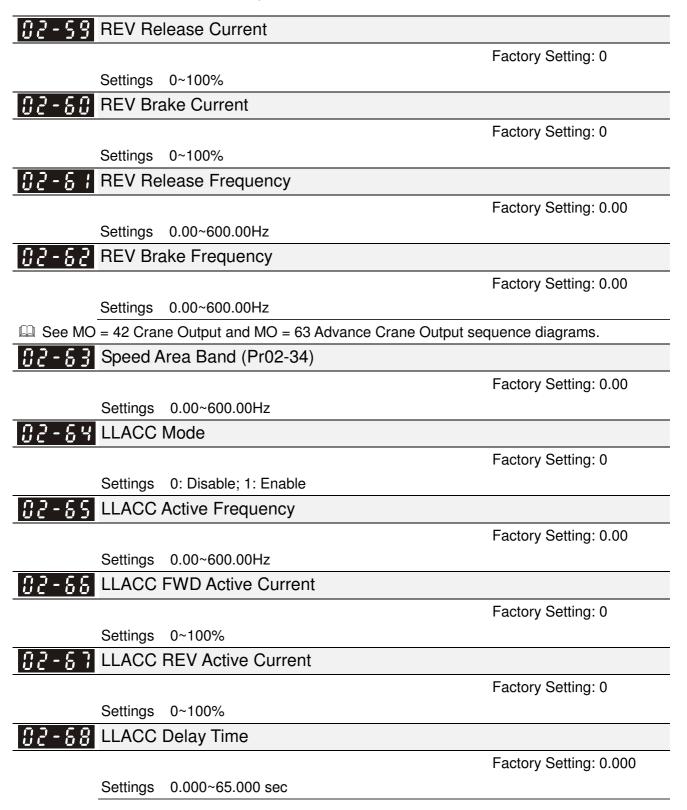

Given For Example:

When Pr.02-52 displays 0034h(hex) and switching to 110100 (binary), it means MI1, MI3 and MI4 are used by PLC.

B2-53 Display Multi-function Output Terminal occupied by PLC

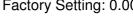

Factory Setting: Read only

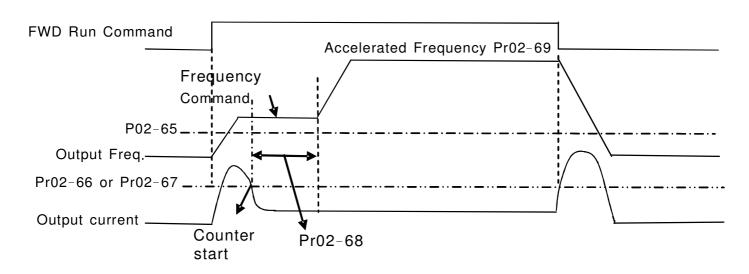
NOTE		
2 ⁷ =128	2 ⁶ =64	
2 ⁵ =32	2 = 16	2 ³ =8
2 ² =4	2 ¹ =2	0 2 =1


General For Example:

If the value of Pr.02-53 displays 0003h (Hex), it means RY1and RY2 are used by PLC.

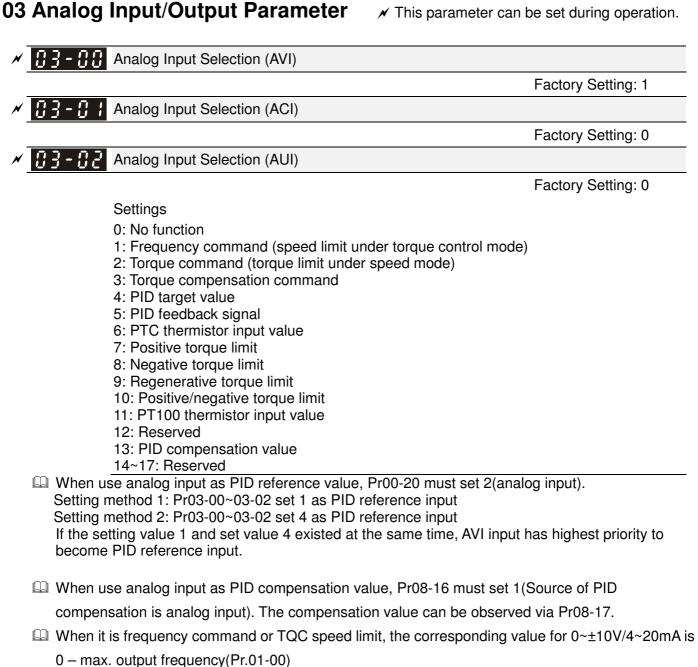
When output current of a drive is higher than the setting of Pr02-33 Pivot Point of the Current (>=02-33) and when output frequency is higher than the setting of Pr02-34 Pivot Point of the Frequency (>= 02-34), choose #42 to set up Multi-functional output Pr02-13, Pr02-14, Pr02-16 and Pr002-17 after the delay time set at Pr02-32.

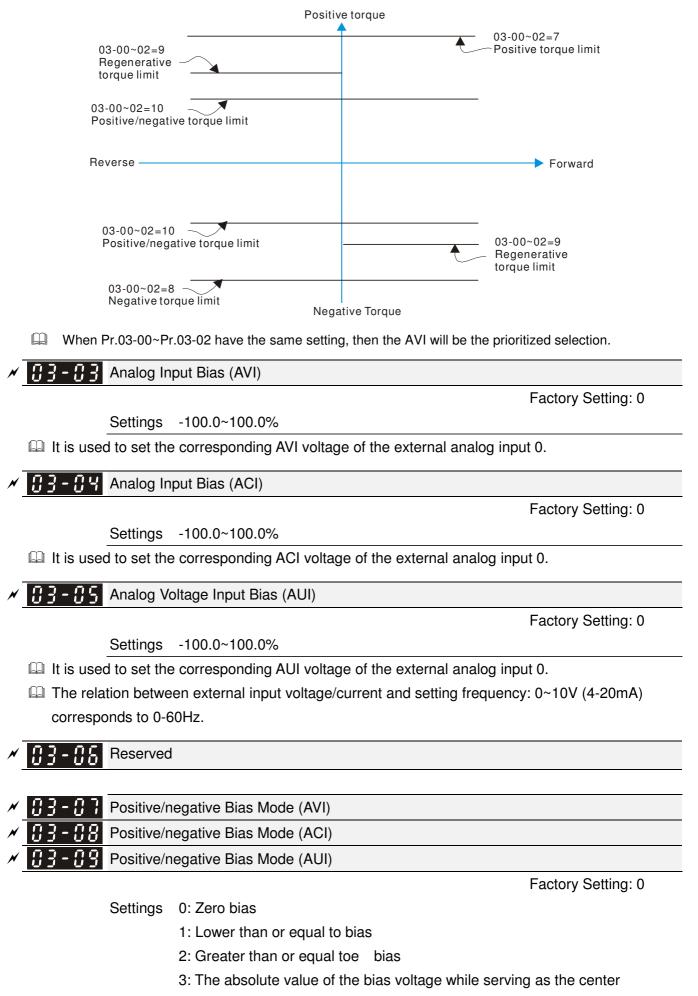

- When the Pivot Point of the Current 's setting 02-57≠0 and when the output current of the drive is lower than the setting of Pr02-57 (<02-57), or when the output frequency is lower than the setting of Pr02-58 (<02-58), the disable the setting #42 of the multi-functional output Pr02-13, Pr02-14, Pr02-16, Pr02-17
- When Pr02-57 = 0, the output current is lower than setting of Pr02-33 Pivot Point of the current (<02-33) or when output frequency is lower than the setting of Pr02-58(<02-58), disable the setting of #42 of the multi-functional output Pr02-13, Pr02-14, Pr02-16, Pr02-17.



Factory Setting: 0.00

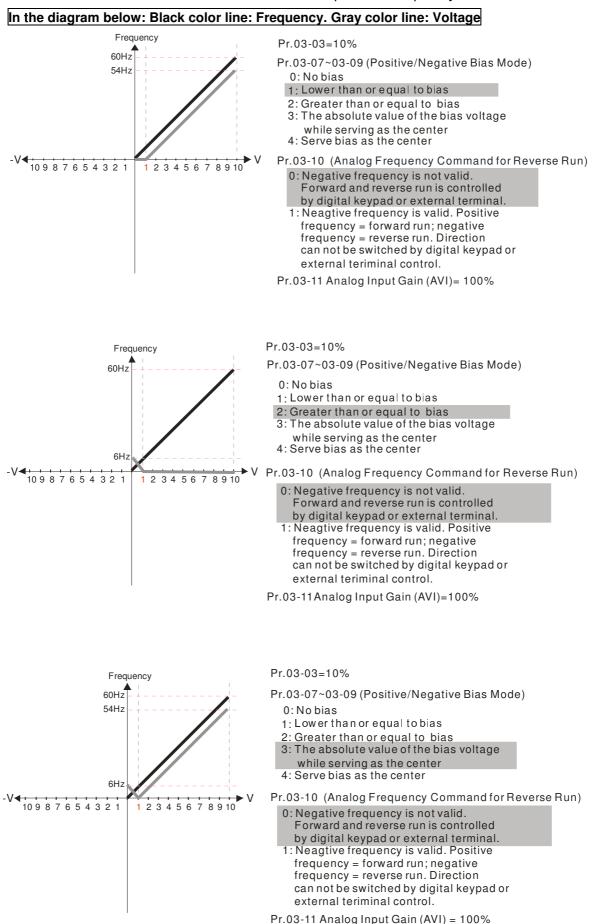
Settings 0.00~01.00 Hz

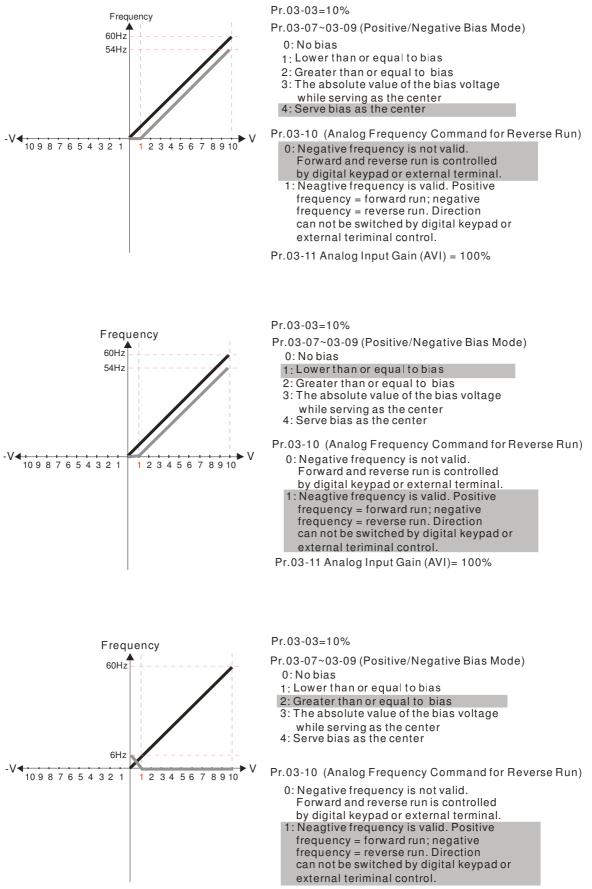


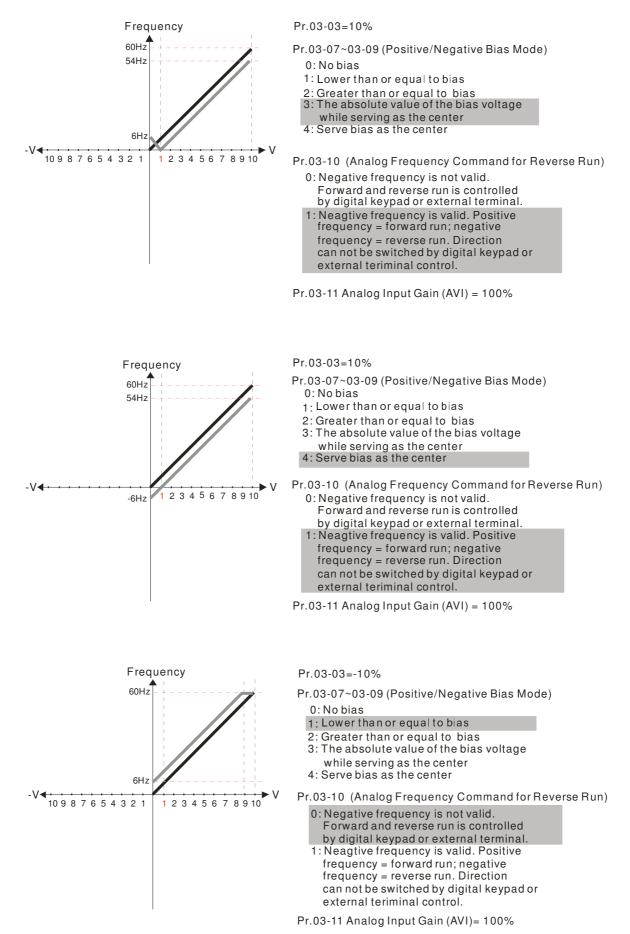

- Pr02-65 is to set the least action frequency of LLACC. When output frequency reaches frequency command (which is higher than Pr02-65), if the current level is lower than Pr02-66, the counter will start to count until the time set by Pr02-68. During counting, if the conditions above are met, the speed will increase to Pr02-69;
- During the counting, all conditions need to be met to enable LLACC, or it will be disabled until next start.
- In the setting of LLACC, if Pr02-69 is higher than Pr01-00 and Pr01-01, they are required to be modified, and 01-12 (1st ACC time) also needs to be recalculated.

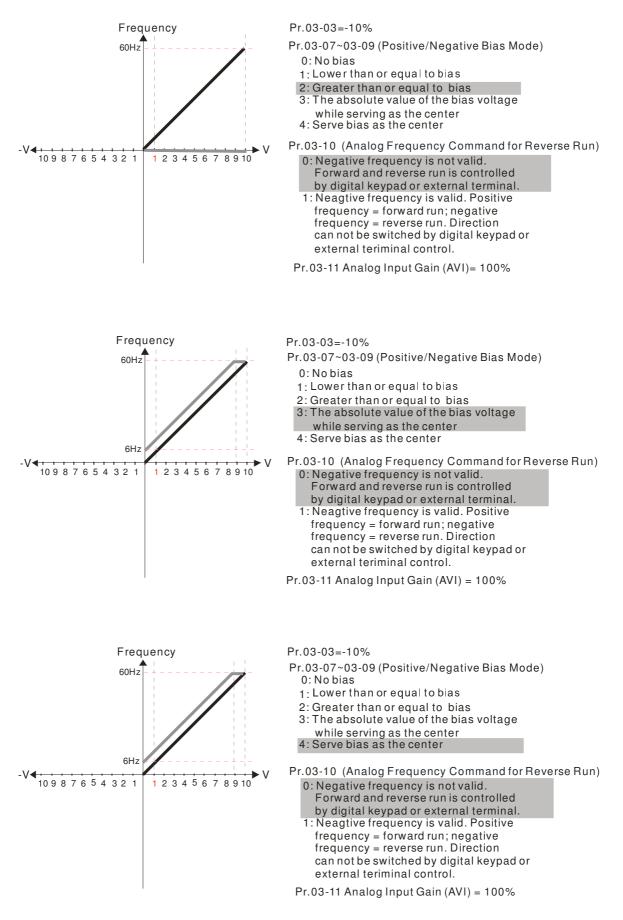
[] -] [] IO Card Type

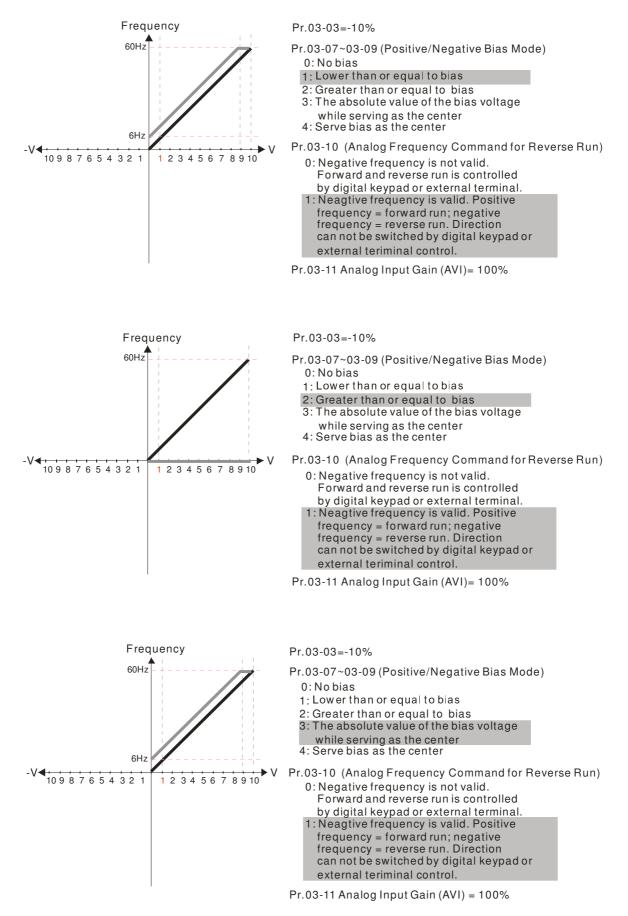
Factory Setting: 0 Settings 0: No IO Card 1: EMC-BPS01 Card 2: No IO Card 3: No IO Card 4: EMC-D611A Card 5: EMC-D42A Card 6: EMC-R6AA Card 7: No IO Card

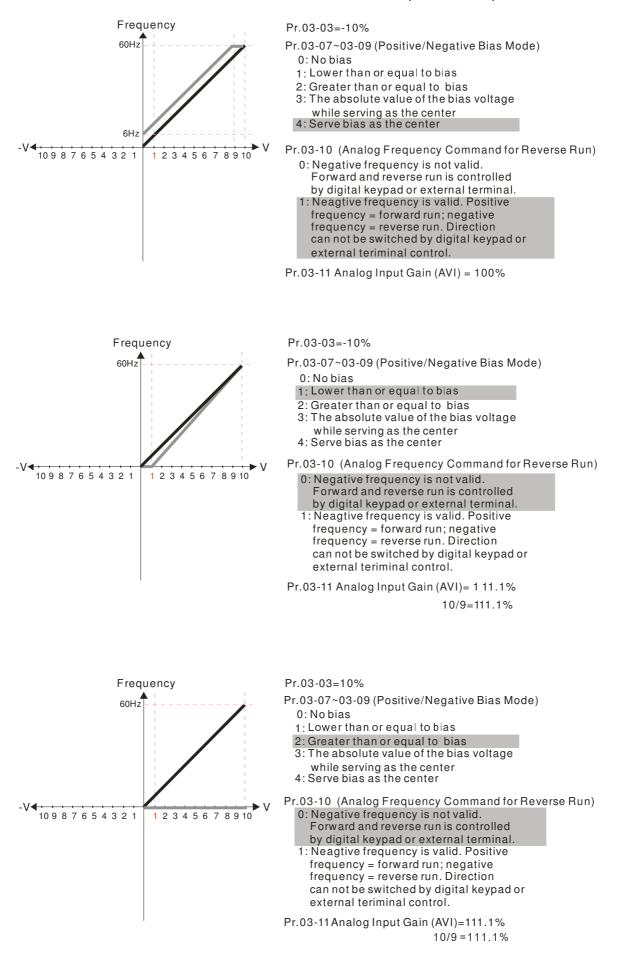


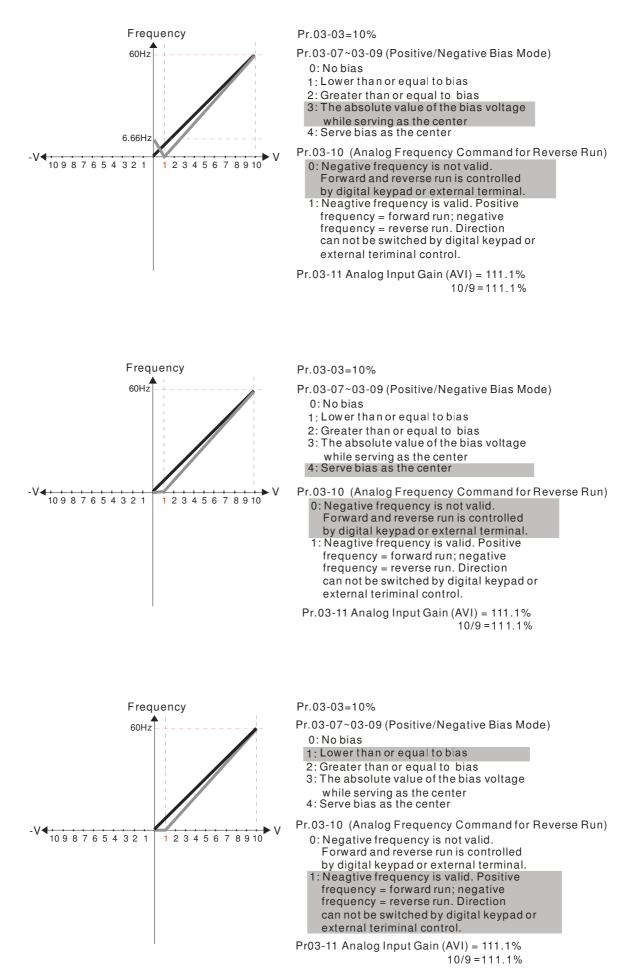

- \square When it is torque command or torque limit, the corresponding value for $0 \sim \pm 10V/4 \sim 20$ mA is 0 -max. output torque (Pr.11-27).
- \square When it is torque compensation, the corresponding value for $0^{\pm}10V/4^{2}0$ mA is 0 rated torque.

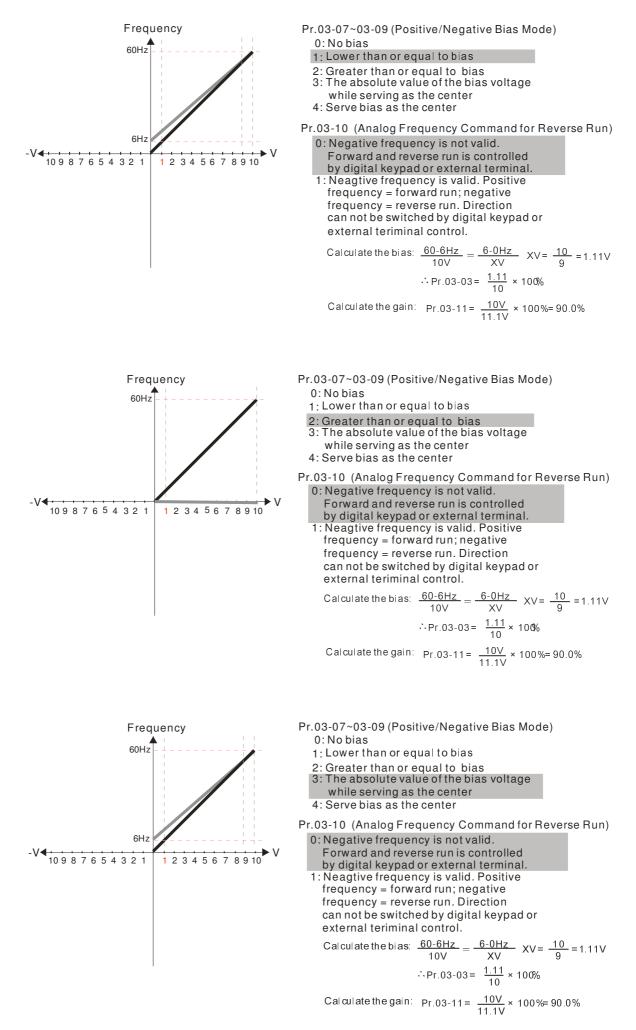

4: Serve bias as the center

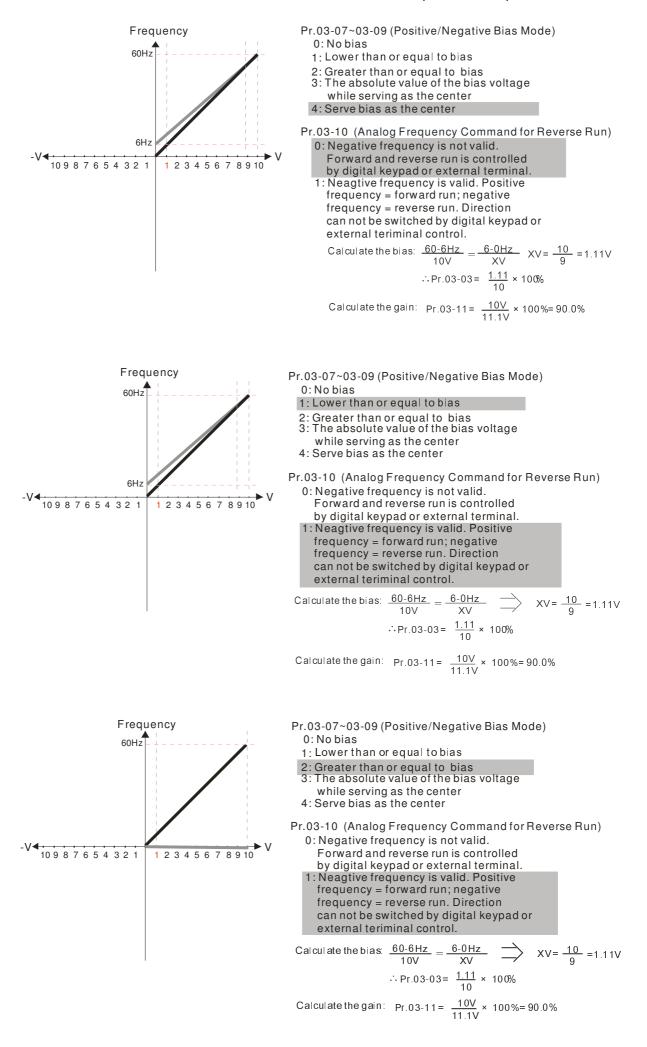

In a noisy environment, it is advantageous to use negative bias to provide a noise margin. It is recommended NOT to use less than 1V to set the operation frequency.



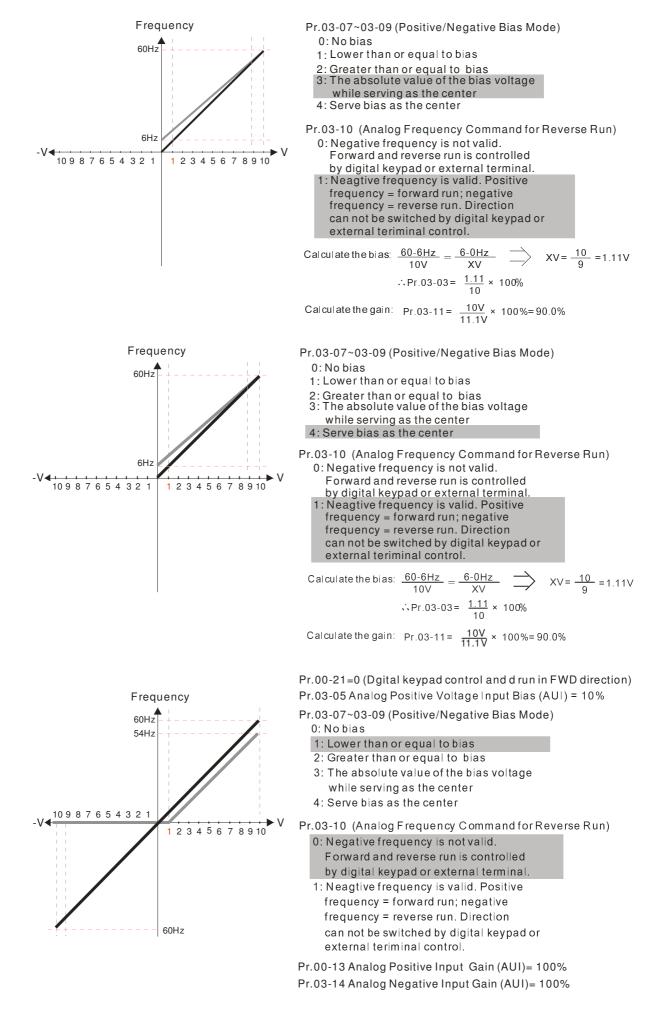


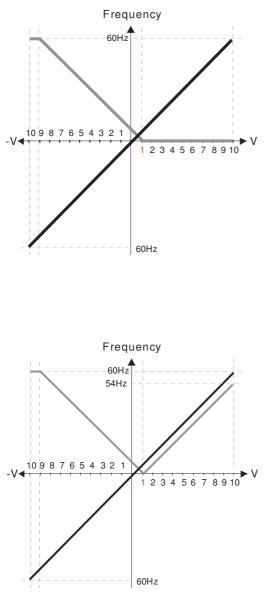

Pr.03-11Analog Input Gain (AVI)= 100%

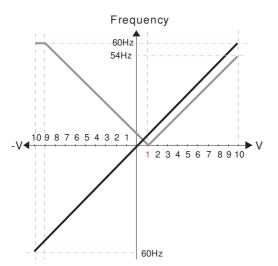




12-03-9






Chapter 12 Description of Parameter Settings

Chapter 12 Description of Parameter Settings

Chapter 12 Description of Parameter Settings

Pr.00-21=0 (Dgital keypad control and d run in FWD direction)

- Pr.03-05 Analog Positive Voltage Input Bias (AUI) = 10%
- Pr.03-07~03-09 (Positive/Negative Bias Mode)
 - 0:Nobias
 - 1: Lower than or equal to bias
 - 2: Greater than or equal to bias
 - 3: The absolute value of the bias voltage while serving as the center
 - 4: Serve bias as the center

Pr.03-10 (Analog Frequency Command for Reverse Run)

- 0: Negative frequency is not valid. Forward and reverse run is controlled by digital keypad or external terminal.
- 1: Neagtive frequency is valid. Positive frequency = forward run; negative frequency = reverse run. Direction can not be switched by digital keypad or external teriminal control.
- Pr.00-13 Analog Positive Input Gain (AUI)= 100%

Pr.03-14 Analog Negative Input Gain (AUI)= 100%

Pr.00-21=0 (Dgital keypad control and d run in FWD direction) Pr.03-05 Analog Positive Voltage Input Bias (AUI) = 10%

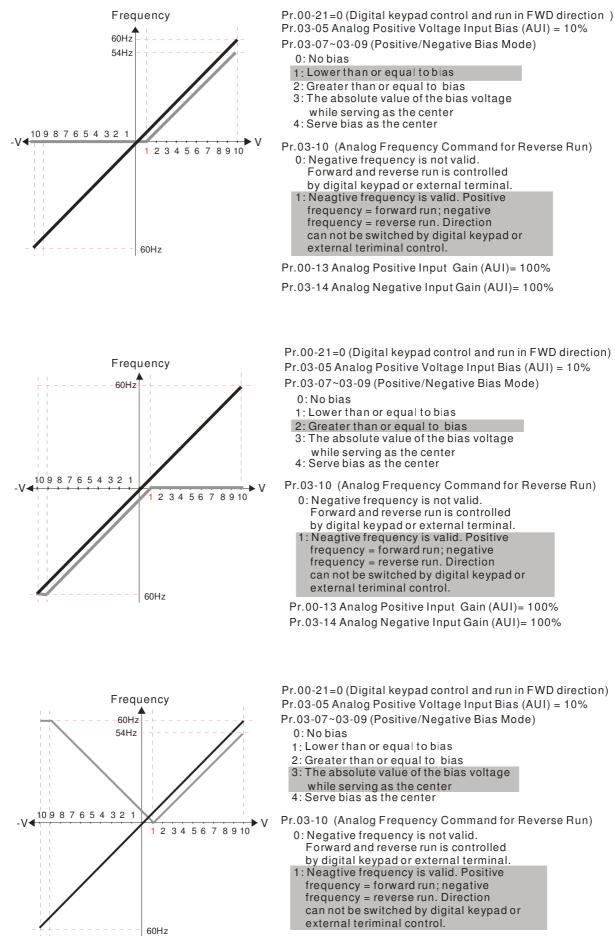
- Pr.03-07~03-09 (Positive/Negative Bias Mode)
 - 0: Nobias
 - 1: Lower than or equal to bias
 - 2: Greater than or equal to bias
- 3: The absolute value of the bias voltage while serving as the center
- 4: Serve bias as the center

 $Pr.03-10 ~(Analog \, Frequency \, Command \, for \, Reverse \, Run)$

- 0: Negative frequency is not valid. Forward and reverse run is controlled by digital keypad or external terminal.
- 1: Neagtive frequency is valid. Positive
- frequency = forward run; negative frequency = reverse run. Direction can not be switched by digital keypad or external teriminal control.

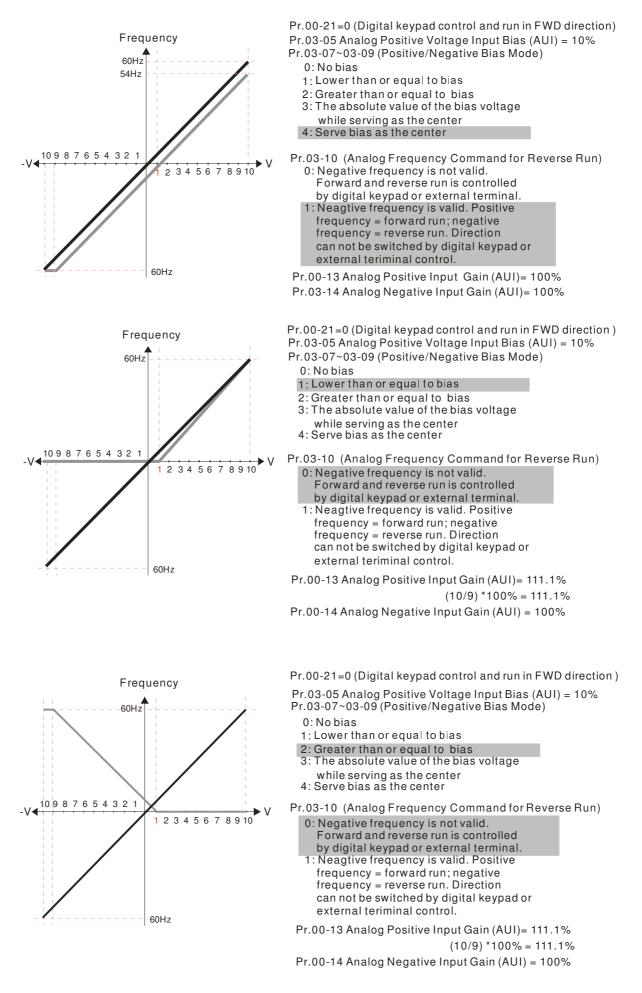
Pr.00-13 Analog Positive Input Gain (AUI)= 100%

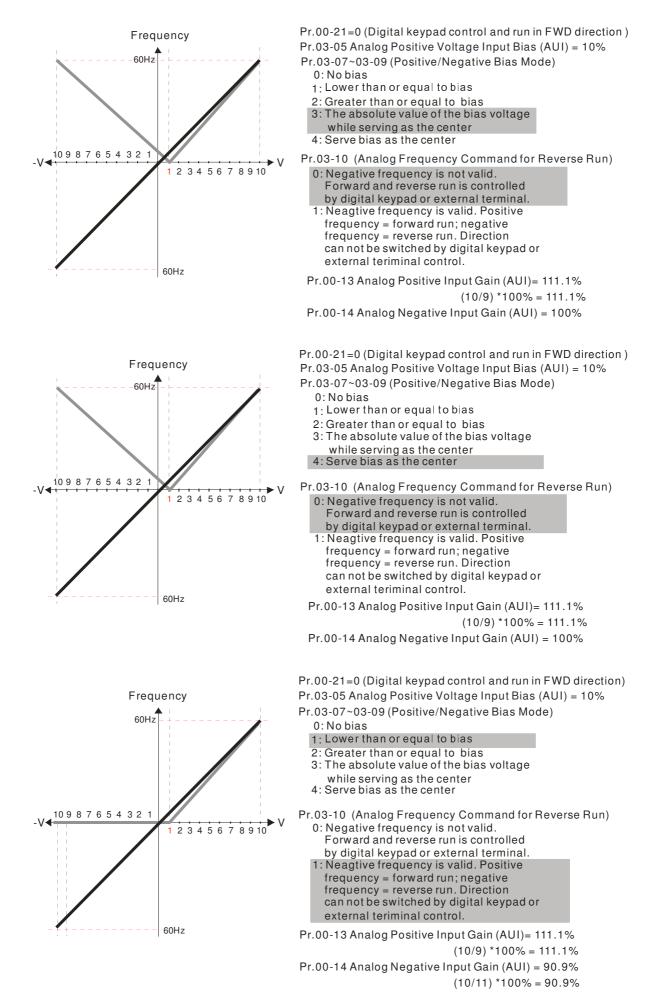
Pr.03-14 Analog Negative Input Gain (AUI)= 100%

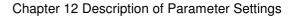

Pr.00-21=0 (Dgital keypad control and d run in FWD direction) Pr.03-05 Analog Positive Voltage Input Bias (AUI) = 10%

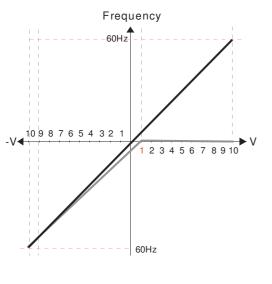
- Pr.03-07~03-09 (Positive/Negative Bias Mode) 0: Nobias
 - 1: Lower than or equal to bias
 - 2: Greater than or equal to bias
 - 3: The absolute value of the bias voltage
 - while serving as the center

4: Serve bias as the center

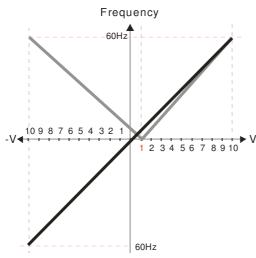

Pr.03-10 (Analog Frequency Command for Reverse Run)

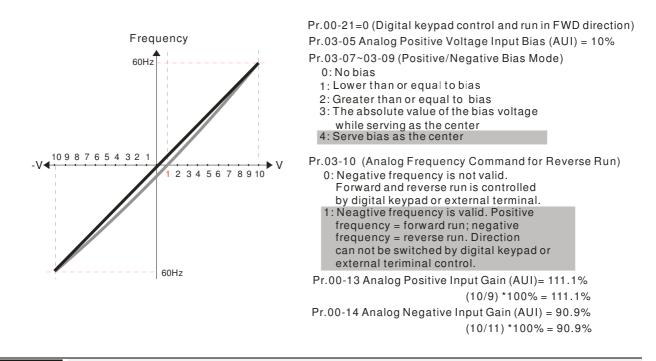

- 0: Negative frequency is not valid.
 - Forward and reverse run is controlled by digital keypad or external terminal.
- 1: Neagtive frequency is valid. Positive frequency = forward run; negative frequency = reverse run. Direction can not be switched by digital keypad or external teriminal control.
- Pr.00-13 Analog Positive Input Gain (AUI)= 100%
- Pr.03-14 Analog Negative Input Gain (AUI)= 100%




Pr.00-13 Analog Positive Input Gain (AUI)= 100% Pr.03-14 Analog Negative Input Gain (AUI)= 100%

Chapter 12 Description of Parameter Settings





Pr.00-21=0 (Digital keypad control and run in FWD direction) Pr.03-05 Analog Positive Voltage Input Bias (AUI) = 10% Pr.03-07~03-09 (Positive/Negative Bias Mode) 0:Nobias 1: Lower than or equal to bias 2: Greater than or equal to bias 3: The absolute value of the bias voltage while serving as the center 4: Serve bias as the center Pr.03-10 (Analog Frequency Command for Reverse Run) 0: Negative frequency is not valid. Forward and reverse run is controlled by digital keypad or external terminal. 1: Neagtive frequency is valid. Positive frequency = forward run; negative frequency = reverse run. Direction can not be switched by digital keypad or external teriminal control. Pr.00-13 Analog Positive Input Gain (AUI)= 111.1% (10/9) * 100% = 111.1%Pr.00-14 Analog Negative Input Gain (AUI) = 90.9% (10/11) *100% = 90.9% Pr.00-21=0 (Digital keypad control and run in FWD direction) Pr.03-05 Analog Positive Voltage Input Bias (AUI) = 10% Pr.03-07~03-09 (Positive/Negative Bias Mode) 0: No bias 1: Lower than or equal to bias 2: Greater than or equal to bias 3: The absolute value of the bias voltage while serving as the center 4: Serve bias as the center

Pr.03-10 (Analog Frequency Command for Reverse Run)

- 0: Negative frequency is not valid. Forward and reverse run is controlled by digital keypad or external terminal.
- 1: Neagtive frequency is valid. Positive frequency = forward run; negative frequency = reverse run. Direction can not be switched by digital keypad or external teriminal control.
- Pr.00-13 Analog Positive Input Gain (AUI)= 111.1% (10/9) *100% = 111.1% Pr.00-14 Analog Negative Input Gain (AUI) = 90.9% (10/11) *100% = 90.9%

A B - B Analog Frequency Command for Reverse Run

Factory Setting: 0

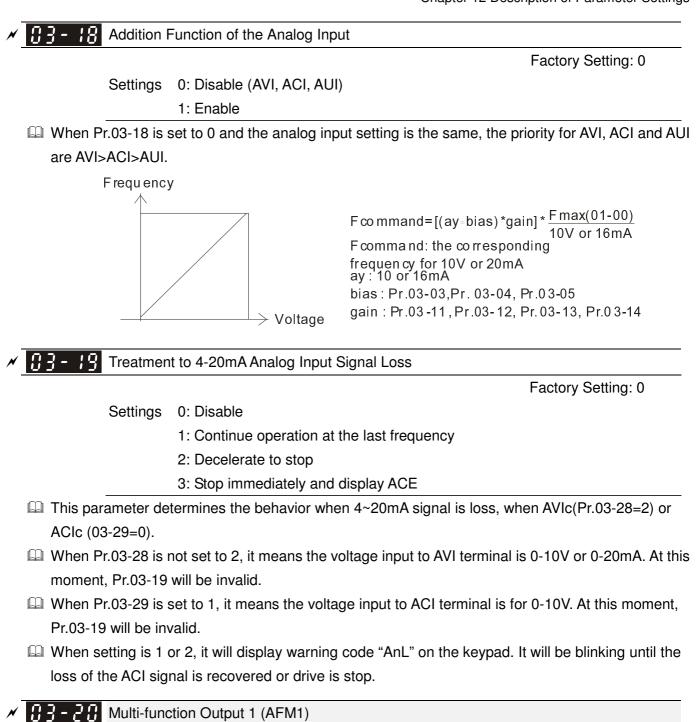
- Settings 0: Negative frequency is not valid. Forward and reverse run is controlled by digital keypad or external terminal.
 - 1: Negative frequency is valid. Positive frequency = forward run; negative frequency = reverse run. Run direction can not be switched by digital keypad or the external terminal control.
- Parameter 03-10 is used to enable reverse run command when a negative frequency (negative bias and gain) is input to AVI or ACI analog signal input.

×	Image: Second
×	Image: Second state Image: Second state<
×	Analog Positive Input Gain (AUI)
×	3 - 14 Analog Negative Input Gain (AUI)

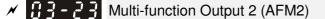
Factory Setting: 100.0

Settings -500.0~500.0%

Parameters 03-03 to 03-14 are used when the source of frequency command is the analog voltage/current signal.


N	83-15 Ar	nalog Input Filter Time (AVI)
×	83-18 Ar	nalog Input Filter Time (ACI)
N	()] -] A	nalog Input Filter Time (AUI)

Factory Setting: 0.01


Settings 0.00~20.00 sec

I These input delays can be used to filter noisy analog signal.

When the setting of the time constant is too large, the control will be stable but the control response will be slow. When the setting of time constant is too small, the control response will be faster but the control may be unstable. To find the optimal setting, please adjust the setting according to the control stable or response status.

Factory Setting: 0

Factory Setting: 0

Settings 0~23

Function Chart

Settings Functions		Descriptions		
0	Output frequency (Hz)	Max. frequency Pr.01-00 is regarded as 100%.		
1	Frequency command (Hz)	Max. frequency Pr.01-00 is regarded as 100%.		
2	Motor speed (Hz)	600Hz is regarded as 100%		
3	Output current (rms)	(2.5 X rated current) is regarded as 100%		
4	Output voltage	(2 X rated voltage) is regarded as 100%		
5	DC Bus Voltage	450V (900V)=100%		

6	Power factor	-1.000~1.000=100%			
7	Power	Rated power is regarded as 100%			
8	Output torque	Full-load torque is regarded as 100%			
9	AVI	0~10V=0~100%			
10	ACI	0~20mA=0~100%			
11	AUI	-10~10V=0~100%			
12	q-axis current (lq)	(2.5 X rated current) is regarded as 100%			
13	q-axis feedback value (Iq)	(2.5 X rated current) is regarded as 100%			
14	d-axis current (Id)	(2.5 X rated current) is regarded as 100%			
15	d-axis feedback value (Id)	(2.5 X rated current) is regarded as 100%			
16	q-axis voltage (Vq)	250V (500V) =100%			
17	d-axis voltage(Vd)	250V (500V) =100%			
18	Forque commandRated torque is regarded as 100%				
19	PG2 frequency command	Max. frequency Pr.01-00 is regarded as 100%.			
20	Output for CANopen control	For CANopen analog output			
21	RS485 analog output	For communication output (CMC-MOD01, CMC-EIP01, CMC-PN01, CMC-DN01)			
22	Analog output for For communication output (CMC-MOD01, CMC-E communication card CMC-PN01, CMC-DN01)				
23	Constant voltage/current output	Pr.03-32 and Pr.03-33 controls voltage/current output level 0~100% of Pr.03-32 corresponds to 0~10V of AFM1.			

✓ ☐ 3 - 2 / Gain of Analog Output 1 (AFM1)

Factory Setting: 100.0

Factory Setting: 100.0

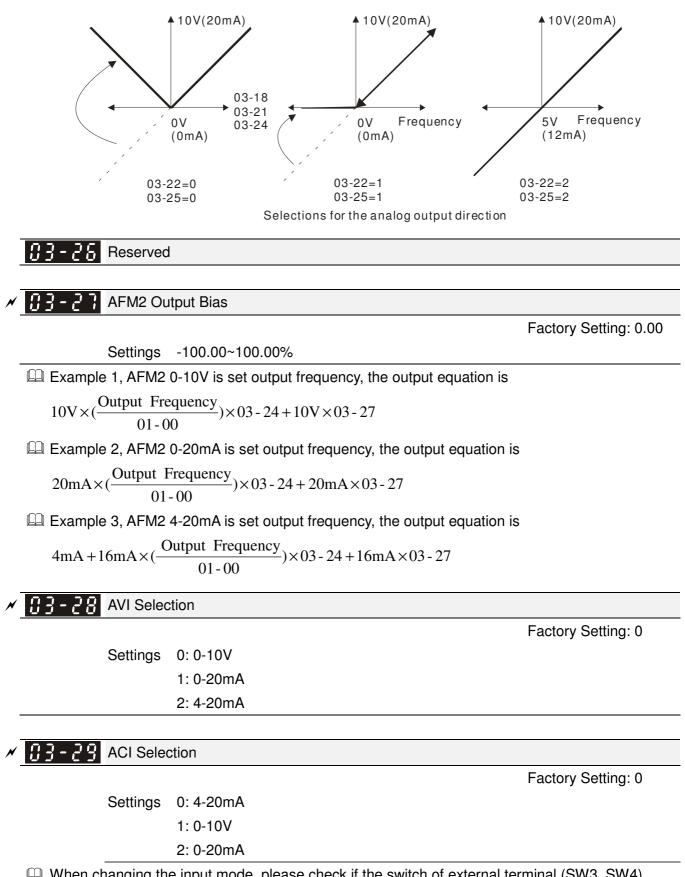
Settings 0~500.0%

It is used to adjust the analog voltage level (Pr.03-20) that terminal AFM outputs.

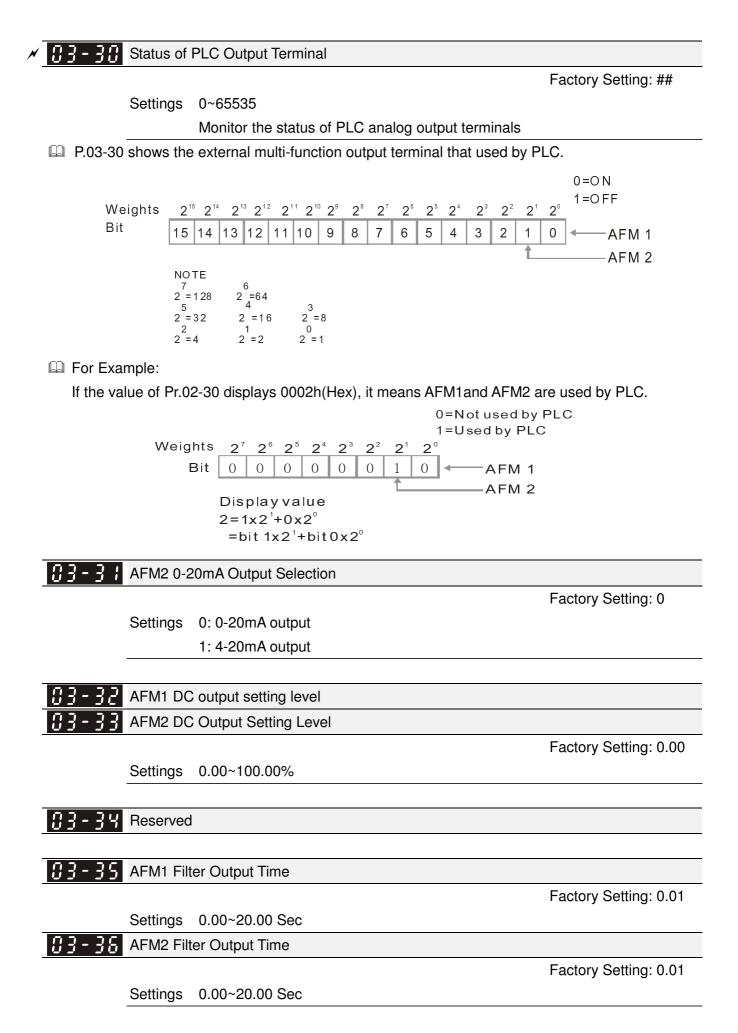
 \square This parameter is set the corresponding voltage of the analog output 0.

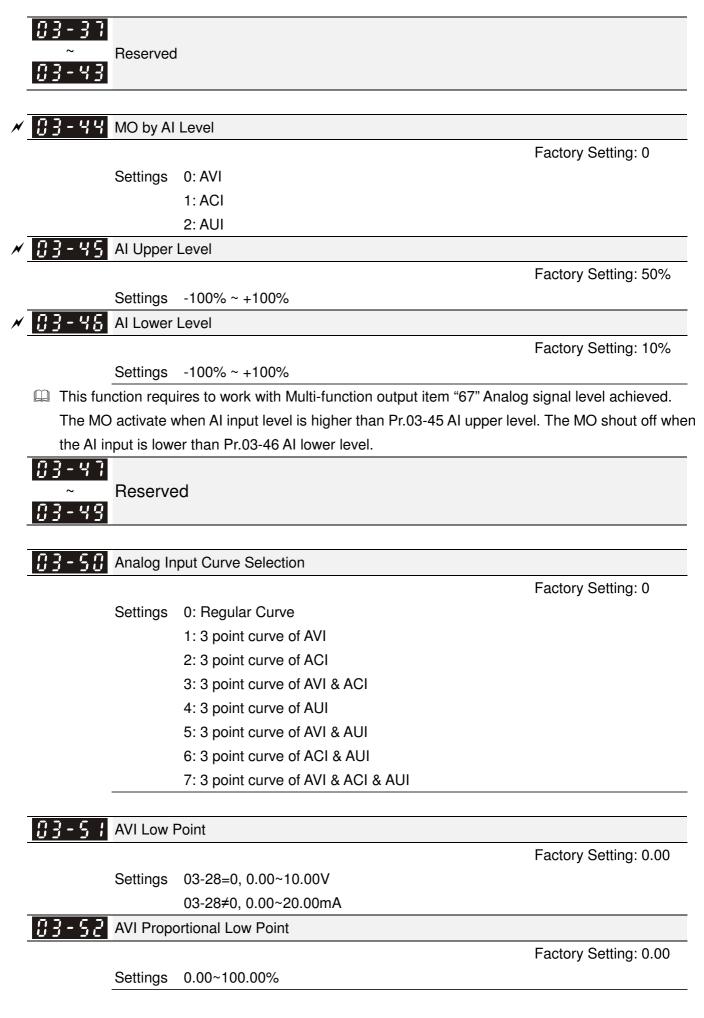
Factory Setting: 0

✓ 3 - 2 5 Analog Output 2 when in REV Direction (AFM2)

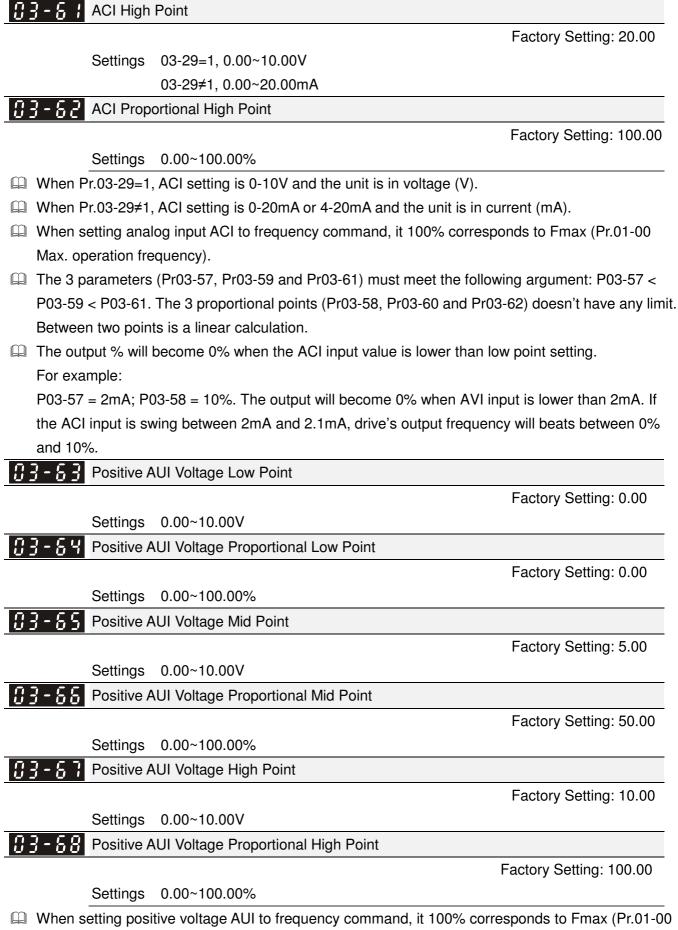

Factory Setting: 0

Settings 0: Absolute value in REV direction

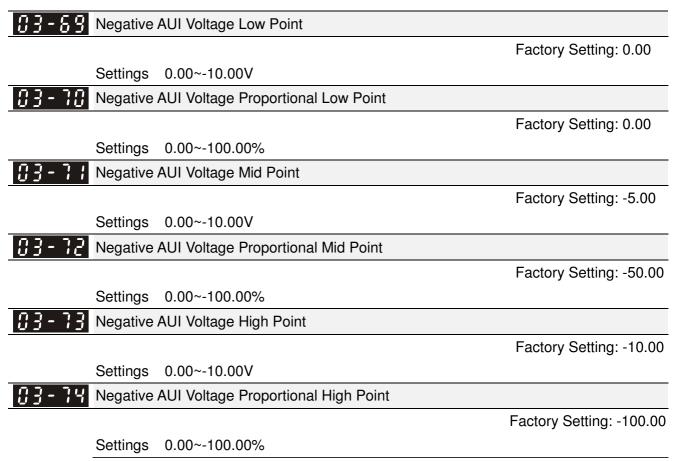

1: Output 0V in REV direction; output 0-10V in FWD direction


2: Output 5-0V in REV direction; output 5-10V in FWD direction

Chapter 12 Description of Parameter Settings



When changing the input mode, please check if the switch of external terminal (SW3, SW4) corresponds to the setting of Pr.03-28~03-29.



	AVI Mid F	Point				
			Factory Setting: 5.00			
S	Settings	03-28=0, 0.00~10.00V				
		03-28≠0, 0.00~20.00mA				
03-54 A	AVI Propo	ortional Mid Point				
			Factory Setting: 50.00			
S	Settings	0.00~100.00%				
03-55 A	AVI High	Point				
	_		Factory Setting: 10.00			
5	Settings	03-28=0, 0.00~10.00V	, .			
	Ũ	03-28≠0, 0.00~20.00mA				
<u>03-56</u> 4	AVI Propo	ortional High Point				
		5	Factory Setting: 100.00			
S	Settings	0.00~100.00%				
_		0, AVI setting is 0-10V and the unit is in voltage (V).			
		0, AVI setting is 0-20mA or 4-20mA and the unit is	,			
		log input AVI to frequency command, it 100% cor	χ , <i>γ</i>			
Max. ope	-					
The 3 parameters (Pr03-51, Pr03-53 and Pr03-53) must meet the following argument: P03-51 $<$						
		. ,				
P03-53 <	P03-55.	The 3 proportional points (Pr03-52, Pr03-54 and	Pr03-56) doesn't have any lim			
P03-53 < Between	P03-55. two poin	The 3 proportional points (Pr03-52, Pr03-54 and ts is a linear calculation. The ACI and AUI are sa	Pr03-56) doesn't have any lim me as AVI.			
P03-53 < Between The outpu	: P03-55. two poin ut % will	The 3 proportional points (Pr03-52, Pr03-54 and	Pr03-56) doesn't have any lim me as AVI.			
P03-53 < Between I The output For example:	: P03-55. two poin ut % will	The 3 proportional points (Pr03-52, Pr03-54 and ts is a linear calculation. The ACI and AUI are sa become 0% when the AVI input value is lower th	Pr03-56) doesn't have any lim me as AVI. an low point setting.			
P03-53 < Between The output For example: P03-51 = 1V;	: P03-55. two poin ut % will ; P03-52	The 3 proportional points (Pr03-52, Pr03-54 and ts is a linear calculation. The ACI and AUI are sa become 0% when the AVI input value is lower th = 10%. The output will become 0% when AVI inp	Pr03-56) doesn't have any lim me as AVI. an low point setting. put is lower than 1V. If the AVI			
P03-53 < Between The output For example: P03-51 = 1V;	: P03-55. two poin ut % will ; P03-52	The 3 proportional points (Pr03-52, Pr03-54 and ts is a linear calculation. The ACI and AUI are sa become 0% when the AVI input value is lower th	Pr03-56) doesn't have any lim time as AVI. an low point setting. but is lower than 1V. If the AVI			
P03-53 < Between The outpu For example: P03-51 = 1V; nput is swing	P03-55. two poin ut % will P03-52 betweer	The 3 proportional points (Pr03-52, Pr03-54 and ts is a linear calculation. The ACI and AUI are sa become 0% when the AVI input value is lower th = 10%. The output will become 0% when AVI inp n 1V and 1.1V, drive's output frequency will beats	Pr03-56) doesn't have any lim time as AVI. an low point setting. but is lower than 1V. If the AVI			
P03-53 < Between The output For example: P03-51 = 1V; Input is swing	P03-55. two poin ut % will P03-52 betweer	The 3 proportional points (Pr03-52, Pr03-54 and ts is a linear calculation. The ACI and AUI are sa become 0% when the AVI input value is lower th = 10%. The output will become 0% when AVI inp n 1V and 1.1V, drive's output frequency will beats	Pr03-56) doesn't have any lim time as AVI. an low point setting. but is lower than 1V. If the AVI			
P03-53 < Between The output For example: P03-51 = 1V; nput is swing	P03-55. two poin ut % will P03-52 betweer	The 3 proportional points (Pr03-52, Pr03-54 and ts is a linear calculation. The ACI and AUI are sa become 0% when the AVI input value is lower th = 10%. The output will become 0% when AVI inp n 1V and 1.1V, drive's output frequency will beats	Pr03-56) doesn't have any lim me as AVI. an low point setting. but is lower than 1V. If the AVI s between 0% and 10%			
P03-53 < Between The output For example: P03-51 = 1V; nput is swing	P03-55. two poin ut % will P03-52 betweer	The 3 proportional points (Pr03-52, Pr03-54 and ts is a linear calculation. The ACI and AUI are sa become 0% when the AVI input value is lower th = 10%. The output will become 0% when AVI inp n 1V and 1.1V, drive's output frequency will beats Point	Pr03-56) doesn't have any lim me as AVI. an low point setting. but is lower than 1V. If the AVI s between 0% and 10%			
P03-53 < Between The output For example: P03-51 = 1V; nput is swing	P03-55. two poin ut % will P03-52 betweer ACI Low	The 3 proportional points (Pr03-52, Pr03-54 and ts is a linear calculation. The ACI and AUI are sa become 0% when the AVI input value is lower th = 10%. The output will become 0% when AVI inp n 1V and 1.1V, drive's output frequency will beats Point Pr.03-29=1, 0.00~10.00V Pr.03-29≠1, 0.00~20.00mA	Pr03-56) doesn't have any lim me as AVI. an low point setting. but is lower than 1V. If the AVI s between 0% and 10%			
P03-53 < Between The output For example: P03-51 = 1V; Input is swing	P03-55. two poin ut % will P03-52 betweer ACI Low	The 3 proportional points (Pr03-52, Pr03-54 and ts is a linear calculation. The ACI and AUI are sa become 0% when the AVI input value is lower th = 10%. The output will become 0% when AVI inp n 1V and 1.1V, drive's output frequency will beats Point Pr.03-29=1, 0.00~10.00V	Pr03-56) doesn't have any lim ame as AVI. an low point setting. but is lower than 1V. If the AVI is between 0% and 10% Factory Setting: 4.00			
P03-53 < Between The output For example: P03-51 = 1V; Input is swing	P03-55. two poin ut % will P03-52 betweer ACI Low Settings	The 3 proportional points (Pr03-52, Pr03-54 and ts is a linear calculation. The ACI and AUI are sa become 0% when the AVI input value is lower th = 10%. The output will become 0% when AVI inp n 1V and 1.1V, drive's output frequency will beats Point Pr.03-29=1, 0.00~10.00V Pr.03-29≠1, 0.00~20.00mA ortional Low Point	Pr03-56) doesn't have any lim me as AVI. an low point setting. put is lower than 1V. If the AVI s between 0% and 10%			
P03-53 < Between The output For example: P03-51 = 1V; nput is swing 03-57 / 03-57 / S	P03-55. two poin ut % will P03-52 betweer ACI Low Settings ACI Prop Settings	The 3 proportional points (Pr03-52, Pr03-54 and ts is a linear calculation. The ACI and AUI are sa become 0% when the AVI input value is lower th = 10%. The output will become 0% when AVI inp n 1V and 1.1V, drive's output frequency will beats Point Pr.03-29=1, 0.00~10.00V Pr.03-29≠1, 0.00~20.00mA ortional Low Point 0.00~100.00%	Pr03-56) doesn't have any lim ame as AVI. an low point setting. but is lower than 1V. If the AVI is between 0% and 10% Factory Setting: 4.00			
P03-53 < Between The output For example: P03-51 = 1V; Input is swing	P03-55. two poin ut % will P03-52 betweer ACI Low Settings	The 3 proportional points (Pr03-52, Pr03-54 and ts is a linear calculation. The ACI and AUI are sa become 0% when the AVI input value is lower th = 10%. The output will become 0% when AVI inp n 1V and 1.1V, drive's output frequency will beats Point Pr.03-29=1, 0.00~10.00V Pr.03-29≠1, 0.00~20.00mA ortional Low Point 0.00~100.00%	Pr03-56) doesn't have any lim time as AVI. an low point setting. but is lower than 1V. If the AVI is between 0% and 10% Factory Setting: 4.00 Factory Setting: 0.00			
P03-53 < Between The output For example: P03-51 = 1V; nput is swing 03-57 4 S 03-58 4 S 03-58 4	P03-55. two point ut % will P03-52 between ACI Low Settings ACI Prop Settings ACI Prop	The 3 proportional points (Pr03-52, Pr03-54 and ts is a linear calculation. The ACI and AUI are sa become 0% when the AVI input value is lower th = 10%. The output will become 0% when AVI inp n 1V and 1.1V, drive's output frequency will beats Point Pr.03-29=1, 0.00~10.00V Pr.03-29 \neq 1, 0.00~20.00mA ortional Low Point 0.00~100.00% Point	Pr03-56) doesn't have any lim ame as AVI. an low point setting. but is lower than 1V. If the AVI is between 0% and 10% Factory Setting: 4.00			
P03-53 < Between The output For example: P03-51 = 1V; nput is swing 03-57 / 03-57 / S 03-58 / S 03-58 /	P03-55. two poin ut % will P03-52 betweer ACI Low Settings ACI Prop Settings	The 3 proportional points (Pr03-52, Pr03-54 and ts is a linear calculation. The ACI and AUI are sa become 0% when the AVI input value is lower th = 10%. The output will become 0% when AVI inp n 1V and 1.1V, drive's output frequency will beats Point Pr.03-29=1, 0.00~10.00V Pr.03-29 \neq 1, 0.00~20.00mA ortional Low Point 0.00~100.00% Point 03-29=1, 0.00~10.00V	Pr03-56) doesn't have any lim time as AVI. an low point setting. but is lower than 1V. If the AVI is between 0% and 10% Factory Setting: 4.00 Factory Setting: 0.00			
P03-53 < Between The output For example: P03-51 = 1V; nput is swing 03-57 / 03-58 / 03-58 / 03-58 / S	P03-55. two poin ut % will P03-52 between ACI Low Settings ACI Prop Settings ACI Mid F Settings	The 3 proportional points (Pr03-52, Pr03-54 and ts is a linear calculation. The ACI and AUI are sa become 0% when the AVI input value is lower th = 10%. The output will become 0% when AVI inp n 1V and 1.1V, drive's output frequency will beats Point Pr.03-29=1, 0.00~10.00V Pr.03-29 \neq 1, 0.00~20.00mA ortional Low Point 0.00~100.00% Point 03-29=1, 0.00~10.00V 03-29 \neq 1, 0.00~20.00mA	Pr03-56) doesn't have any lim ame as AVI. an low point setting. but is lower than 1V. If the AVI s between 0% and 10% Factory Setting: 4.00 Factory Setting: 0.00			
P03-53 < Between The output For example: P03-51 = 1V; Input is swing 03-57 / 03-58 / 03-58 / 03-58 / S	P03-55. two poin ut % will P03-52 between ACI Low Settings ACI Prop Settings ACI Mid F Settings	The 3 proportional points (Pr03-52, Pr03-54 and ts is a linear calculation. The ACI and AUI are sa become 0% when the AVI input value is lower th = 10%. The output will become 0% when AVI inp n 1V and 1.1V, drive's output frequency will beats Point Pr.03-29=1, 0.00~10.00V Pr.03-29 \neq 1, 0.00~20.00mA ortional Low Point 0.00~100.00% Point 03-29=1, 0.00~10.00V	Pr03-56) doesn't have any lim ame as AVI. an low point setting. but is lower than 1V. If the AVI s between 0% and 10% Factory Setting: 4.00 Factory Setting: 0.00 Factory Setting: 12.00			
P03-53 < Between The output For example: P03-51 = 1V; nput is swing 03-57 / 03-58 / 03-58 / 03-58 / 5	P03-55. two poin ut % will P03-52 between ACI Low Settings ACI Prop Settings ACI Mid F Settings	The 3 proportional points (Pr03-52, Pr03-54 and ts is a linear calculation. The ACI and AUI are sa become 0% when the AVI input value is lower th = 10%. The output will become 0% when AVI inp n 1V and 1.1V, drive's output frequency will beats Point Pr.03-29=1, 0.00~10.00V Pr.03-29 \neq 1, 0.00~20.00mA ortional Low Point 0.00~100.00% Point 03-29=1, 0.00~10.00V 03-29 \neq 1, 0.00~20.00mA	Pr03-56) doesn't have any lim ame as AVI. an low point setting. but is lower than 1V. If the AVI s between 0% and 10% Factory Setting: 4.00 Factory Setting: 0.00			

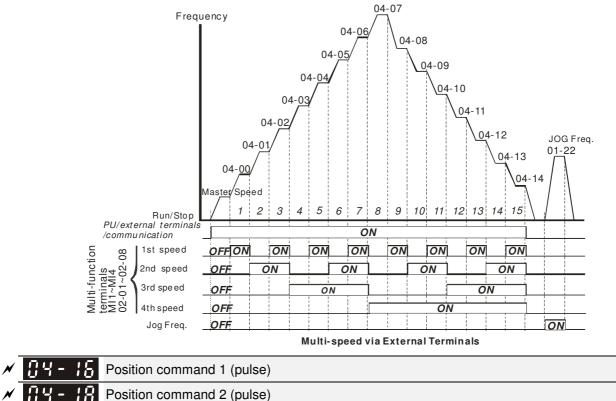
- Max. operation frequency) and the motor runs in forward direction.
- Three of the positive voltage AUI points can be set according to user's demand on voltage and proportion, there is no setting limit for AUI points.

- When setting negative voltage AUI to frequency command, it 100% corresponds to Fmax (Pr.01-00 Max. operation frequency) and the motor runs in reverse direction.
- Three of the negative voltage AUI points can be set according to user's demand on voltage and proportion; there is no setting limit for AUI points.
- The 3 parameters (Pr03-69, Pr03-71 and Pr03-73) must meet the following argument: P03-69 < P03-71 < P03-73. The 3 proportional points (Pr03-70, Pr03-72 and Pr03-74) doesn't have any limit. Between two points is a linear calculation.
- The output % will become 0% when the negative AUI input value is lower than low point setting. For example:

P03-63=-1V; P03-64 = 10%. The output will become 0% when AUI input is bigger than -1V. If the AUI input is swing between -1V and -1.1V, drive's output frequency will beats between 0% and 10%.

04 Multi-Step Speed Parameters

✓ This parameter can be set during operation.


N	04-00	1st Step Speed Frequency
N	04-0;	2nd Step Speed Frequency
N	04-02	3rd Step Speed Frequency
×	04-03	4th Step Speed Frequency
N	04-04	5th Step Speed Frequency
N	04-05	6th Step Speed Frequency
N	04-06	7th Step Speed Frequency
N	04-07	8th Step Speed Frequency
N	04-08	9th Step Speed Frequency
N	04-09	10th Step Speed Frequency
N	84-18	11th Step Speed Frequency
N	04-11	12th Step Speed Frequency
N	84-12	13th Step Speed Frequency
N	84-13	14th Step Speed Frequency
N	84-14	15th Step Speed Frequency

Factory Setting: 0.00

Settings 0.00~600.00Hz

The Multi-function Input Terminals (refer to setting 1~4 of Pr.02-01~02-08 and 02-26~02-31) are used to select one of the AC motor drive Multi-step speeds (max. 15 speeds). The speeds (frequencies) are determined by Pr.04-00 to 04-14 as shown in the following.

- The run/stop command can be controlled by the external terminal/digital keypad/communication via Pr.00-21.
- \square Each one of multi-step speeds can be set within 0.0~600.0Hz during operation.
- Explanation for the timing diagram for multi-step speeds and external terminals The Related parameter settings are:
 - 1. Pr.04-00~04-14: setting multi-step speeds (to set the frequency of each step speed)
 - 2. Pr.02-01~02-08, 02-26~02-31: setting multi-function input terminals (multi-step speed 1~4)
 - Related parameters: 01-22 JOG Frequency, 02-01 Multi-function Input Command 1 (MI1), 02-02 Multi-function Input Command 2 (MI2), 02-03 Multi-function Input Command 3 (MI3), 02-04 Multi-function Input Command 4 (MI4)

0 1 10		
84-18	Position command 2 (pulse)	
84-28	Position command 3 (pulse)	
84-22	Position command 4 (pulse)	
04-54	Position command 5 (pulse)	
84-28	Position command 6 (pulse)	
85-28	Position command 7 (pulse)	
04-30	Position command 8 (pulse)	
84-32	Position command 9 (pulse)	
04-34	Position command 10 (pulse)	
04-36	Position command 11 (pulse)	
84-38	Position command 12 (pulse)	
04-40	Position command 13 (pulse)	
84-45	Position command 14 (pulse)	
04-44	Position command 15 (pulse)	
	Factory S	Setting: 0
	04 - 18 04 - 20 04 - 20 04 - 22 04 - 24 04 - 28 04 - 30 04 - 30 04 - 32 04 - 34	Q Y - 18Position command 2 (pulse) Q Y - 20Position command 3 (pulse) Q Y - 22Position command 4 (pulse) Q Y - 24Position command 5 (pulse) Q Y - 25Position command 6 (pulse) Q Y - 28Position command 7 (pulse) Q Y - 30Position command 8 (pulse) Q Y - 31Position command 9 (pulse) Q Y - 34Position command 10 (pulse) Q Y - 35Position command 11 (pulse) Q Y - 38Position command 12 (pulse) Q Y - 40Position command 13 (pulse) Q Y - 42Position command 14 (pulse)

Settings -:

-32767~32767

Please refer to Pr.02-01~02-08 (Multi-function Input Command) for description on setting 34 (Switch between multi-step position and multi-speed control) and setting 36 (Enable multi-step position learning function).

Multi-step position corresponding	MI4	MI3	MI2	MI1	Multi-step speed corresponding
10-19	0	0	0	0	Positioning for Encoder Position
04-16 Position command 1 (pulse)	0	0	0	1	04-00 1 st step speed frequency
04-18 Position command 2 (pulse)	0	0	1	0	04-01 2 nd step speed frequency
04-20 Position command 3 (pulse)	0	0	1	1	04-02 3 rd step speed frequency

04-22 Position command 4 (pulse)	0	1	0	0	04-03 4 th step speed frequency
04-24 Position command 5 (pulse)	0	1	0	1	04-04 5 th step speed frequency
04-26 Position command 6 (pulse)	0	1	1	0	04-05 6 th step speed frequency
04-28 Position command 7 (pulse)	0	1	1	1	04-06 7 th step speed frequency
04-30 Position command 8 (pulse)	1	0	0	0	04-07 8 th step speed frequency
04-32 Position command 9 (pulse)	1	0	0	1	04-08 9 th step speed frequency
04-34 Position command 10 (pulse)	1	0	1	0	04-09 10 th step speed frequency
04-36 Position command 11 (pulse)	1	0	1	1	04-10 11 th step speed frequency
04-38 Position command 12 (pulse)	1	1	0	0	04-11 12 th step speed frequency
04-40 Position command 13 (pulse)	1	1	0	1	04-12 13 th step speed frequency
04-42 Position command 14 (pulse)	1	1	1	0	04-13 14 th step speed frequency
04-44 Position command 15 (pulse)	1	1	1	1	04-14 15 th step speed frequency
,	1	1	1	0 1	

G 4 - 15 Position command 1 (revolution)
Position command 2 (revolution)
G 4 - F Position command 3 (revolution)
Image: Hostition command 4 (revolution)
Position command 5 (revolution)
04-25 Position command 6 (revolution)
D 4 - 2 7 Position command 7 (revolution)
C 4 - 2 9 Position command 8 (revolution)
Image: Position command 9 (revolution)
3 4 - 3 3 Position command 10 (revolution)
B 4-35 Position command 11 (revolution)
Position command 12 (revolution)
Position command 13 (revolution)
Image: Position command 14 (revolution)
Position command 15 (revolution)

D To switch the target position of the external terminal, set external terminal parameters to

Pr.02-01=1, Pr.02-02=2, Pr.02-03=3, Pr.02-04= 4 by selecting the P2P target position via multi-step speed.

Setting: Target Position = $04-15 \times (10-01^*4) + 04-16$

Multi-step Speed Status	Target Position of P2P			Maximum Speed of P2P	
0000		0	11-00 bit8=0	11-00 bit8=1	
0001	Position 1	04-15	11-43	04-00	
0010	Position 2	04-17	04-18		04-01
0011	Position 3	04-19	04-20		04-02
0100	Position 4	04-21	04-22		04-03
0101	Position 5	04-23	04-24		04-04
0110	Position 6	04-25	04-26		04-05
0111	Position 7	04-27		04-06	
1000	Position 8	04-29	04-30	11-43	04-07

Chapter 12 Description of Parameter Settings

Multi-step Speed Status	Target Position of P2P			Maximum S	peed of P2P
1001	Position 9	04-31	04-32		04-08
1010	Position 10	04-33	04-34		04-09
1011	Position 11	04-35	04-36		04-10
1100	Position 12	04-37	04-38		04-11
1101	Position 13	04-39	04-40		04-12
1110	Position 14	04-41	04-42		04-13
1111	Position 15	04-43	04-44		04-14

- ✓ 34-58 PLC Buffer 0
- ✓ ③Ч-S ↓ PLC Buffer 1
- ✓ <u>34-52</u> PLC Buffer 2
- ✓ <u>34-53</u> PLC Buffer 3
- ✓ <u>③Ч- ŚЧ</u> PLC Buffer 4
- ✓ <u>04-55</u> PLC Buffer 5
- ✓ <u>04-55</u> PLC Buffer 6
- ✓ <u>04-57</u> PLC Buffer 7
- ✓ <u>04-58</u> PLC Buffer 8
- ₩ <u>04-59</u> PLC Buffer 9
- ✓ <u>04 5</u> | PLC Buffer 11
- ✓ <u>04-62</u> PLC Buffer 12
- ✓ <u>[]</u> ¥ <u>6</u>]
 PLC Buffer 13
- ✓ <u>04-55</u> PLC Buffer 15
 ✓ <u>04-55</u> PLC Buffer 16
- ✓ 84-88
 ✓ 84-89
 PLC Buffer 17
- ✓ <u>04-58</u> PLC Buffer 18
- ✓ 84-89
 ✓ 84-89
 PLC Buffer 19
 - Factory Setting: 0 Settings 0~65535
 - Can be combined with PLC or HMI programming for variety application.

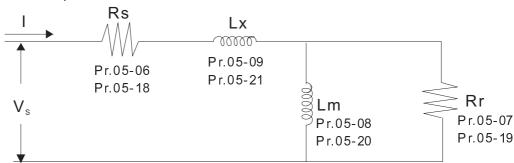
05 Motor Parameters

✓ This parameter can be set during operation.

	Factory Setting: 0
Settings	0: No function
	1: Rolling test for induction motor (Rs, Rr, Lm, Lx, no-load current)
	2: Rolling test for induction motor
	3: No function
	4: Rolling test for PM motor magnetic pole
	5: Rolling test for PM motor
	6: Rolling test for IM motor flux curve
	12: FOC Sensorless inertia estimation
	13: High frequency and blocked rotor test for PM motor parameter

Induction Motor

3.


Press [Run] to begin auto tuning. The measured value will be written into motor 1 (Pr.05-05 ~05-09, Rs, Rr, Lm, Lx, no-load current) and motor 2 (Pr.05-17 to Pr.05-21) automatically.

To begin AUTO-Tuning in rolling test:

- 1. Make sure that all the parameters are set to factory settings and the motor wiring is correct.
- 2. Make sure the motor has no-load before executing auto-tuning and the shaft is not connected to any belt or gear motor. It is recommended to set to 2 if the motor can't separate from the load.

	Motor 1 Parameter	Motor 2 Parameter
Motor Rated Frequency	01-01	01-35
Motor Rated Voltage	01-02	01-36
Motor Full-load Current	05-01	05-13
Motor Rated Power	05-02	05-14
Motor Rated Speed	05-03	05-15
Motor Pole Numbers	05-04	05-16

- 4. Set Pr.05-00=1 and press [Run], the drive will begin auto-tuning. Please be aware of the motor that it starts spinning as [Run] is pressed.
- When auto-tuning is completed, please check if the measured values are written into motor 1 (Pr.05-05 ~05-09) and motor 2 (Pr.05-17 ~05-21) automatically.
- 6. Mechanical equivalent circuit

% If Pr.05-00 is set to 2 (static test), user needs to input the no-load current value of motor into Pr.05-05 for motor 1/Pr.05-17 for motor 2.

Chapter 12 Description of Parameter Settings

- Set Pr.05-00=6 to begin rolling test for IM motor flux curve. This function is available when the drive is in FOC/TQC Sensorless control. User may begin auto-tuning after setting up the motor information.
 - Set up Pr.01-01, 01-02, 05-01~05-04 according to the motor nameplate information •
 - ☑ Set Pr.05-00=6 and press [Run], make sure no loading is applied to the motor before setting Pr.05-00 to 6 and before performing auto-tuning.
- When Pr.05-00=12, the drive begins FOC Sensorless inertia estimation for IM motor. This function is available when the drive is in FOC/TQC Sensorless control. User may begin auto-tuning after setting up the motor information.
 - ☑ Note: Make sure the motor parameters (no-load current, Rs, Rr, Lm and Lx) of the drive are set before performing Pr.05-00=12 (auto-tuning for FOC Sensorless interior estimation for IM motor).
- 1. Set Pr.00-10=2 (torque mode)
- 2. Set Pr. 00-13=2 (TQCPG, Open-loop torque mode)
- 3. Set Pr. 05-00=12 and press [Run] to begin FOC Sensorless inertia measure
- 4. When the process of inertia estimation is completed, check Pr.11-01 (unit: PU Q8) and see if the measured value is acceptable.

Set up Sensorless FOC Mode

- 1. Set Pr.00-10 = 0 (speed mode)
- 2. Set Pr.00-11 = 5 (FOC sensorless mode)
- 3. Set bit0 of Pr.11-00 to 1 (use ASR gain function to automatically adjust the ASR bandwidth in Pr.11-03,11-04,11-05)

- ☑ In torque/vector control mode, it is not recommended to have motors run in parallel.
- ☑ It is not recommended to use torque/vector control mode if motor rated power exceeds the rated power of the AC motor drive.
- ☑ When auto-tuning 2 motors, it needs to set multi-function input terminals (setting 14) or change Pr.05-22 for motor 1/motor 2 selection.
- ☑ The no-load current is usually 20~50% X rated current.
- The rated speed can not be greater than or equal to 120f/p (f = rated frequency Pr.01-01/01-35; P: number of motor poles Pr.05-04/05-16).

Permanent Magnet Motor (PM)

Set Pr.05-00= 5 or 13 and press [Run] to begin auto tuning for PM motor. The measured values will be written into Pr.05-39 (Rs), Pr.05-40 & 41 (Ld & Lq) and Pr.05-43 (PM motor's Ke parameter).

To begin AUTO-Tuning for PM motor in rolling test:

1. Make sure all the parameters are reset to factory setting and the motor wiring installation is correct.

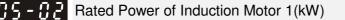
- For PM motor, set Pr.05-33=1 and complete the following settings according to your motor specifications, Pr.05-34 rated current, Pr.05-35 rated power, Pr.05-36 rated speed and Pr. 05-37 pole number. The acceleration time and deceleration time should be set according to your motor capacity.
- 3. Set Pr.05-00 to 5 and press [Run] to begin auto tuning for PM motor. Please be aware of the motor that it starts spinning as [Run] is pressed.
- 4. When auto-tuning is completed, please check if the measured values are written into Pr.05-39~05-41 and Pr.05-43 automatically.
 - Set Pr.05-00=4 and press [Run] to begin auto-tuning for PM motor PG offset angle. The measured value will be written into Pr.05-42 automatically.
 - ☑ Note 1: When execute auto-tuning for PM motor PG origin, please make sure the encoder setting are correct (Pr.10-00, 10-01, 10-02), otherwise the PG origin measure error and motor stall may occur.
 - ☑ Note 2: If PM motor runs in an opposite direction of the drive's command, switch any two of the UVW cable and re-connect, then execute PG origin search again. It is crucial to execute auto-tuning after the switch otherwise PG origin measure error and motor stall may occur.

Auto-tuning process for measuring PG offset angle of PM motor:

- 1. Set Pr.05-00=5 and press RUN, or manually input the values into Pr. 01-01, 05-34~-541 and Pr.05-43.
- 2. It is strongly suggested to remove the motor and unload before beings auto-tuning.
- 3. Set Pr.05-00=4 and press [Run] to begin auto-tuning. Please be aware of the motor that it starts spinning as [Run] is pressed.
- 4. When auto-tuning is completed, please check if the PG offset angle is written into Pr.05-42 automatically.

ΝΟΤΕ

When auto-tuning for PM motor is completed and the control mode setting is done, it is recommend to turn the drive's power off and restart again to ensure the drive operates according to the motor parameter settings.


G 5 - **G 1** Full-load Current of Induction Motor 1 (A)

Unit: Amper Factory Setting: #.##

Settings 10 to 120% of drive's rated current

□ This value should be set according to the rated current of the motor as indicated on the motor nameplate. The factory setting is 90% X rated current.

Example: The rated current for 7.5HP (5.5kW) is 25 and factory setting is 22.5A. The range for setting will be 10~30A.(25*40%=10A and 25*120%=30A)

Factory Setting: #.##

Settings 0~655.35 kW

It is used to set rated power of the motor 1. The factory setting is the power of the drive.

G G G G G B Rated Speed of Induction Motor 1 (rpm)

Factory Setting: 1710 (60Hz 4 poles) 1410 (50Hz 4 poles)

Settings 0~65535

It is used to set the rated speed of the motor and need to set according to the value indicated on the motor nameplate.

Before set up this parameter, you need to set up Pr05-04.

BS-BY Pole Number of Induction Motor 1

Settings 2~20

It is used to set the number of motor poles (must be an even number).

Set up Pr.05-04 before you set up Pr.05-03.

G S - **G S** No-load Current of Induction Motor 1 (A)

Unit: Amper

Factory Setting: 4

Factory Setting: #.##

Settings 0 to the factory setting in Pr.05-01

Definition The factory setting is 40% X rated current.

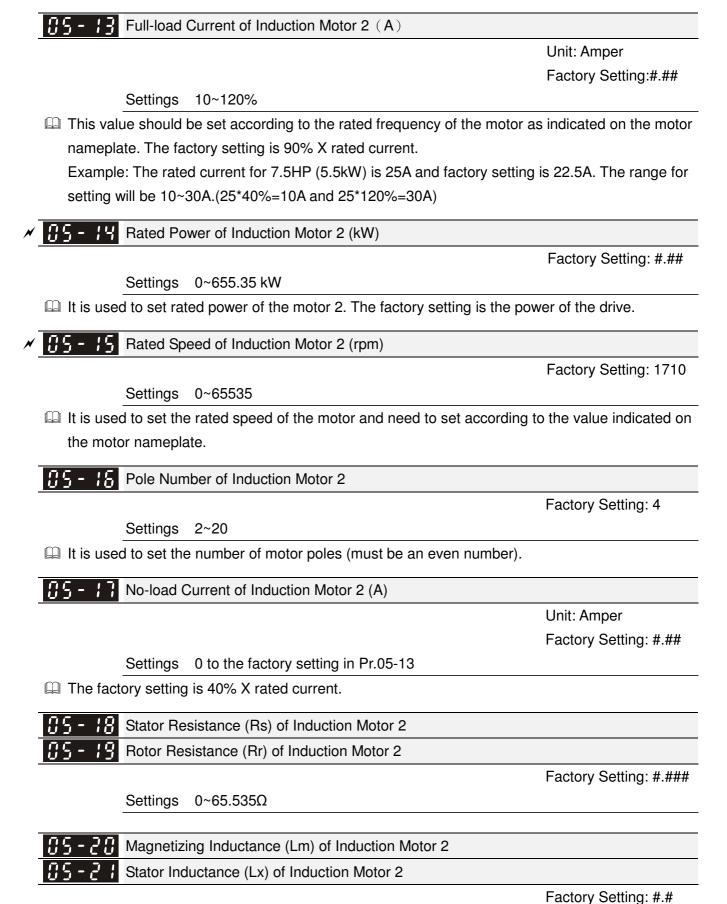
35 - 35 Stator Resistance(Rs) of Induction Motor 1	
B S - B Rotor Resistance(Rr) of Induction Motor 1	

Factory Setting: #.###

Settings $0~65.535\Omega$

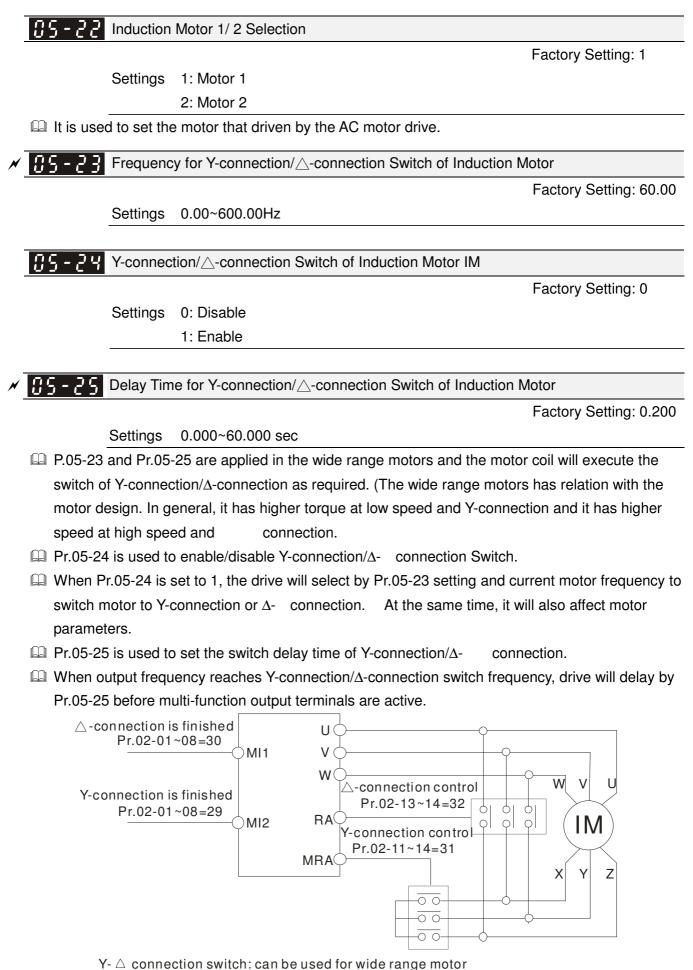
85-88	Magnetizing Inductance(Lm) of Induction Motor 1
05-09	Stator inductance(Lx) of Induction Motor 1

Factory Setting: #.#

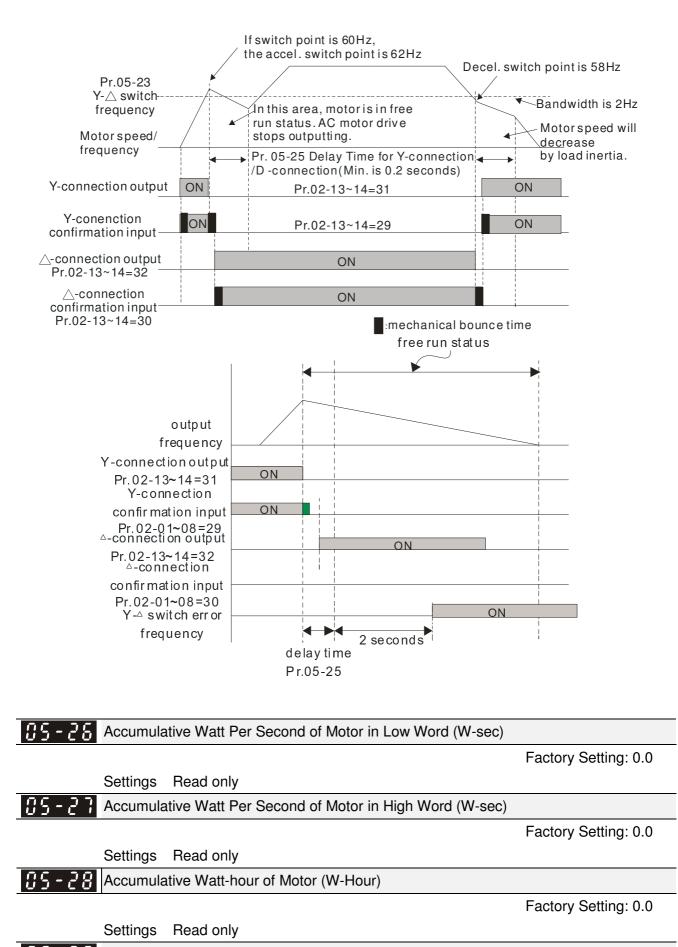

Settings 0~6553.5mH

 05 - 10

 ~


 Reserved

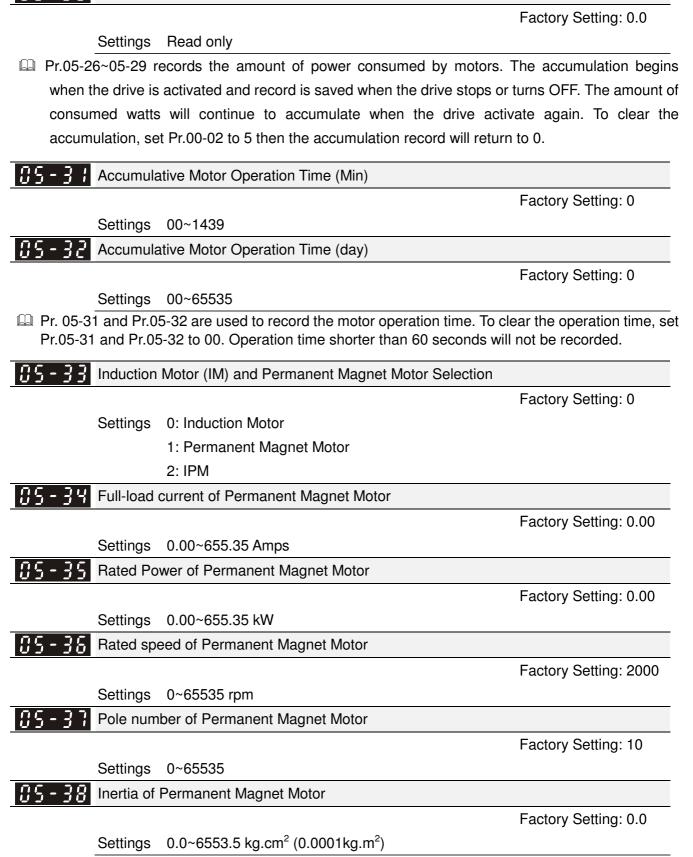
 05 - 12


Settings 0~6553.5 mH

12-05-5

 $Y - \triangle$ connection switch: can be used for wide range motor Y -connection for low speed: higher torque can be used for rigid tapping

 \triangle -connection for high speed: higher torque can be used for high-speed drilling



Factory Setting: 0.0

Settings Read only

Accumulative Watt-hour of Motor in Low Word (KW-Hour)

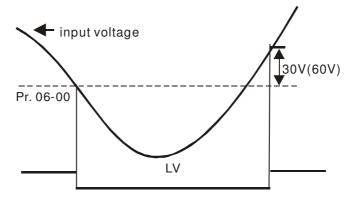
Accumulative Watt-hour of Motor in High Word (KW-Hour)

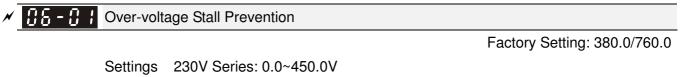
This parameter setting is defined in **kg-cm²**. If this measure is not familiar to you, please refer to the chart below. (Delta's motor inertia chart is for reference purpose only.)

Rated Power(kW)	0.1	0.2	0.4	0.4	0.75	1	2	
Rotor inertia (kg.m^2)	3.70E-06	1.77E-05	2.77E-05	6.80E-05	1.13E-04	2.65E-04	4.45E-04	
Delta Motor (Mid to H	ligh Iner	tia mode	el)					
Rated Power(kW)	0.5	1	1.5	2	2	0.3	0.6	0.9
Rotor inertia (kg.m^2)	8.17E-04	8.41E-04	1.12E-03	1.46E-03	3.47E-03	8.17E-04	8.41E-04	1.12E-03
※ For more information	tion on n	notor iner	tia value,	please r	efer to Pr	.11-01.		
5 - 3 9 Stator Resista	ance of P	M Motor						
						Fa	actory Se	tting: 0.0
Settings 0.0	00~65.5	35Ω						
5 - 48 Permanent M	lagnet Mo	otor Ld						
						Fa	actory Se	tting: 0.0
Settings 0.0	0~655.3	5 mH						
- 4 Permanent M	lagnet Mo	otor Lq						
						Fa	actory Se	tting: 0.0
Settings 0.0	0~655.3	5 mH						
- 42 PG Offset and	gle of PN	Motor						
						Fa	actory Se	tting: 0
Settings 0.0	0∼360.0°							
When Pr.05-00 is set t	o 4, the c	lrive will o	detect off	set angle	and writ	e into Pr.	05-42.	
 	r of PM N	lotor						
						U	nit: V/100	00rpm
								tting: 0

Settings 0~65535

06 Protection Parameters

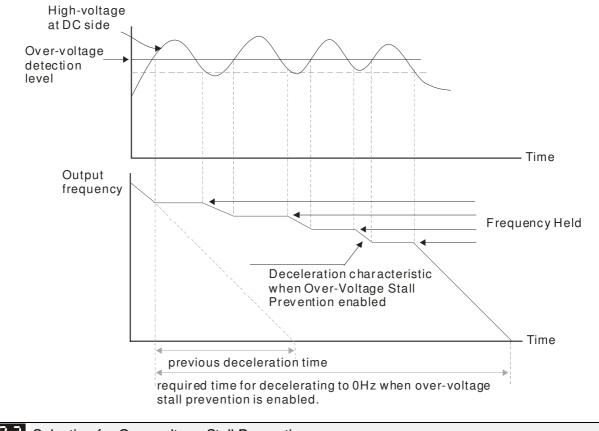

_evel


✓ This parameter can be set during operation.

× 86-88	Low Voltage L
---------	---------------

		Factory Setting:
Settings	230V Series:	
	Frame A to D: 150.0~ 220.0 Vdc	180.0
	Frame E and frames above E: 190.0~220.0V	200.0
	Frame A to D:	
	460V Series: 300.0~440.0V	360.0
	Frame E and frames above E: 380.0~440.0V	400.0

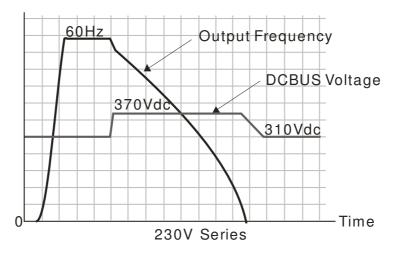
It is used to set the level. When the DC BUS voltage is lower than Pr06-00 Low voltage level, drive will stop output and free to stop.



Settings 230V Series: 0.0~450.0V 460V Series:0.0~900.0V 0: Disabled

- When Pr.06-01 is set to 0.0, the over-voltage stall prevention function is disabled. When braking units or resistors are connected to the drive, this setting is suggested.
- During deceleration, the DC bus voltage may exceed its Maximum Allowable Value due to motor regeneration. When this function is enabled, the AC motor drive will not decelerate further and keep the output frequency constant until the voltage drops below the preset value again.
- This function is used for the occasion that the load inertia is unsure. When it stops in the usual load, the over-voltage won't occur during deceleration and fulfill the setting of deceleration time. Sometimes, it may not stop due to over-voltage during decelerating to stop when increasing the load regenerative inertia. At this moment, the AC drive will auto add the deceleration time until drive stop.
- When the over-voltage stall prevention is enabled, drive deceleration time will be larger than the setting.
- Description when there is any problem as using deceleration time, refer to the following items to solve it.
 - 1. Add the suitable deceleration time.
 - 2. Add brake resistor (refer to appendix B-1 for details) to consume the electrical energy that regenerated from the motor with heat type.

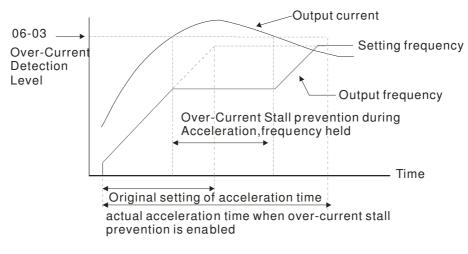
Related parameters: Pr.01-13, 01-15, 01-17, 01-19 (settings of decel. time 1~4), Pr.02-13~02-14 (Multi-function Output 1 RY1, RY2), Pr. 02-16~02-17 Multi-function Output (MO1, 2)


36 - 32 Selection for Over-voltage Stall Prevention

Factory Setting: 0

Settings 0: Traditional over-voltage stall prevention

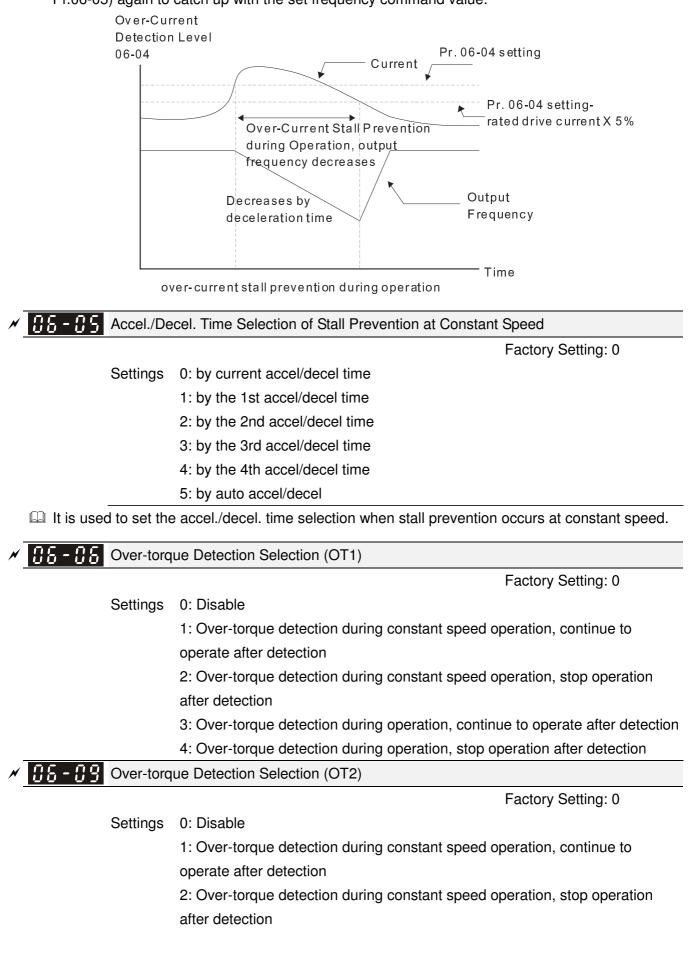
1: Smart over-voltage prevention


When Pr.06-02 is set to 1, the drive will maintain DCbus voltage when decelerating and prevent OV.

- **[]** Over-current Stall Prevention during Acceleration

Settings Super Heavy duty: 0~180% (100%: drive's rated current) Factory Setting: 150

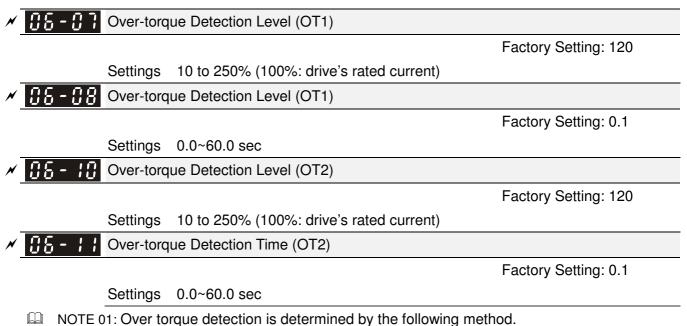
- Donly functional under VF, VFPG and SVC mode
- If the motor load is too large or drive acceleration time is too short, the AC drive output current may increase abruptly during acceleration and it may cause motor damage or trigger protection functions (OL or OC). This parameter is used to prevent this situation.
- During acceleration, the AC drive output current may increase abruptly and exceed the value specified by Pr.06-03 due to rapid acceleration or excessive load on the motor. When this function is enabled, the AC drive will stop accelerating and keep the output frequency constant until the current drops below the maximum value.
- When the over-current stall prevention is enabled, drive acceleration time will be larger than the setting.
- When the Over-Current Stall Prevention occurs due to too small motor capacity or in the factory setting, please decrease Pr.06-03 setting.
- Description when there is any problem by using acceleration time, refer to the following items to solve it.
- Related parameters: Pr.01-12, 01-14, 01-16, 01-18 (settings of accel. time 1~4), Pr.01-44
 - 1. Add the suitable acceleration time.
 - 2. Setting Pr.01-44 Optimal Acceleration/Deceleration Setting to 1, 3 or 4 (auto accel.)
- Optimal Acceleration/Deceleration Setting, Pr.02-13~02-14 (Multi-function Output 1 RY1, RY2), Pr. 02-16~02-17 Multi-function Output (MO1, 2)



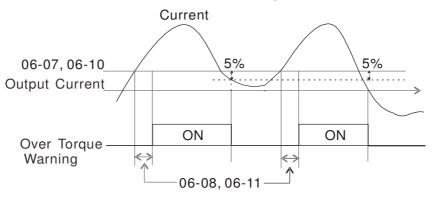
Over-current Stall Prevention during Operation

Settings Super Heavy Duty: 0~200% (100%: drive's rated current) Factory Setting: 150

- Donly functional under VF, VFPG and SVC mode
- It is a protection for drive to auto decrease output frequency when the motor is over-load abruptly during motor constant operation.
- If the output current exceeds the setting specified in Pr.06-04 when the drive is operating, the drive will decrease its output frequency (according to Pr.06-05) to prevent the motor stall. If the output


current is lower than the setting specified in Pr.06-04, the drive will accelerate (according to Pr.06-05) again to catch up with the set frequency command value.

3: Over-torque detection during operation, continue to operation after detection


4: Over-torque detection during operation, stop operation after detection

- When Pr.06-06 and Pr.06-09 are set to 1 or 3, it will display a warning message and won't have an abnormal record.
- When Pr.06-06 and Pr.06-09 are set to 2 or 4, it will display a warning message and will have an abnormal record.

if the output current exceeds the over-torque detection level (Pr06-07, factory setting: 150%) and also exceeds Pr06-08, the Over Torque Detection will follow the setting of Pr06-06 and Pr06-09.

NOTE02: When Pr06-06 or Pr06-09 is set to 1 or 3, the motor drive will have the ot1/ot2 warning after Over Torque Detection. But the motor drive will keep running but only until the output current is smaller than the 5% of the rated current, the warning will be off.

NOTE03: When Pr06-06 or Pr06-09 is set to 2 or 4, the motor drive will have the ot1/ot2 fault after Over Torque Detection. Then the motor drive stop running until it is manually reset.

Current Limit

Factory Setting: 170

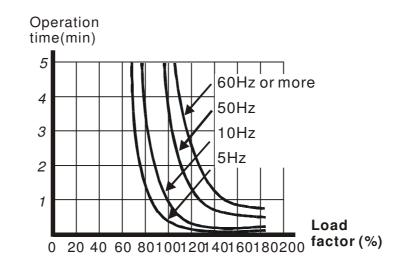
Settings 0~250% (100%: drive's rated current)

Pr.06-12 sets the maximum output current of the drive. Pr.06-12 and Pr.11-17 ~ Pr.11-20 are used to set the drive's output current limit. When the drive is in VF, SVC or VFPG control mode, output frequency will decreases as the output current reaches current limit. It is a current stall prevention.

×	Electronic Thermal Relay Selection (Motor 1)	
N	B - 2 7 Electronic Thermal Relay Selection (Motor 2)	
-	Factory Setting: 2	

0: Constant torque output motor Settings

- 1: Variable torque output motor
- 2: Disable


It is used to prevent self-cooled motor overheats under low speed. User can use electronic thermal relay to limit driver's output power.

N	B - H Electronic Thermal Characteristic for Motor 1	
×	36 - 28 Electronic Thermal Characteristic for Motor 2	

Factory Setting: 60.0

Settings 30.0~600.0 sec

Department of Pr.06-14 and Pr.06-28 to prevent the motor damaged from overheating. When it reaches the setting, it will display "EoL1/EoL2" and the motor will be in free running.

🗡 88 - 75 Heat Sink Over-heat (OH) Warning

Factory Setting: 85.0

Settings 0.0~110.0°C

Pr.06-15 sets the heatsink temperature level of the drive. The drive will output an overheating warning when the temperature exceeds the setting of Pr.06-15. If the setting of Pr.06-15 is higher than the default setting of the drive, the drive will use the default setting level for warning output. Capacitor (CAP) overheating level is set by the drive's default setting, it can not be adjusted.

Over-heating Level (°C)			Over-heating Level (°C)			
Model	IGBT OH1	CAP OH 2	Model IGBT OH1 CAP OF		CAP OH 2	
VFD007CH23A-21	100	90	VFD075CH43A-21	95	75	
VFD015CH23A-21	100	90	VFD110CH43A-21	95	75	
VFD022CH23A-21	100	90	VFD150CH43A-21	95	75	
VFD037CH23A-21	100	95	VFD185CH43A-21	95	80	
VFD055CH23A-21	100	75	VFD220CH43A-21	95	80	
VFD075CH23A-21	100	75	VFD300CH43A-21	100	80	
	400	75	VFD370CH43A-00/21;	95	60	
VFD110CH23A-21	100	75	VFD370CH43S-21	05	<u> </u>	
VFD150CH23A-21	95	70	VFD450CH43A-00/21	95	60	
VFD185CH23A-21	95	70	VFD550CH43A-00/21	100	60	
VFD220CH23A-00/21	95	70	VFD750CH43A-00/21	100	60	
VFD300CH23A-00/21	95	60	VFD900CH43A-00/21	100	60	
VFD370CH23A-00/21	95	60	VFD1100CH43A-00/21	100	60	
VFD450CH23A-00/21	100	60	VFD1320CH43A-00/21	100	60	
VFD550CH23A-00/21	100	60	VFD1600CH43A-00/21	100	60	
VFD750CH23A-00/21	100	60	VFD1850CH43A-00/21	100	65	
VFD007CH43A-21	100	90	VFD2200CH43A-00/21	100	65	
VFD015CH43A-21	100	90	VFD2800CH43A-00	100	65	
VFD022CH43A-21	100	95	VFD2800CH43C-00/21	100	65	
VFD037CH43A-21	100	100			·	
VFD055CH43A-21	100	95				

Stall Prevention Limit Level (Flux weakening area current stall prevention level)

Factory Setting: 50

Settings 0~100% (Refer to Pr.06-03, Pr.06-04)

When operation frequency is larger than Pr.01-01; e.g. Pr06-03=150%, Pr. 06-04=100% and Pr. 06-16=80%:

Calculate the Stall Prevention Level during acceleration: Pr.06-03 * Pr.06-16=150x80%=120%. Calculate the Stall Prevention Level at constant speed: Pr.06-04 * Pr.06-16=100x80%=80%.

35 - 17 Present Fault Record
36 - 18 Second Most Recent Fault Record
38 - 19 Third Most Recent Fault Record
38-23 Fourth Most Recent Fault Record
38-21 Fifth Most Recent Fault Record
38-22 Sixth Most Recent Fault Record
Settings

0: No fault record

1: Over-current during acceleration (ocA)

2: Over-current during deceleration (ocd)

- 3: Over-current during constant speed(ocn)
- 4: Ground fault (GFF)
- 5: IGBT short-circuit (occ)

- 6: Over-current at stop (ocS)
- 7: Over-voltage during acceleration (ovA)
- 8: Over-voltage during deceleration (ovd)
- 9: Over-voltage during constant speed (ovn)
- 10: Over-voltage at stop (ovS)
- 11: Low-voltage during acceleration (LvA)
- 12: Low-voltage during deceleration (Lvd)
- 13: Low-voltage during constant speed (Lvn)
- 14: Stop mid-low voltage (LvS)
- 15: Phase loss protection (OrP)
- 16: IGBT over-heat (oH1)
- 17: Capacitance over-heat (oH2) (for 40hp above)
- 18: tH1o (TH1 open: IGBT over-heat protection error)
- 19: tH2o (TH2 open: capacitance over-heat protection error)
- 20: Reserved
- 21: Drive over-load (oL)
- 22: Electronics thermal relay 1 (EoL1)
- 23: Electronics thermal relay 2 (EoL2)
- 24: Motor PTC overheat (oH3) (PTC)
- 25: Reserved
- 26: Over-torque 1 (ot1)
- 27: Over-torque 2 (ot2)
- 28: Low current (uC)
- 29: Home limit error (LMIT)
- 30: Memory write-in error (cF1)
- 31: Memory read-out error (cF2)
- 32: Reserved
- 33: U-phase current detection error (cd1)
- 34: V-phase current detection error (cd2)
- 35: W-phase current detection error (cd3)
- 36: Clamp current detection error (Hd0)
- 37: Over-current detection error (Hd1)
- 38: Over-voltage detection error (Hd2)
- 39: occ IGBT short circuit detection error (Hd3)
- 40: Auto tuning error (AUE)
- 41: PID feedback loss (AFE)
- 42: PG feedback error (PGF1)
- 43: PG feedback loss (PGF2)
- 44: PG feedback stall (PGF3)
- 45: PG slip error (PGF4)

- 46: PG ref loss (PGr1)
- 47: PG ref loss (PGr2)
- 48: Analog current input loss (ACE)
- 49: External fault input (EF)
- 50: Emergency stop (EF1)
- 51: External Base Block (bb)
- 52: Password error (PcodE)
- 53: Reserved
- 54: Communication error (CE1)
- 55: Communication error (CE2)
- 56: Communication error (CE3)
- 57: Communication error (CE4)
- 58: Communication Time-out (CE10)
- 59: PU Time-out (CP10)
- 60: Brake transistor error (bF)
- 61: Y-connection/ connection switch error (ydc)
- 62: Decel. Energy Backup Error (dEb)
- 63: Slip error (oSL)
- 64: Electromagnet switch error (ryF)
- 65 : PG Card Error (PGF5)
- 66~67: Reserved
- 68: Sensorless estimated speed has wrong direction
- 69: Sensorless estimated speed is over-speed
- 70: Sensorless estimated speed deviated
- 71: Reserved
- 72: STO loss 1
- 73: External safety gate S1
- 74~75: Reserved
- 76: STO
- 77: STO loss 2
- 78: STO loss 3
- 79: Uocc U phase over current (Detection begins as RUN is pressed, software protection)
- 80: Vocc V phase over current (Detection begins as RUN is pressed, software protection)
- 81: Wocc W phase over current (Detection begins as RUN is pressed, software protection)
- 82: OPHL U phase output phase loss
- 83: OPHL Vphase output phase loss
- 84: OPHL Wphase output phase loss
- 85~100: Reserved
- 101: CGdE CANopen software disconnect1
- 102: CHbE CANopen software disconnect2

103: CSYE CANopen synchronous error

104: CbFE CANopen hardware disconnect

105: CIdE CANopen index setting error

106: CAdE CANopen slave station number setting error

107: CFrE CANopen index setting exceed limit

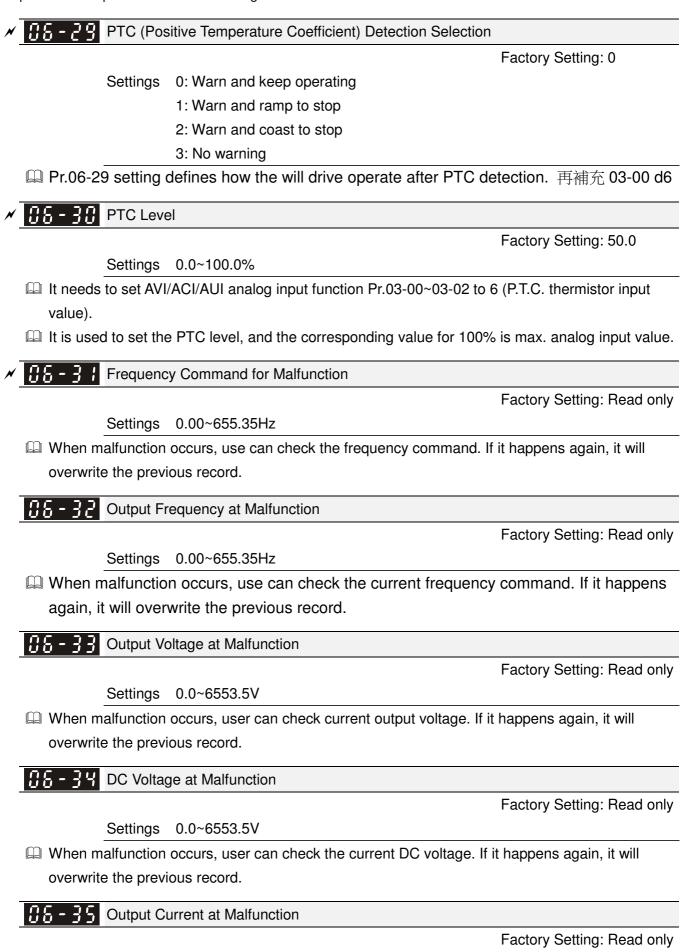
108~110: Reserved

111: InrCOM Internal communication overtime error

- When the fault occurs and force stopping, it will record in this parameter.
- At stop with low voltage Lv (LvS warn, no record). During operation with mid-low voltage Lv (LvA, Lvd, Lvn error, will record).
- Setting 62: when dEb function is enabled, the drive will execute dEb and record to the Pr.06-17 to Pr.06-22 simultaneously.

	38-23 Fault Output Option 1
×	GE-24 Fault Output Option 2
N	38-25 Fault Output Option 3
N	38-28 Fault Output Option 4
-	

Factory Setting: 0


Settings 0 to 65535 sec (refer to bit table for fault code)

These parameters can be used with multi-function output (set to 35-38) for the specific requirement. When the fault occurs, the corresponding terminals will be activated (It needs to convert binary value to decimal value to fill in Pr.06-23 to Pr.06-26).

Foult Code	Bit0	Bit1	Bit2	Bit3	Bit4	Bit5	Bit6
Fault Code	current	Volt.	OL	SYS	FBK	EXI	CE
0: No fault							
1: Over-current during acceleration (ocA)	•						
2: Over-current during deceleration (ocd)	•						
3: Over-current during constant speed(ocn)	•						
4: Ground fault (GFF)	•						
5: IGBT short-circuit (occ)	•						
6: Over-current at stop (ocS)	•						
7: Over-voltage during acceleration (ovA)		•					
8: Over-voltage during deceleration (ovd)		•					
9: Over-voltage during constant speed (ovn)		•					
10: Over-voltage at stop (ovS)		•					
11: Low-voltage during acceleration (LvA)		•					
12: Low-voltage during deceleration (Lvd)		•					
13: Low-voltage during constant speed (Lvn)		•					
14: Stop mid-low voltage (LvS)		•					
15: Phase loss protection (OrP)		•					
16: IGBT over-heat (oH1)			•				

17: Capacitance over-heat (oH2) I	Fault Code	Bit0	Bit1	Bit2	Bit3	Bit4	Bit5	Bit6
18: H1o (TH1 open) I <tdi< td=""> I <tdi< td=""></tdi<></tdi<>		current	Volt.	OL	SYS	FBK	EXI	CE
19: HL20 (TH2 open) •				•				
20: Reserved 21: Drive over-load (oL) •				•				
21: Drive over-load (oL) Image: Control of the second				•				
22: Electronics thermal relay 1 (EoL1) Image: Coll and C		1			1			
23: Electronics thermal relay 2 (EoL2)Image: second se	. ,			•				
24: Motor PTC overheat (oH3) (PTC) Image: Construct of Construct on Construc	22: Electronics thermal relay 1 (EoL1)			•				
25: Reserved 26: Over-torque 1 (ot1) • • • • • 27: Over-torque 2 (ot2) • • • • • • 28: Low current (uC) • <	23: Electronics thermal relay 2 (EoL2)			•				
26: Over-torque 1 (ot1) Image: Constraint of the second secon	24: Motor PTC overheat (oH3) (PTC)			•				
27: Over-torque 2 (ot2)	25: Reserved							
28: Low current (uC) • I	26: Over-torque 1 (ot1)			•				
29: Home limit error (LMIT) Image: Constraint of the second s	27: Over-torque 2 (ot2)			•				
30: Memory write-in error (cF1) Image: CF2) Image: CF2) Image: CF2) 31: Memory read-out error (cF2) Image: CF2) Image: CF2) Image: CF2) 32: Reserved Image: CF2) Image: CF2) Image: CF2) Image: CF2) 32: U-phase current detection error (cd1) Image: CF2) Image: CF2) Image: CF2) Image: CF2) 34: V-phase current detection error (cd2) Image: CF2) Image: CF2) Image: CF2) Image: CF2) 35: W-phase current detection error (Hd0) Image: CF2) Image: CF2) Image: CF2) Image: CF2) 36: Clamp current detection error (Hd2) Image: CF2) Image: CF2) Image: CF2) Image: CF2) 37: Over-current detection error (Hd2) Image: CF2) Image: CF2) Image: CF2) Image: CF2) 38: Over-voltage detection error (Hd2) Image: CF2) Image: CF2) Image: CF2) Image: CF2) 40: Auto tuning error (AUE) Image: CF2) Image: CF2) Image: CF2) Image: CF2) 41: PID feedback loss (PGF2) Image: CF2) Image: CF2) Image: CF2) Image: CF2) 42: PG feedback stall (PGF3) Image: CF2) Image: CF2) Image: CF2) Imag	28: Low current (uC)	•						
31: Memory read-out error (cF2) •	29: Home limit error (LMIT)						•	
32: Reserved 33: U-phase current detection error (cd1) • • 34: V-phase current detection error (cd2) • • 35: W-phase current detection error (cd3) • • 36: Clamp current detection error (Hd0) • • 37: Over-current detection error (Hd1) • • 38: Over-voltage detection error (Hd2) • • 39: occ IGBT short circuit detection error (Hd3) • • 40: Auto tuning error (AUE) • • 41: PID feedback loss (AFE) • • 42: PG feedback error (PGF1) • • 43: PG feedback loss (PGF2) • • 44: PG feedback loss (PGF2) • • 45: PG slip error (PGF4) • • 46: PG ref loss (PGr2) • • 47: PG ref loss (PGr2) • • 48: Analog current input loss (ACE) • • 49: External fault input (EF) • • 50: Emergency stop (EF1) • • • 51: External Base Block (bb) • • • 52: Password erro	30: Memory write-in error (cF1)				•			
33: U-phase current detection error (cd1) • • • • 34: V-phase current detection error (cd2) • • • • 35: W-phase current detection error (cd3) • • • • • 36: Clamp current detection error (Hd0) • • • • • • 37: Over-current detection error (Hd1) • • • • • • 38: Over-voltage detection error (Hd2) • <td>31: Memory read-out error (cF2)</td> <td></td> <td></td> <td></td> <td>•</td> <td></td> <td></td> <td></td>	31: Memory read-out error (cF2)				•			
34: V-phase current detection error (cd2) Image: Constraint of the constra	32: Reserved							
35: W-phase current detection error (cd3) • </td <td>33: U-phase current detection error (cd1)</td> <td></td> <td></td> <td></td> <td>•</td> <td></td> <td></td> <td></td>	33: U-phase current detection error (cd1)				•			
36: Clamp current detection error (Hd0)••••37: Over-current detection error (Hd1)••••38: Over-voltage detection error (Hd2)••••39: occ IGBT short circuit detection error (Hd3)••••40: Auto tuning error (AUE)••••41: PID feedback loss (AFE)••••42: PG feedback error (PGF1)••••43: PG feedback loss (PGF2)••••44: PG feedback stall (PGF3)••••45: PG slip error (PGF4)••••46: PG ref loss (PGr2)••••47: PG ref loss (PGr2)••••48: Analog current input loss (ACE)••••49: External fault input (EF)••••50: Emergency stop (EF1)••••51: External Base Block (bb)••••52: Password error (PcodE)••••53: Reserved•••••	34: V-phase current detection error (cd2)				•			
37: Over-current detection error (Hd1) •	35: W-phase current detection error (cd3)				•			
38: Over-voltage detection error (Hd2)•••••39: occ IGBT short circuit detection error (Hd3)•••••40: Auto tuning error (AUE)••••••41: PID feedback loss (AFE)••••••42: PG feedback error (PGF1)••••••43: PG feedback loss (PGF2)••••••44: PG feedback stall (PGF3)••••••45: PG slip error (PGF4)••••••46: PG ref loss (PGr1)••••••47: PG ref loss (PGr2)••••••48: Analog current input loss (ACE)••••••49: External fault input (EF)••••••50: Emergency stop (EF1)••••••51: External Base Block (bb)••••••52: Password error (PcodE)••••••53: Reserved•••••••	36: Clamp current detection error (Hd0)				•			
39: occ IGBT short circuit detection error (Hd3)•••40: Auto tuning error (AUE)••••41: PID feedback loss (AFE)••••42: PG feedback error (PGF1)••••43: PG feedback loss (PGF2)••••44: PG feedback stall (PGF3)••••45: PG slip error (PGF4)••••46: PG ref loss (PGr1)••••47: PG ref loss (PGr2)••••48: Analog current input loss (ACE)•••49: External fault input (EF)••••50: Emergency stop (EF1)••••51: External Base Block (bb)••••52: Password error (PcodE)••••	37: Over-current detection error (Hd1)				•			
40: Auto tuning error (AUE)••••41: PID feedback loss (AFE)•••••42: PG feedback error (PGF1)•••••43: PG feedback loss (PGF2)•••••44: PG feedback stall (PGF3)•••••45: PG slip error (PGF4)•••••46: PG ref loss (PGr1)•••••47: PG ref loss (PGr2)•••••48: Analog current input loss (ACE)•••••49: External fault input (EF)•••••50: Emergency stop (EF1)•••••51: External Base Block (bb)•••••52: Password error (PcodE)•••••53: Reserved••••••	38: Over-voltage detection error (Hd2)				•			
41: PID feedback loss (AFE)••42: PG feedback error (PGF1)•••43: PG feedback loss (PGF2)•••44: PG feedback stall (PGF3)•••45: PG slip error (PGF4)•••46: PG ref loss (PGr1)•••47: PG ref loss (PGr2)•••48: Analog current input loss (ACE)•••49: External fault input (EF)•••50: Emergency stop (EF1)•••51: External Base Block (bb)•••52: Password error (PcodE)•••53: Reserved•••	39: occ IGBT short circuit detection error (Hd3)				•			
42: PG feedback error (PGF1) <td>40: Auto tuning error (AUE)</td> <td></td> <td></td> <td></td> <td>•</td> <td></td> <td></td> <td></td>	40: Auto tuning error (AUE)				•			
43: PG feedback loss (PGF2)••••44: PG feedback stall (PGF3)•••••45: PG slip error (PGF4)•••••46: PG ref loss (PGr1)•••••47: PG ref loss (PGr2)•••••48: Analog current input loss (ACE)•••••49: External fault input (EF)•••••50: Emergency stop (EF1)•••••51: External Base Block (bb)•••••52: Password error (PcodE)•••••53: Reserved••••••	41: PID feedback loss (AFE)					•		
44: PG feedback stall (PGF3)•• </td <td>42: PG feedback error (PGF1)</td> <td></td> <td></td> <td></td> <td></td> <td>•</td> <td></td> <td></td>	42: PG feedback error (PGF1)					•		
45: PG slip error (PGF4)•••46: PG ref loss (PGr1)••••47: PG ref loss (PGr2)••••48: Analog current input loss (ACE)••••49: External fault input (EF)••••50: Emergency stop (EF1)••••51: External Base Block (bb)••••52: Password error (PcodE)••••	43: PG feedback loss (PGF2)					•		
46: PG ref loss (PGr1)•••47: PG ref loss (PGr2)•••48: Analog current input loss (ACE)•••49: External fault input (EF)•••50: Emergency stop (EF1)•••51: External Base Block (bb)•••52: Password error (PcodE)•••53: Reserved•••	44: PG feedback stall (PGF3)					•		
47: PG ref loss (PGr2)••••48: Analog current input loss (ACE)••••49: External fault input (EF)••••50: Emergency stop (EF1)••••51: External Base Block (bb)••••52: Password error (PcodE)••••53: Reserved••••	45: PG slip error (PGF4)					•		
48: Analog current input loss (ACE)••49: External fault input (EF)••50: Emergency stop (EF1)••51: External Base Block (bb)••52: Password error (PcodE)••53: Reserved••	46: PG ref loss (PGr1)					•		
48: Analog current input loss (ACE)••49: External fault input (EF)••50: Emergency stop (EF1)••51: External Base Block (bb)••52: Password error (PcodE)••53: Reserved••	47: PG ref loss (PGr2)					•		
49: External fault input (EF)•50: Emergency stop (EF1)•51: External Base Block (bb)•52: Password error (PcodE)•53: Reserved </td <td></td> <td></td> <td></td> <td></td> <td></td> <td>•</td> <td></td> <td></td>						•		
50: Emergency stop (EF1) • • 51: External Base Block (bb) • • 52: Password error (PcodE) • • 53: Reserved • •							•	
51: External Base Block (bb) • 52: Password error (PcodE) • 53: Reserved •							•	
52: Password error (PcodE) • Image: Constraint of the second sec							•	
53: Reserved					•			
		1		<u> </u>	1	<u> </u>	<u> </u>	<u> </u>
	54: Communication error (CE1)							•

Fault Code	Bit0	Bit1	Bit2	Bit3	Bit4	Bit5	Bit6
	current	Volt.	OL	SYS	FBK	EXI	CE
55: Communication error (CE2)							•
56: Communication error (CE3)							•
57: Communication error (CE4)							•
58: Communication Time-out (CE10)							•
59: PU Time-out (CP10)							•
60: Brake transistor error (bF)						•	
61: Y-connection/						•	
(ydc)							
62: Decel. Energy Backup Error (dEb)		•					
63: Slip error (oSL)						•	
64: Electromagnet switch error (ryF)						•	
65 : PG Card Error (PGF5)						•	
66-72: Reserved							
73: External safety gate S1				•			
74~78: Reserved		·					
79: U phase over current (Uocc)	•						
80: V phase over current (Vocc)	•						
81: W phase over current (Wocc)	•						
82: OPHL U phase output phase loss	•						
83: OPHL Vphase output phase loss	•						
84: OPHL Wphase output phase loss	•						
85~100: Reserved							
101: CGdE CANopen software disconnect1							•
102: CHbE CANopen software disconnect2							•
103: CSYE CANopen synchronous error							•
104: CbFE CANopen hardware disconnect							•
105: CIdE CANopen index setting error							•
106: CAdE CANopen slave station number setting error							•
107: CFrE CANopen index setting exceed limit							•
108~110: Reserved							
111: InrCOM Internal communication overtime error							•

Settings 0.00~655.35Amp

When malfunction occurs, user can check the current output current. If it happens again, it will overwrite the previous record.

IGBT Temperature at Malfunction

Factory Setting: Read only

Factory Setting: Read only

Settings 0.0~6553.5℃

When malfunction occurs, user can check the current IGBT temperature. If it happens again, it will overwrite the previous record.

35 - 37 Capacitance Temperature at Malfunction

Settings 0.0~6553.5℃

When malfunction occurs, user can check the current capacitance temperature. If it happens again, it will overwrite the previous record.

35 - 38 Motor Speed in rpm at Malfunction

Factory Setting: Read only

Settings 0.0~6553.5℃

When malfunction occurs, user can check the current motor speed in rpm. If it happens again, it will overwrite the previous record.

36 - 39 Torque Command at Malfunction

Factory Setting: Read only

Settings 0~65535

When malfunction occurs, user can check the current torque command. If it happens again, it will overwrite the previous record.

115 - 41 Status of Multi-function Input Terminal at Malfunction

Factory Setting: Read only

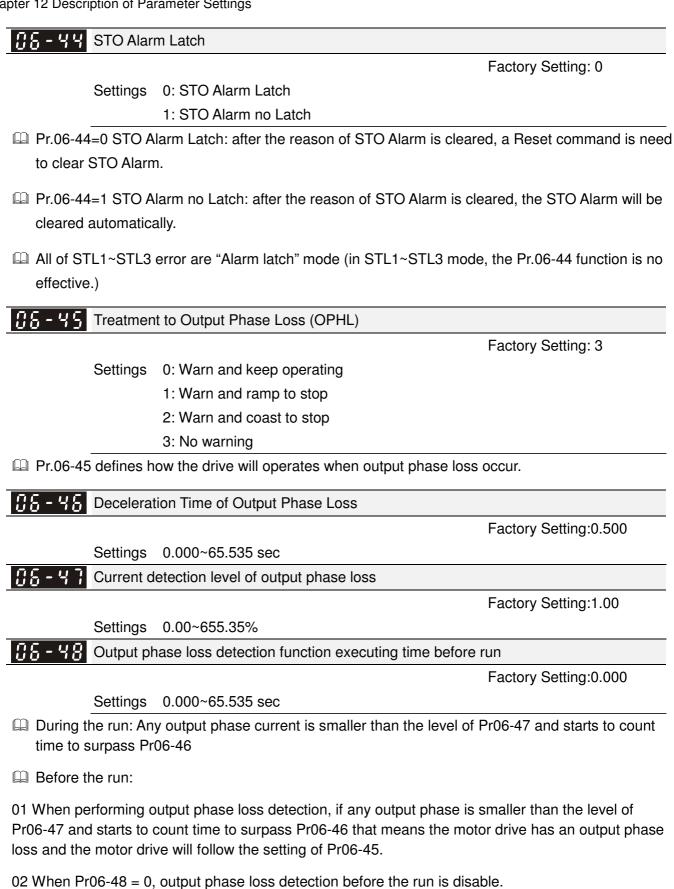
Settings 0000h~FFFFh

35 - 4 Status of Multi-function Output Terminal at Malfunction

Factory Setting: Read only

Settings 0000h~FFFFh

When malfunction occurs, user can check the status of multi-function input/output terminals. If it happens again, it will overwrite the previous record.


Drive Status at Malfunction

Factory Setting: Read only

Settings 0000H~FFFFh

When malfunction occurs, please check the drive status (communication address 2119H). If malfunction happens again, the previous record will be overwritten by this parameter.

B - **H B Reserved**

03 The setting value of Pr06-48 must be larger than the setting of Pr06-46.

 Image: S - 53
 Treatment for the detected Input Phase Loss (OrP)

 Factory Setting: 0

 Factory Setting: 0

 Settings 0: warn, ramp to stop

 1: warn, coast to stop

 Over ripple protection

 When the DC BUS ripple is bigger than protection level, drive will trip up OrP and depending on how the parameter 06-53 is set to stop.

 Image: S - 5 M
 Reserved

 Factory Setting: 0

 Settings: 0

 Settings: 0

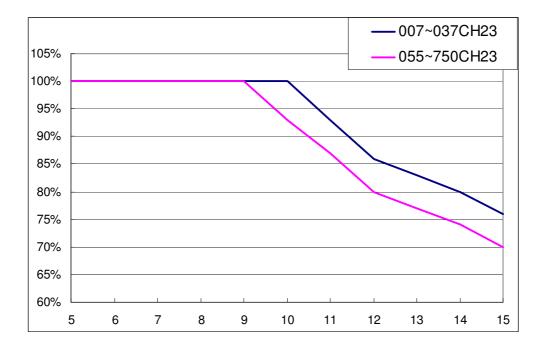
 Settings: 0

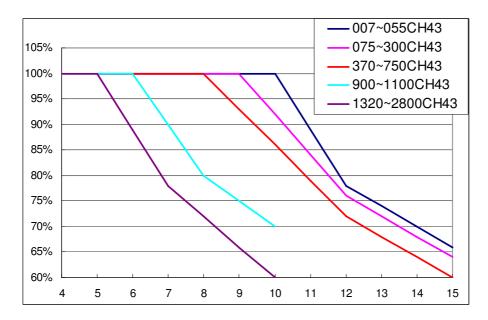
- Settings 0: constant rated current and limit carrier wave by load current and temperature
 - 1: constant carrier frequency and limit load current by setting carrier wave
 - 2: constant rated current(same as setting 0), but close current limit

Setting 0:

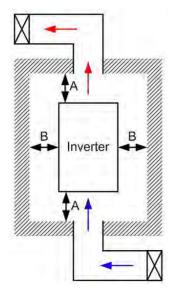
When the rated current is constant, carrier frequency (Fc) outputted by PWM will auto decrease according to surrounding temperature, overload output current and time. If overload situation is not frequent and only cares the carrier frequency operated with the rated current for a long time and carrier wave changes during short overload, it is recommended to set to 0.

Refer to the following diagram for the level of carrier frequency. Take VFD007CH43A in super heavy duty as example, surrounding temperature 50°C with independent installation and UL open-type. When the carrier frequency is set to 15kHz, it corresponds to 72% rated output current. When it outputs higher than the value, it will auto decrease the carrier frequency. If the output is 83% rated current and the carrier frequency will decrease to 12kHz. In addition, it will also decrease the carrier frequency is 15kHz and the current is 120%*72%=86% for a minute, the carrier frequency will decrease to the factory setting.


Setting 1:


It is used for the fixed carrier frequency and prevents the carrier wave changes and motor noise caused by the surrounding temperature and frequent overload.

Refer to the following for the derating level of rated current. Take VFD007CH43A in super heavy duty as example, when the carrier frequency keeps in 15kHz and the rated current is decreased to 72%, it will have OL protection when the current is 120%*72%=86% for a minute. Therefore, it needs to operate by the curve to keep the carrier frequency.


Setting 2:

It sets the protection method and action to 0 and disables the current limit for the Ratio*160% of output current in the normal duty and Ratio*180% of output current in the heavy duty. The advantage is that it can provide higher output current when the setting is higher than the factory setting of carrier frequency. The disadvantage is that it decreases carrier wave easily when overload.

It should be used with Pr. 00-16 and Pr.00-17 for setting.

- ** The mounting clearances stated in the figure is for installing the drive in an open area. To install the drive in a confined space (such as cabinet or electric box), please follow the following three rules: (1) Keep the minimum mounting clearances. (2) Install a ventilation equipment or an air conditioner to keep surrounding temperature lower than operation temperature. (3) Refer to parameter setting and set up Pr. 00-16, Pr.00-17, and Pr. 06-55.
- * The following table shows heat dissipation and the required air volume when installing a single drive in a confined space. When installing multiple drives, the required air volume shall be multiplied by the number the drives.
- * Refer to the chart (Air flow rate for cooling) for ventilation equipment design and selection.

* Refer to the chart (Power dissipation) for air conditioner design and selection. Minimum mounting clearances:

Frame	A (mm)	B (mm)	C (mm)	D (mm)
A~C	60	30	10	0
D~F	100	50	-	0
G	200	100	-	0
Н	350	0	0	200 (100, Ta=40℃)

Air flow rate for cooling								r Dissipat	tion
Flow Rate (cfm) Flow Rate (m ³ /hr)							Power Di	ssipation	(watt)
Model No.	External	Internal	Total	External	Internal	Total	Loss External (Heat sink)	Internal	Total
VFD007CH23A-21	-	-	-	-	-	-	38	27	65
VFD015CH23A-21	14	-	14	24	-	24	59	31	90
VFD022CH23A-21	14	-	14	24	-	24	80	36	116
VFD037CH23A-21	10	-	10	17	-	17	127	46	173
VFD055CH23A-21	40	14	54	68	24	92	223	67	290
VFD075CH23A-21	66	14	80	112	24	136	306	86	392
VFD110CH23A-21	58	14	72	99	24	136	432	121	553
VFD150CH23A-21	166	12	178	282	20	302	499	161	660
VFD185CH23A-21	166	12	178	282	20	302	589	184	773
VFD220CH23A-21	179	30	209	304	51	355	737	216	953
VFD300CH23A-21	179	30	209	304	51	355	1001	186	1187
VFD370CH23A-00/23A-21	179	30	209	304	51	355	1064	220	1284
VFD450CH23A-00/23A-21	228	73	301	387	124	511	1238	267	1505
VFD550CH23A-00/23A-21	246	73	319	418	124	542	1505	308	1813
VFD750CH23A-00/23A-21	224	112	346	381	190	571	1758	369	2127
VFD007CH43A/4EA-21	-	-	-	-	-	-	43	25	68
VFD015CH43A/4EA-21	14	-	14	24	-	24	59	29	88
VFD022CH43A/4EA-21	14	-	14	24	-	24	76	33	109
VFD037CH43A/4EA-21	10	-	10	17	-	17	118	42	160
VFD055CH43A/4EA-21	14	-	14	24	-	24	152	46	198
VFD075CH43A/4EA-21	40	14	54	68	24	92	260	76	336
VFD110CH43A/4EA-21	58	14	72	99	24	124	348	93	441
VFD150CH43A/4EA-21	58	14	72	99	24	124	469	122	591
VFD185CH43A/4EA-21	99	21	120	168	36	204	445	138	583
VFD220CH43A/4EA-21	99	21	120	168	36	204	509	158	667
VFD300CH43A/4EA-21	99	21	120	168	36	204	655	211	866
VFD370CH43A/4EA-21; VFD370CH43S-21	147	30	177	248	21	269	863	184	1047
VFD450CH43A-00/43A-21	179	30	209	304	51	355	1162	218	1380
VFD550CH43A-00/43A-21	186	30	216	316	51	367	1384	257	1641
VFD750CH43A-00/43A-21	186	30	216	316	51	367	1878	334	2212
VFD900CH43A-00/43A-21	257	73	330	437	124	561	1878	399	2277
VFD1100CH43A-00/43A-21	223	73	296	379	124	503	2336	491	2827
VFD1320CH43A-00/43A-21	224	112	336	381	190	571	2680	579	3259
VFD1600CH43A-00/43A-21			454			771			4179
VFD1850CH43A-00/43A-21			454			771			5011

Air flow	Air flow rate for cooling					
VFD2200CH43A-00/43A-21	454		771			6168
VFD2800CH43A-00/43C-00/43C-21	769	-	1307			7059
※ The required airflow shown in chart is for	or installing one drive in co	onfined space.		*	The heat dissipation	n shown
% When installing the multiple drives, the r		be the required air	volume		in the chart is for in	stalling
for single drive X the number of the drive	es.				single drive in a co	nfined
					space.	
				*	When installing mu	Itiple
					drives, volume of h	eat
					dissipation should	be the
					heat dissipated for	single
					drive X the number	of the
					drives.	
				*	Heat dissipation fo	r each
					model is calculated	l by
					rated voltage, curre	ent and
					default carrier.	

\$\$ - \$\$ PT100 Detection Level 1 Factory Setting: 5.000 Settings 0.000~10.000V \$\$ Settings 0.000~10.000V \$\$ PT100 Detection Level 2 Factory Setting: 7.000

Settings 0.000~10.000V

Make sure Pr. 06-57 > Pr.06-56.

35 - 58 PT100 Level 1 Frequency Protection

Factory Setting: 0.00

Settings 0.00~600.00 Hz

PT100 operation

- (1) Use AVI, AUI or ACI(set to 0-10V) for analog voltage input and select PT100 mode.
- (2) Choose one of the analog voltage input type: (a)AVI (Pr.03-00=11), (b) AUI (Pr.03-02=11), or
 (c) ACI (Pr.03-01=11 and Pr.03-29=1).
- (3) When using ACI as analog voltage input, set Pr.03-01=11 and Pr.03-29=1. Then switch SW2 to 0-10V on the I/O control terminal block.
- (4) Set Pr.03-23=23 and AFM2 to constant current output. Switch AFM2 (SW2) to 0-20mA on the I/O control terminal block and set constant current output to 9mA by setting Pr.03-33=45. The AFM2 constant output current is 20mA * 45% = 9mA.
- (5) Pr.03-33 is for adjusting the constant voltage or constant current of AFM2, the setting range is 0~100.00%.
- (6) There are two types of action level for PT100. The diagram of PT protecting action is shown as below:

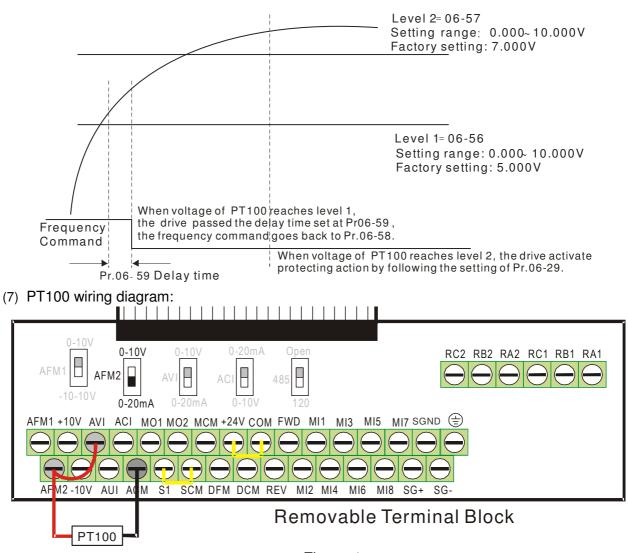


Figure 1

Description When Pr.06-58=0.00Hz, PT100 function is disabled.

Example:

A PT100 is installed to the drive. If motor temperature reaches 135° (275 F) or higher, the drive will decrease motor frequency to the setting of Pr.06-58. Motor will operate at this frequency (Pr.06-58) till the motor temperature decreases to 135° (275 F) or lower. If motor temperature exceeds 150° (302 F), the motor will decelerate to stop and outputs an 'OH3' warning.

Set up process:

- 1. Switch AFM2 (SW2) to 0-20mA on the I/O control terminal block. (Refer to Figure 1, PT100 wiring diagram)
- 2. Wiring (Refer to Figure 1, PT100 wiring diagram):

Connect external terminal AFM2 to (+) Connect external terminal ACM to (-) Connect external terminals AFM2 and AVI to short-circuit

- 3. Set Pr.03-00=11 or Pr.03-23=23 or Pr.03-33=45%(9mA)
- Refer to RTD temperature and resistance comparison table Temperature=135°C, resistance=151.71Ω; Input current: 9mA, Voltage: approximately: 1.37Vdc Temperature=150°C, resistance=157.33Ω; Input current:9mA, Voltage: approximately: 1.42Vdc
- 5. Set Pr.06=56=1.37 and Pr.06-58=10Hz. When RTD temperature increases to 135°C or higher, the drive will decelerate to the selected frequency. When Pr.06-58=0, the drive will not run.

Chapter 12 Description of Parameter Settings

6. Set Pr.06-57=1.42 and Pr.06-29=1 (warning and decelerate to stop). When RTD temperature increases to 150°C or higher, the drive will decelerate to stop and outputs an 'OH3' warning.

increa	ises to 150 $^\circ\!\!\mathbb{C}$ or higher, the drive will decelerate to stop and outputs an 'OH3' warning.
86-59	Reserved
06-60	Software Detection GFF Current Level
	Factory Setting: 60.0
	Settings 0.0~6553.5 %
06-6;	Software Detection GFF Filter Time
	Factory Setting: 0.10
	Settings 0.0~6553.5 %
	ne motor drive detects the unbalanced three-phase out current is higher than the setting of), GFF protection will be activated. Then the motor drive will stop outputting.
	-phase current output unbalance value has exceeds Pr06-60 setting, drive will trip up GFF p output immediately.
86-62	Disable Level of dEb
	Factory Setting: 180.0/360.0
	Settings 230V series: 0.0~220.0 Vic
	460V series: 0.0~440.0 Vic
08-83	Fault Record 1 (day)
88-85	Fault Record 2 (day)
88-87	Fault Record 3 (day)
06-69	Fault Record 4 (day)
	Factory Setting: Read only
	Settings 0~65535 days
06-64	Fault Record 1 (min)
<u>00 0,</u> 06-66	Fault Record 2 (min)
00 00	
06-68	Fault Record 3 (min)

Factory Setting: Read only

Settings 0~1439 min

- Pr.06-63 to Pr.06-68 are used to record the operation time for 6 malfunctions and it can also check if there is any wrong with the drive according to the internal time.
- When the malfunction occurs during operation, it records fault in Pr.06-17~06-22 and operation time is recorded in Pr.06-63~06-68.

For example: When the first fault ovA occurs after operation 3000 min., second fault ovd occurs at 3482 min., third fault ovA occurs at 4051 min., fourth fault ocA at 5003 min., fifth fault ocA at 5824 min., sixth fault ocd occurs at 6402 min. and seven fault ocS at 6951 min..

It'll be recorded as the following table:

It will be recorded as the following table:

		-			
First fault	Pr.06-17	ovA	Pr.06-63	3000	ovA occurs at the 3000 min after operating.
Second fault	Pr.06-17	ovd	Pr.06-63	3482	3482-3000=482 min
					ovd occurs at 482 min after last fault (ovA)
	Pr.06-18	ovA	Pr.06-64	3000	
Third fault	Pr.06-17	ovA	Pr.06-63	4051	<i>4051-3482=569 min</i> ovA occurs at 569 min after
	-				last fault (ovd)
	Pr.06-18	ovd	Pr.06-64	3482	
	Pr.06-19	ovA	Pr.06-65	3000	
Seven fault	Pr.06-17	ocS	Pr.06-63	12	(12-5824)+64800=58988 min ocS occurs at 58988 min after last fault (ocA)
	Pr.06-18	ocA	Pr.06-64	5824	
	Pr.06-19	ocA	Pr.06-65	5003	
	Pr.06-20	ovA	Pr.06-66	4051	
	Pr.06-21	ovd	Pr.06-67	3482	
	Pr.06-22	ovA	Pr.06-68	3000	

35 - 7 Low Current Setting Level

Factory Setting: 0.0

Settings 0.0 ~ 6553.5 %

B 5 - **7 2** Low Current Detection Time

Factory Setting: 0.00

Settings 0.00 ~ 655.35 sec

36 - 73 Treatment for low current

Factory Setting: 0

- Settings 0: No function
 - 1 : Warn and coast to stop
 - 2 : Warn and ramp to stop by 2nd deceleration time
 - 3 : Warn and operation continue

The low current detection function will not be executed when drive is at sleep or standby status.

The drive will operate as the setting of Pr.06-73 when output current is lower than the setting of Pr.06-71 and when low current continues for a period longer than the setting of Pr.06-72. This parameter can also be used with external multi-function output terminal 44 (MO44) for low current output.

07 Special Parameters

✓ This parameter can be set during operation.

✓ 37-33 Software Brake Level

Factory Setting: 380.0/760.0

Settings 230V series: 350.0~450.0Vdc 460V series: 700.0~900.0Vdc

- This parameter sets the DC-bus voltage at which the brake chopper is activated. Users can choose the suitable brake resistor to have the best deceleration. Refer to Chapter 7 Accessories for the information of the brake resistor.
- It is only valid for the models below 30kW of 460 series and 22kW of 230 series.

✓ 3 7 - 3 1 DC Brake Current Level

Factory Setting: 0

Settings 0~100%

- This parameter sets the level of DC Brake Current output to the motor during start-up and stopping. When setting DC Brake Current, the Rated Current is regarded as 100%. It is recommended to start with a low DC Brake Current Level and then increase until proper holding torque has been attained.
- When it is in FOCPG control mode, DC brake is zero-speed operation. It can enable DC brake function by setting to any value. The drive will output an appropriate current to meet the actual need.
- C Brake Time at Start-up

Factory Setting: 0.0

Settings 0.00~60.0 sec

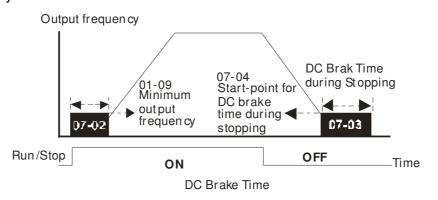
The motor may be in the rotation status due to external force or itself inertia. If the drive is used with the motor at this moment, it may cause motor damage or drive protection due to over current. This parameter can be used to output DC current before motor operation to stop the motor and get a stable start. This parameter determines the duration of the DC Brake current after a RUN command. When it is set to 0.0, it is invalid.

✓ ()] - () } DC Brake Time at Stop

Factory Setting: 0.00

Settings 0.00~60.00 sec

- The motor may be in the rotation status after drive stop outputting due to external force or itself inertia and can't stop accurately. This parameter can output DC current to force the motor drive stop after drive stops to make sure that the motor is stop.
- This parameter determines the duration of the DC Brake current during stopping. To DC brake at stop, this function will be valid when Pr.00-22 is set to 0 or 2. When setting to 0.0, it is invalid.
- Related parameters: Pr.00-22 Stop Method, Pr.07-04 Start-point for DC Brake



G 4 Start-Point for DC Brake

Factory Setting: 0.00

Settings 0.00~600.00Hz

This parameter determines the frequency when DC Brake will begin during deceleration. When this setting is less than start frequency (Pr.01-09), the start-point for DC brake will start from the min. frequency.

- DC Brake at Start-up is used for loads that may move before the AC drive starts, such as fans and pumps. Under such circumstances, DC Brake can be used to hold the load in position before setting it in motion.
- DC Brake at stop is used to shorten the stopping time and also to hold a stopped load in position, such as crane or cutting machine.
- DC Brake at Start-up is used for loads that may move before the AC drive starts, such as fans and pumps. Under such circumstances, DC Brake can be used to hold the load in position before setting it in motion.
- DC Brake at stop is used to shorten the stopping time and also to hold a stopped load in position, such as crane or cutting machine.

B 7 - **B 5** Voltage Increasing Gain

Factory Setting: 100

Settings 1~200%

When the user is using speed tracking, adjust Pr07-05 to slow down the increasing of voltage if there are errors such as oL or ocv.

Restart after Momentary Power Loss

Factory Setting: 0

Settings 0: Stop operation

- 1: Speed search for last frequency command
- 2: Speed search for the minimum output frequency
- This parameter determines the operation mode when the AC motor drive restarts from a momentary power loss.
- The power connected to the drive may power off momentarily due to many reasons. This function allows the drive to keep outputting after power is on again after power off and won't cause drive stops.

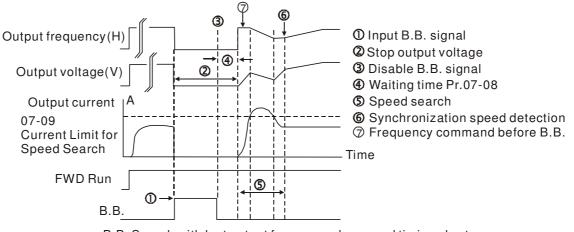
Chapter 12 Description of Parameter Settings

- Setting 1: Operation continues after momentary power loss, speed search starts with the Master Frequency reference value after drive output frequency and motor rotator speed is synchronous. The motor has the characteristics of big inertia and small obstruction. For example, in the equipment with big inertia wheel, it doesn't need to wait to execute operation command until wheel is complete stop after re-start to save time.
- Setting 2: Operation continues after momentary power loss, speed search starts with the master frequency after drive output frequency and motor rotator speed is synchronous. The motor has the characteristics of small inertia and bigger obstruction.
- In PG control mode, the AC motor drive will execute the speed search function automatically by the PG speed when this setting isn't set to 0.

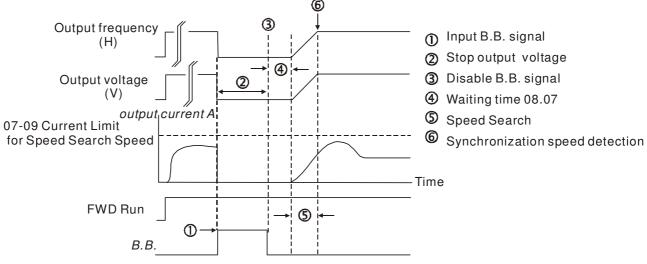
Maximum Power Loss Duration

Factory Setting: 2.0

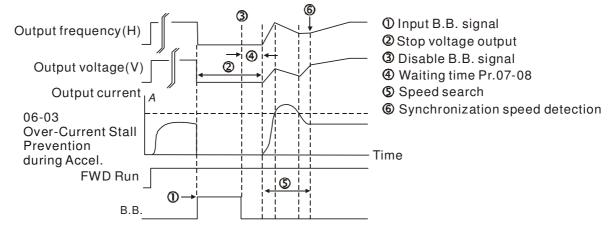
Settings 0.1~20.0 sec


- If the duration of a power loss is less than this parameter setting, the AC motor drive will resume operation. If it exceeds the Maximum Allowable Power Loss Time, the AC motor drive output is then turned off (coast stop).
- □ The selected operation after power loss in Pr.07-06 is only executed when the maximum allowable power loss time is ≤5 seconds and the AC motor drive displays "LU". But if the AC motor drive is powered off due to overload, even if the maximum allowable power loss time is ≤5 seconds, the operation mode as set in Pr.07-06 is not executed. In that case it starts up normally.

Base block Time


Factory Setting: 0.5

Settings 0.1~5.0 sec


When momentary power loss is detected, the AC drive will block its output and then wait for a specified period of time (determined by Pr.07-08, called Base-Block Time) before resuming operation. This parameter should be set at a value to ensure that any residual regeneration voltage from the motor on the output has disappeared before the drive is activated again.

B.B. Search with last output frequency downward timing chart

B.B. Search with minimum output frequency upward timing chart

B.B. Search with minimum output frequency upward timing chart

Factory Setting: 50

Settings 20~200%

- Following a momentary power loss, the AC motor drive will start its speed search operation only if the output current is greater than the value set by Pr.07-09.
- When executing speed search, the V/f curve is operated by group 1 setting. The maximum current for the optimum accel./decel. and start speed search is set by Pr.07-09.
- The speed search level will affect the synchronous time. It will get the synchronization faster when this parameter is set to larger value. But too large value may activate overload protection.

✓ ⑦ · · · / ⑦ · · · / ⑦ Treatment after Fault

Factory Setting: 0

Settings 0: Stop operation

- 1: Speed search starts with current speed
- 2: Speed search starts with minimum output frequency
- In PG control mode, the AC motor drive will execute the speed search function automatically by the PG speed when this setting isn't set to 0.
- Fault includes: bb,oc,ov,occ. To restart after oc, ov, occ, Pr.07-11 can not be set to 0.

× 87-

Auto Restart Time after Fault

Factory Setting: 0

Settings 0~10

- After fault (oc, ov, occ) occurs, the AC motor drive can be reset/restarted automatically up to 10 times.
- Setting this parameter to 0 will disable the reset/restart operation after any fault has occurred. When enabled, the AC motor drive will restart with speed search, which starts at the frequency before the fault.
- If the drive execute reset/restart after fault more than the numbers of time set in Pr.07-11 and the limit is reached within the time period in Pr.07-33, the drive will stop execute reset/restart after fault function. User will be needed to input RESET manually for the drive to continue operation.

Speed Search during Start-up

Factory Setting: 0

Settings 0: Disable

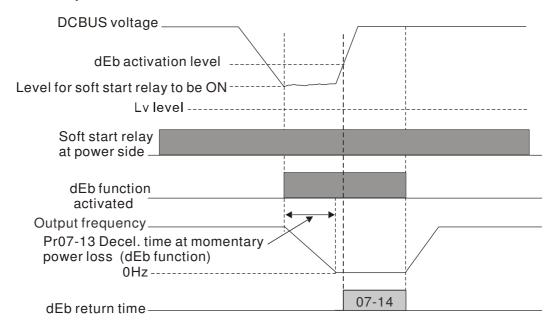
- 1: Speed search from maximum output frequency
- 2: Speed search from start-up motor frequency
- 3: Speed search from minimum output frequency
- This parameter is used for starting and stopping a motor with a high inertia. A motor with high inertia will take 2-5 minutes or longer to stop completely. By setting this parameter, the user does not need to wait for the motor to come to a complete stop before restarting the AC motor drive. If a PG card and encoder is used on the drive and motor, then the speed search will start from the speed that is detected by the encoder and accelerate quickly to the commanded frequency. The output current is set by the Pr.07-09.
- In PG control mode, the AC motor drive will execute the speed search function automatically by the PG speed when this setting isn't set to 0.

✓ B - 13 Decel. Time at Momentary Power Loss (dEb function)

Factory Setting: 0

Settings 0: Disable

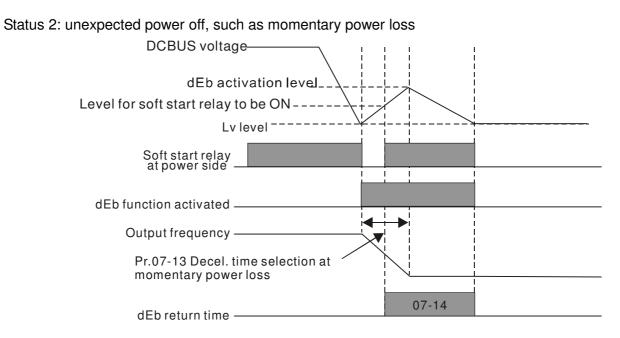
1~6: DCBUS control, Auto decel. time


In This parameter is used for the decel. time selection for momentary power loss.

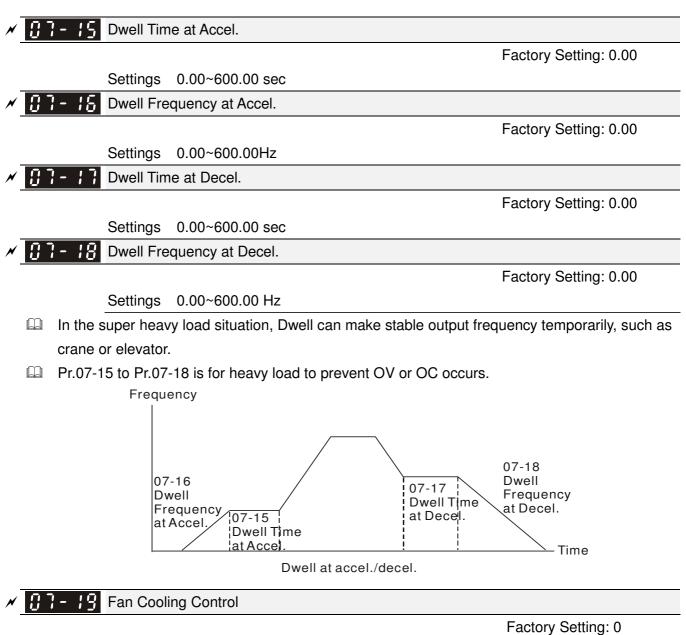
✓ ☐ ☐ - ; Y dEb Return Time

Factory Setting: 0.0

Settings 0.0~25.0 sec


function is the AC motor drive decelerates to stop after momentary power loss. When the momentary power loss occurs, this function can be used for the motor to decelerate to 0 speed with deceleration stop method. When the power is on again, motor will run again after DEB return time. (has applied on high-speed spindle) Status 1: Insufficient power supply due to momentary power-loss/unstable power (due to low voltage)/sudden heavy-load

Note (1)When Pr07-14 is set to 0, the motor drive will stop and will not accelerate to the frequency before dEb even the power is on again. But when Pr07-14 is NOT set to 0, then a command of zero speed will be sent to wait for power on.


Note (2) dEb activation level is when DCBUS voltage level is lower than (230V series: Lv level +20Vdc)

(460V series: Lv level +40Vdc)

For example, in textile machinery, you will hope that all the machines can be decelerated to stop to prevent broken stitching when power loss. In this case, the host controller will send a message to the AC motor drive to use dEb function with deceleration time via EF.

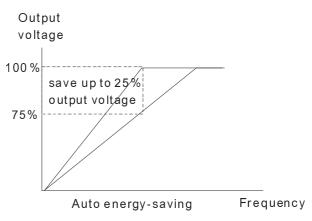
Settings 0: Fan always ON

- 1: 1 minute after the AC motor drive stops, fan will be OFF
- 2: When the AC motor drive runs, the fan is ON. When the AC motor drive stops, the fan is OFF
- 3: Fan turns ON when preliminary heat sink temperature (around 60°C) is attained.
- 4: Fan always OFF
- This parameter is used for the fan control.
- Setting 0: Fan will be ON as the drive's power is turned ON.
- Setting 1: 1 minute after AC motor drive stops, fan will be OFF
- Setting 2: AC motor drive runs and fan will be ON. AC motor drive stops and fan will be OFF.
- Setting 3: Fan run according to IGBT and capacitance temperature. Fan will be ON when preliminary capacitance temperature is higher than 60oC. Fan will be OFF, when capacitance temperature is lower than 40oC.
- Setting 4: Fan is always OFF

Emergency Stop (EF) & Force Stop

Factory Setting: 0

- Settings 0: Coast to stop
 - 1: Stop by 1st deceleration time
 - 2: Stop by 2nd deceleration time
 - 3: Stop by 3rd deceleration time
 - 4: Stop by 4th deceleration time
 - 5: System Deceleration (According to original deceleration time)
 - 6: Automatic Deceleration (Pr01-46)
- When the multi-function input terminal is set to 10(EF) or 18(Emergency stop) and is activated, the drive will stop according to the setting in Pr.07-20.

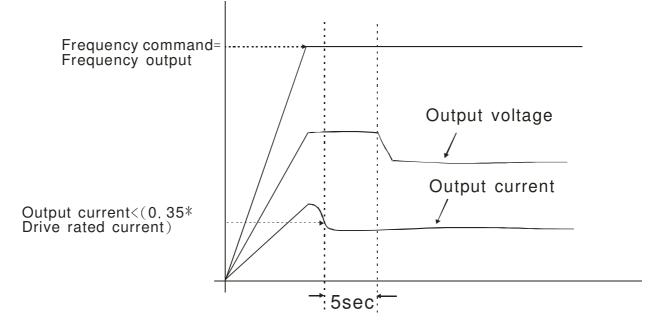

✓ ☐ ☐ - 2 ↓ Auto Energy-saving Operation

Factory Setting: 0

Settings 0: Disable

1: Enable

- When Pr.07-21 is set to 1, the acceleration and deceleration will operate with full voltage. During constant speed operation, it will auto calculate the best voltage value by the load power for the load. This function is not suitable for the ever-changing load or near full-load during operation.
- When the output frequency is constant, i.e. constant operation, the output voltage will auto decrease by the load reduction. Therefore, the drive will operate with min. power, multiplication of voltage and current.


FOCPG(IM) control mode:

When drive is running at constant speed and torque current is lower than 35% of drive rated current, drive will start to count. After 5 seconds, power save function will enable (can max. reduce 30% of output voltage). Return conditions: torque higher than 50% of drive rated current.

UF, VFPG, SVC control mode:

When drive is running at constant speed and the U, V, W output power factor angle cos(phi)>=65.0° (Pr00-04 set 5 for monitor power factor angle cos(phi)), drive will start to do "Power saving enable time counting". After 5 seconds, power save function will enable. Return conditions: (cos(phi)<60.0°) or drive is operating at acceleration or deceleration status.

When drive is at FOCPM or FOC sensor-less control mode, this function will be disable.

✓ ₿ ? - 2 2 Energy-saving Gain

Factory Setting: 100

Settings 10~1000%

- When Pr. 07-21 is set to 1, this parameter can be used to adjust the gain of energy-saving. The factory setting is 100%. If the result is not good, it can adjust by decreasing the setting. If the motor oscillates, it should increase the setting value.
- At some special application such as High speed spindle, the motor temperature rise is been highly concern. Thus, when the motor is not working with load, the motor current will requested to reduce to a lower level. To Lowering this parameter setting can meet this requirement.

✓ ☐ 7 - 2 3 Auto Voltage Regulation(AVR) Function

Factory Setting: 0

Settings 0: Enable AVR

- 1: Disable AVR
- 2: Disable AVR during deceleration
- The rated voltage of the motor is usually 220V/200VAC 60Hz/50Hz and the input voltage of the AC motor drive may vary between 180V to 264 VAC 50Hz/60Hz. Therefore, when the AC motor drive is used without AVR function, the output voltage will be the same as the input voltage. When the motor runs at voltages exceeding the rated voltage with 12% 20%, its lifetime will be shorter and it can be damaged due to higher temperature, failing insulation and unstable torque output.
- AVR function automatically regulates the AC motor drive output voltage to the motor rated voltage. For instance, if V/f curve is set at 200 VAC/50Hz and the input voltage is at 200V to 264VAC, then the motor Output Voltage will automatically be reduced to a maximum of 200VAC/50Hz. If the input voltage is at 180V to 200VAC, output voltage to motor and input power will be in direct proportion.

- Setting 0: when AVR function is enabled, the drive will calculate the output voltage by actual DC-bus voltage. The output voltage won't be changed by DC bus voltage.
- Setting 1: when AVR function is disabled, the drive will calculate the output voltage by DC-bus voltage. The output voltage will be changed by DC bus voltage. It may cause insufficient/over current.
- Setting 2: the drive will disable the AVR during deceleration, such as operated from high speed to low speed.
- When the motor ramps to stop, the deceleration time is longer. When setting this parameter to 2 with auto acceleration/deceleration, the deceleration will be quicker.
- When it is in FOCPG or TQCPG, it is recommended to set to 0 (enable AVR).

✓ ③ ? - 2 Ч Filter Time of Torque Command (V/F and SVC control mode)

Factory Setting: 0.020

Settings 0.001~10.000 sec

When the setting is too long, the control will be stable but the control response will be delay. When the setting is too short, the response will be quickly but the control may be unstable. User can adjust the setting by the control and response situation.

 \times \bigcirc \bigcirc \bigcirc Filter Time of Slip Compensation (V/F and SVC control mode)

Factory Setting: 0.100

Settings 0.001~10.000 sec

- It can set Pr.05-22 and 05-23 to change the response time of compensation.
- If Pr.05-22 and 05-23 are set to 10seconds, the response time of compensation is the slowest. But the system may be unstable when the setting is too short.

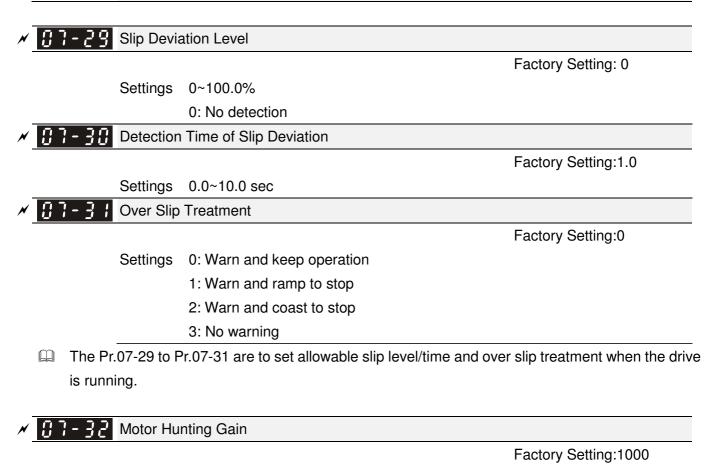
✓ 37-25 Torque Compensation Gain (V/F and SVC control mode)

Factory Setting: 0

Settings 0~10

- When the motor load is large, a part of drive output voltage is absorbed by the resistor of stator winding and causes insufficient voltage at motor induction and result in over output current and insufficient output torque. It can auto adjust output voltage by the load and keep the air gap magnetic fields stable to get the optimal operation.
- In the V/F control, the voltage will be decreased in direct proportion when the frequency is decreased. It'll cause decrease torque at low speed due to small AC resistor and the same DC resistor. Therefore, Auto torque compensation function will increase the output voltage in the low frequency to get higher start torque.
- When Pr.07-26 is set to large, it may cause motor overflux and result in too large output current, motor overheat or triggers protection function.
- Slip Compensation Gain (V/F and SVC control mode)

Factory Setting: 0.00


```
Settings 0.00~10.00
```

The induction motor needs the constant slip to produce magnetic torque. It can be ignore in the higher motor speed, such as rated speed or 2-3% slip.

Chapter 12 Description of Parameter Settings

- In the operation with variable frequency, the slip and the synchronous frequency will be in reverse proportion to produce the same magnetic torque. That is the slip will be larger with the reduction of synchronous frequency. The motor may stop when the synchronous frequency is decreased to a specific value. Therefore, the slip serious affects the accuracy of motor speed at low speed.
- In another situation, when the drive uses with induction motor, the slip will be increased by the increasing load. It also affects the accuracy of motor speed.
- This parameter can be used to set compensation frequency and reduce the slip to close the synchronous speed when the motor runs in the rated current to raise the drive accuracy. When the drive output current is larger than Pr.05-05 No-load Current of Induction Motor 1 (A), the drive will compensation the frequency by this parameter.
- When the control method (Pr.00-11) is changed from V/f mode to vector mode, this parameter will auto be set to 1.00. Otherwise, it will be set to 0.00. Please do the compensation of slip after overload and acceleration. The compensation value should be increased from small to large gradually. That is to add the output frequency with motor rated slip X Pr.07-27 Slip Compensation Gain when the motor is rated load. If the actual speed ratio is slow than expectation, please increase the setting. Otherwise, decrease the setting.

87-28 Reserved

Settings 0~10000

0: Disable

The motor will have current wave motion in some specific area. It can improve this situation by setting this parameter. (When it is high frequency or run with PG, it can be set to 0. when the current wave motion happens in the low frequency, please increase Pr.07-32.)

Recovery Time to Pr.07-11 (# of automatic reboots after fault)

Factory Setting:60.0

Settings 00~6000.0 sec

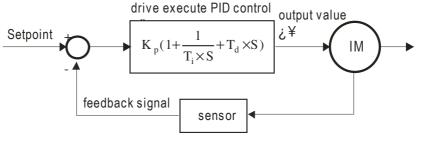
When a reset/restart after fault occurs, the drive will regards Pr.07-33 as a time boundary and begin counting the numbers of faults occur within this time period. Within the period, if numbers of faults occurred did not exceed the setting in Pr.07-11, the counting will be cleared and starts from 0 when next fault occurs. However, if the numbers of faults occurred within this time period have exceed the setting in Pr.07-11, user will need to press RESET key manually for the drive to operate again.

08 High-function PID Parameters

✓ This parameter can be set during operation.

Input Terminal for PID Feedback

Factory Setting: 0


Settings 0: No function

- 1: Negative PID feedback: on analogue input acc. To setting 5 of Pr. 03-00 to Pr.03-02.
- 2: Negative PID feedback from PG card (Pr.10-15, skip direction)
- 3: Negative PID feedback from PG card (Pr.10-15)
- 4: Positive PID feedback from external terminal AVI (Pr.03-00)
- 5: Positive PID feedback from PG card (Pr.10-15, skip direction)
- 6: Positive PID feedback from PG card (Pr.10-15)
- 7: Negative PID feedback from communication protocol
- 8: Positive PID feedback from communication protocol
- Regative feedback means: +target value feedback. It is used for the detection value will be increased by increasing the output frequency.
- When Pr.03-00 to Pr.03-02 have the same setting, then the AVI will be the prioritized selection.
- Positive feedback means: -target value + feedback. It is used for the detection value will be decreased by increasing the output frequency.
- When $Pr08-00 \neq 7$ neither $\neq 8$, input value is disabled. The value of the setting remain the same after the derive is off.

Common applications for PID control

- Flow control: A flow sensor is used to feedback the flow data and performs accurate flow $\mathbf{\nabla}$ control.
- Pressure control: A pressure sensor is used to feedback the pressure data and performs $\mathbf{\nabla}$ precise pressure control.
- Air volume control: An air volume sensor is used to feedback the air volume data to have $\mathbf{\nabla}$ excellent air volume regulation.
- Temperature control: A thermocouple or thermistor is used to feedback temperature data for $\mathbf{\nabla}$ comfortable temperature control.
- Speed control: A speed sensor or encoder is used to feedback motor shaft speed or input $\mathbf{\nabla}$ another machines speed as a target value for closed loop speed control of master-slave operation. Pr.10.00 sets the PID set point source (target value).
- PID control operates with the feedback signal as set by Pr.10.01 either 0~+10V voltage or $\mathbf{\nabla}$ 4-20mA current.

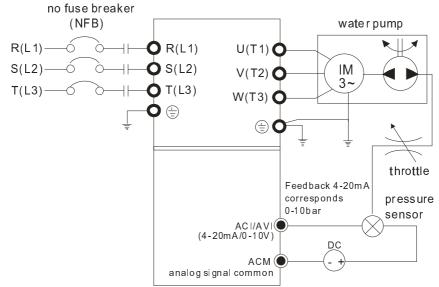
PID control loop:

 $K_{p}: \text{Proportional gain}(\mathsf{P}) \qquad T_{i}: \text{Integral time}(\mathsf{I}) \quad T_{d'} \text{ Derivative control}(\mathsf{D}) \quad S: \text{Operator}$

- Concept of PID control
 - 1. Proportional gain(P):

the output is proportional to input. With only proportional gain control, there will always be a steady-state error.

2. Integral time(I):


the controller output is proportional to the integral of the controller input. To eliminate the steady-state error, an "integral part" needs to be added to the controller. The integral time decides the relation between integral part and error. The integral part will be increased by time even if the error is small. It gradually increases the controller output to eliminate the error until it is 0. In this way a system can be stable without steady-state error by proportional gain control and integral time control.

3. Differential control(D):

the controller output is proportional to the differential of the controller input. During elimination of the error, oscillation or instability may occur. The differential control can be used to suppress these effects by acting before the error. That is, when the error is near 0, the differential control should be 0. Proportional gain (P) + differential control (D) can be used to improve the system state during PID adjustment.

When PID control is used in a constant pressure pump feedback application: Set the application's constant pressure value (bar) to be the set point of PID control. The pressure sensor will send the actual value as PID feedback value. After comparing the PID set point and PID feedback, there will be an error. Thus, the PID controller needs to calculate the output by using proportional gain (P), integral time (I) and differential time (D) to control the pump. It controls the drive to have different pump speed and achieves constant pressure control by using a 4-20mA signal corresponding to 0-10 bar as feedback to the drive.

Chapter 12 Description of Parameter Settings

- 1. Pr.00-04 is set to 10 (Display PID analog feedback signal value (b) (%))
- 2. Pr.01-12 Acceleration Time will be set as required
- 3. Pr.01-13 Deceleration Time will be set as required
- 4. Pr.00-21=0 to operate from the digital keypad
- 5. Pr.00-20=0, the set point is controlled by the digital keypad
- 6. Pr.08-00=1 (Negative PID feedback from analog input)
- 7. ACI analog input Pr. 03-01 set to 5, PID feedback signal.
- 8. Pr.08-01-08-03 will be set as required
- 8.1 If there is no vibration in the system, increase Pr.08-01(Proportional Gain (P))
- 8.2 If there is no vibration in the system, reduce Pr.08-02(Integral Time (I))
- 8.3 If there is no vibration in the system, increase Pr.08-03(Differential Time (D))
- Refer to Pr.08-00 to 08-21 for PID parameters settings.

✓ 38 - 3 ↓ Proportional Gain (P)

Factory Setting:1.0

Settings 0.0~500.0%

- It is used to eliminate the system error. It is usually used to decrease the error and get the faster response speed. But if setting too large value in Pr.08-01, it may cause the system oscillation and instability.
- If the other two gains (I and D) are set to zero, proportional control is the only one effective.

Integral Time (I)

Factory Setting:1.00

Settings 0.00~100.00 sec

0.00: Disable

- The integral controller is used to eliminate the error during stable system. The integral control doesn't stop working until error is 0. The integral is acted by the integral time. The smaller integral time is set, the stronger integral action will be. It is helpful to reduce overshoot and oscillation to make a stable system. At this moment, the decreasing error will be slow. The integral control is often used with other two controls to become PI controller or PID controller.
- This parameter is used to set the integral time of I controller. When the integral time is long, it will have small gain of I controller, the slower response and bad external control. When the integral time is short, it will have large gain of I controller, the faster response and rapid external control.

- When the integral time is too small, it may cause system oscillation.
- If the integral time is set as 0.00, Pr.08-02 will be disabled.
- **Derivative Control (D)**

Factory Setting:0.00

Settings 0.00~1.00 sec

The differential controller is used to show the change of system error and it is helpful to preview the change of error. So the differential controller can be used to eliminate the error to improve system state. With the suitable differential time, it can reduce overshoot and shorten adjustment time. However, the differential operation will increase the noise interference. Please note that too large differential will cause big noise interference. Besides, the differential shows the change and the output of the differential will be 0 when there is no change. Therefore, the differential control can't be used independently. It needs to be used with other two controllers to make a PD controller or PID controller.

- This parameter can be used to set the gain of D controller to decide the response of error change. The suitable differential time can reduce the overshoot of P and I controller to decrease the oscillation and have a stable system. But too long differential time may cause system oscillation.
- The differential controller acts for the change of error and can't reduce the interference. It is not recommended to use this function in the serious interference.

✓ **38 - 34** Upper limit of Integral Control

Factory Setting:100.0

Settings 0.0~100.0%

- This parameter defines an upper bound or limit for the integral gain (I) and therefore limits the Master Frequency. The formula is: Integral upper bound = Maximum Output Frequency (Pr.01-00) x (Pr.08-04 %).
- Too large integral value will make the slow response due to sudden load change. In this way, it may cause motor stall or machine damage.

✓ 38-35 PID Output Frequency Limit

Factory Setting:100.0

Settings 0.0~110.0%

- This parameter defines the percentage of output frequency limit during the PID control. The formula is Output Frequency Limit = Maximum Output Frequency (Pr.01-00) X Pr.08-05 %.
- ✓ 38 35 PID feedback value by communication protocol

Factory Setting: 0.00

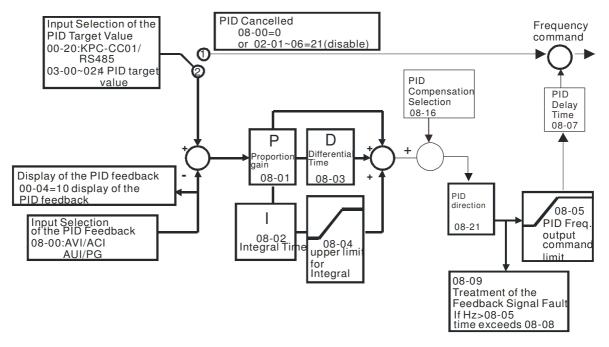
Settings 0.00~200.00%

PID Delay Time

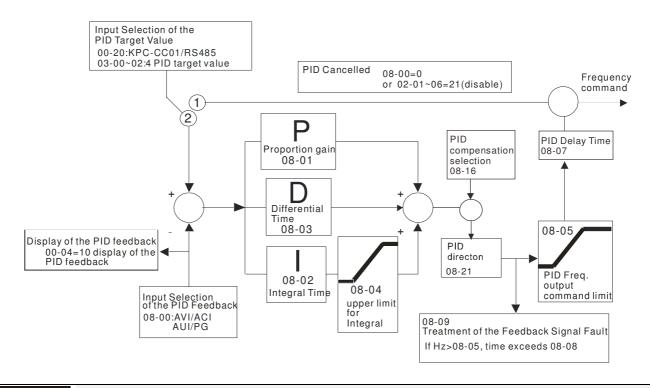
Factory Setting: 0.0

Settings 0.0~35.0 sec

B - 2 **B** PID Mode Selection


Factory Setting: 0

Settings 0: Serial connection

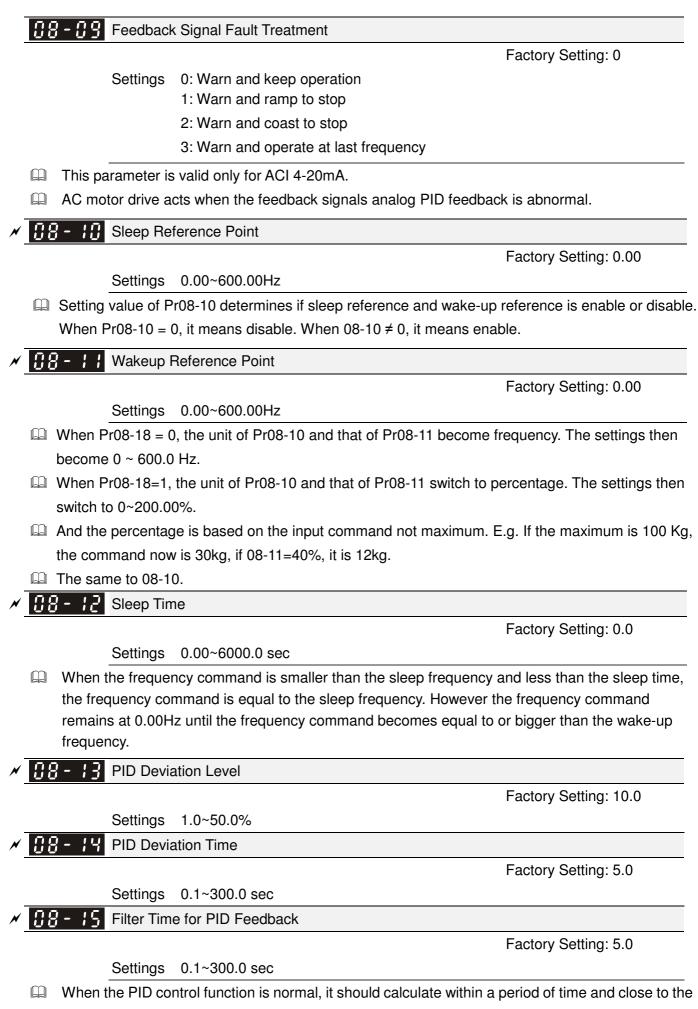

1: Parallel connection

- IP When setting is 0, it uses conventional PID control structure.
- When setting is 1, proportional gain, integral gain and derivative gain are independent. The P, I and D can be customized to fit users' demand.
- Pr.08-07 determines the primary low pass filter time when in PID control. Setting a large time constant may slow down the response rate of drive.
- Output frequency of PID control will filter by primary low pass function. This function could filter a mix frequency. A long primary low pass time means filter degree is high and vice versa.
- Inappropriate setting of delay time may cause system error.
- PI Control: controlled by the P action only, and thus, the deviation cannot be eliminated entirely. To eliminate residual deviations, the P + I control will generally be utilized. And when the PI control is utilized, it could eliminate the deviation incurred by the targeted value changes and the constant external interferences. However, if the I action is excessively powerful, it will delay the responding toward the swift variation. The P action could be used solely on the loading system that possesses the integral components.
- PD Control: when deviation occurred, the system will immediately generate some operation load that is greater than the load generated single handedly by the D action to restrain the increment of the deviation. If the deviation is small, the effectiveness of the P action will be decreasing as well. The control objects include occasions with integral component loads, which are controlled by the P action only, and sometimes, if the integral component is functioning, the whole system will be vibrating. On such occasions, in order to make the P action's vibration subsiding and the system stabilizing, the PD control could be utilized. In other words, this control is good for use with loadings of no brake functions over the processes.
- PID Control: Utilize the I action to eliminate the deviation and the D action to restrain the vibration, thereafter, combine with the P action to construct the PID control. Use of the PID method could obtain a control process with no deviations, high accuracies and a stable system.

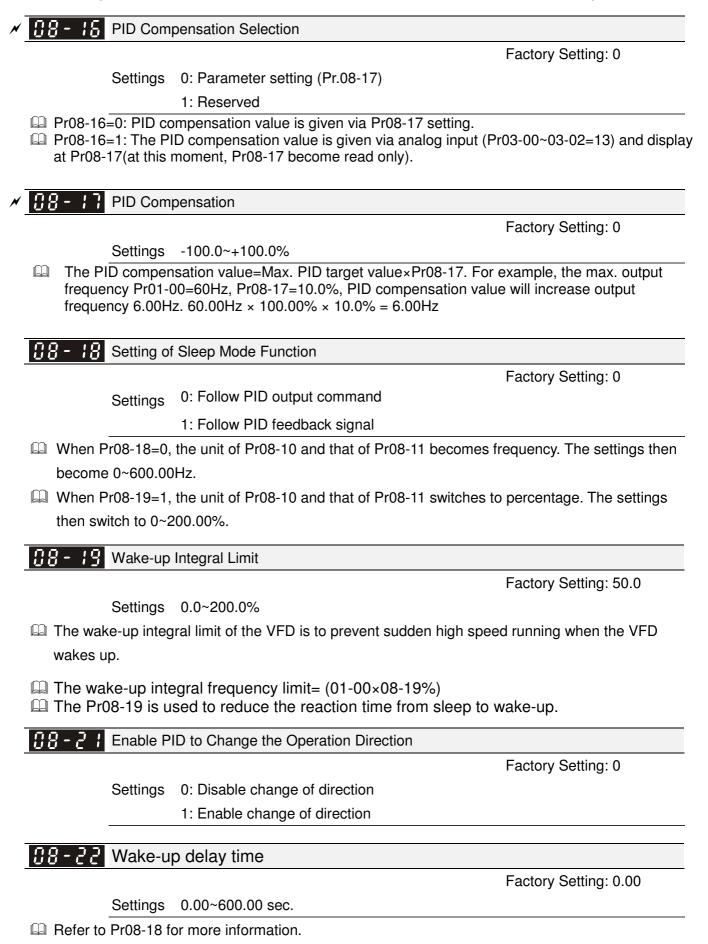
Serial connection

Parallel connection

✓ 🖸 🖁 - 🛱 🖁 Feedback Signal Detection Time


Factory Setting: 0.0

Settings 0.0~3600.0 sec


Pr.08-08 is valid only for ACI 4-20mA.

This parameter sets the detection time of abnormal PID derative. If detection time is set to 0.0, detection function is disabled.

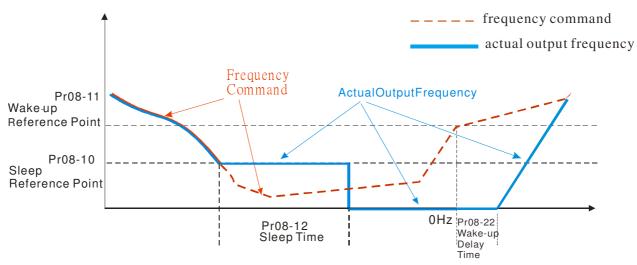
target value.

Refer to the PID control diagram for details. When executing PID feedback control, if |PID reference target value – detection value| > Pr.08-13 PID Deviation Level and exceeds Pr.08-14 setting, the PID control fault occurs. The treatment will be done as Pr.08-09 setting.

88-

PID Control Bit

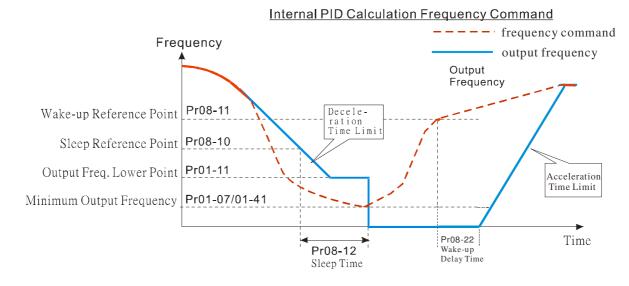
Settings Bit0 = 1, PID reverse running must follow the setting of Pr00-23 Bit0 = 0, PID reverse running follows PID's calculated value


- Bit0, When Pr08-21 = 1, PID reverse running is enable.
- Bit0 = 0, if the PID calculated value is positive, it will be forward running. If the PID calculated value is negative, it will be reverse running.

There are three scenarios for sleep and wake-up frequency.

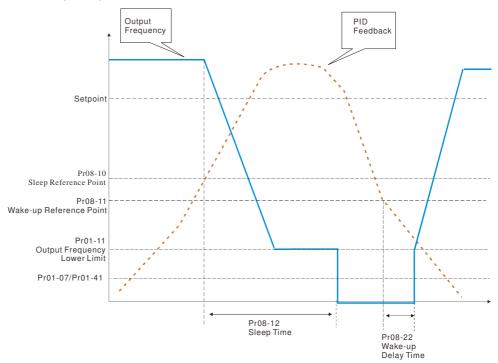
1) Frequency Command (PID is not in use, Pr08-=00

When the output frequency \leq the sleep frequency and the VFD reaches the preset sleep time, then the VFD will be at the sleep mode.


When the frequency command reaches the wake-up frequency, the VFD will start to count the wake-up delay time. Then when the VFD reaches the wake-up delay time, the VFD will begin acceleration time to reach the frequency command.

2) Frequency Command Calculation of the Internal PID

When the PID calculation reaches the sleep frequency, the VFD will start to count the sleep time and the output frequency will start to decrease. If the VFD exceeds the preset sleep time, it will directly go to sleep mode which is 0 Hz. But if the VFD doesn't reach the sleep time, it will remain at the lower limit (if there is a preset of lower limit.). Or it will remain at the lowest output frequency set at Pr01-07 and wait to reach the sleep time then go to sleep mode (0 Hz).


When the calculated frequency command reaches the wake-up frequency, the VFD will start to count the wake-up delay time. Once reaching the wake-up delay time, the VFD will start the acceleration time to reach the PID frequency command.

3) PID Feedback Rate Percentage (Use PID, Pr08-00 ≠ 0 and Pr08-18=1)

When the PID feedback rate reaches the sleep level percentage, the VFD starts to count the sleep time. The output frequency will also decrease. If the VFD exceeds the preset sleep time, it will go to sleep mode which is 0 Hz. But if the VFD doesn't reach the sleep time, it will remain at the lower limit (if there is a preset of lower limit.). Or it will remain at the lowest output frequency set at Pr01-07 and wait to reach the sleep time then go to sleep mode (0 Hz).

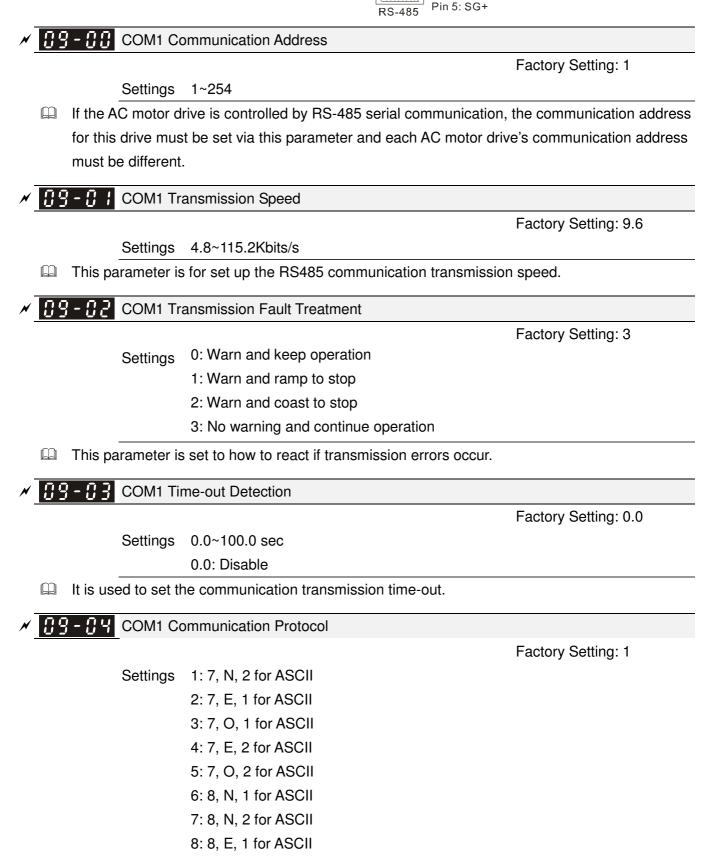
When PID feedback value reaches the wake up percentage the motor drive will start to count the wake up delay time. Once reaches the wake up delay time, the motor drives starts the accelerating time to reach PID frequency command

09 Communication Parameters

Wh

✓ The parameter can be set during the operation.

- 1


Modbus RS-485

Pin 3, 6: SGND

Pin 4: SG-

Pin 1~2,7,8: Reserved

	E
When using communication devices,	
connects AC drive with PC by using	
Delta IFD6530 or IFD6500.	

9: 8, O, 1 for ASCII

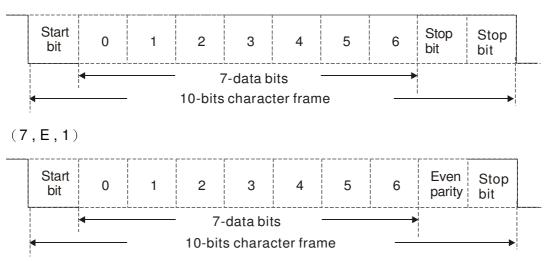
10: 8, E, 2 for ASCII
 11: 8, O, 2 for ASCII
 12: 8, N, 1 for RTU
 13: 8, N, 2 for RTU
 14: 8, E, 1 for RTU
 15: 8, O, 1 for RTU
 16: 8, E, 2 for RTU
 17: 8, O, 2 for RTU

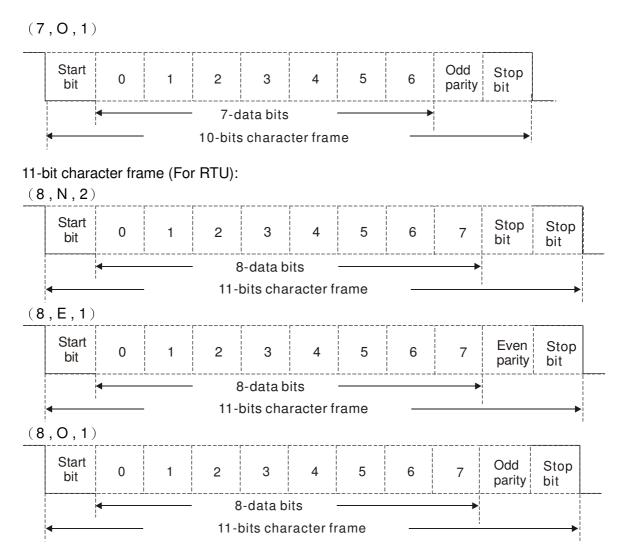
Control by PC or PLC (Computer Link)

- A VFD-CH2000 can be set up to communicate on Modbus networks using one of the following modes: ASCII (American Standard Code for Information Interchange) or RTU (Remote Terminal Unit).Users can select the desired mode along with the RS-485 serial port communication protocol in Pr.09-00.
- MODBUS ASCII (American Standard Code for Information Interchange) : Each byte data is the combination of two ASCII characters. For example, a 1-byte data: 64 Hex, shown as '64' in ASCII, consists of '6' (36Hex) and '4' (34Hex).

1. Code Description

Communication protocol is in hexadecimal, ASCII: "0", "9", "A", "F", every 16 hexadecimal represent ASCII code. For example:


Character	'0'	'1'	'2'	'3'	'4'	'5'	'6'	'7'
ASCII code	30H	31H	32H	33H	34H	35H	36H	37H


Character	'8'	'9'	'A'	'B'	'C'	'D'	'E'	'F'
ASCII code	38H	39H	41H	42H	43H	44H	45H	46H

2. Data Format

10-bit character frame (For ASCII):

(7, N, 2)

3. Communication Protocol

Communication Data Frame: ASCII mode

STX	Start character = ':' (3AH)
Address Hi	Communication address:
Address Lo	8-bit address consists of 2 ASCII codes
Function Hi	Command code:
Function Lo	8-bit command consists of 2 ASCII codes
DATA (n-1)	Contents of data:
	 Nx8-bit data consist of 2n ASCII codes n<=16, maximum of 32 ASCII codes
DATA 0	
LRC CHK Hi	LRC check sum:
LRC CHK Lo	8-bit check sum consists of 2 ASCII codes
END Hi	End characters:
END Lo	END1 = CR (0DH), END0 = LF(0AH)

Communication Data Frame: RTU mode

START	A silent interval of more than 10 ms
Address	Communication address: 8-bit address
Function	Command code: 8-bit command

DATA (n-1)	Contents of data:
	n×8-bit data, n<=16
DATA 0	
CRC CHK Low	CRC check sum:
CRC CHK High	16-bit check sum consists of 2 8-bit characters
END	A silent interval of more than 10 ms

Address (Communication Address)

Valid communication addresses are in the range of 0 to 254. A communication address equal to 0, means broadcast to all AC drives (AMD). In this case, the AMD will not reply any message to the master device.

00H: broadcast to all AC drives

01H: AC drive of address 01

0FH: AC drive of address 15

10H: AC drive of address 16

FEH: AC drive of address 254

Function (Function code) and DATA (data characters)

The format of data characters depends on the function code.

03H: read data from register

06H: write single data to register

Example: reading continuous 2 data from register address 2102H, AMD address is 01H. ASCII mode:

Command Message:		Response Mes	ssage
STX	(_) _	STX	·.,
Address	·0'	A status s s	·0'
Address	Address '1' Address	'1'	
Function	·0'	Function	ʻ0'
Function	'3'	FUNCTION	'3'
	'2'	Number of data	ʻ0'
Starting address	'1'	(count by byte)	'4'
Starting address	·0'	Content of starting	'1'
	'2'		'7'
	·0'	address 2102H	'7'
Number of data	·0'		·0'
(count by word)	·0'		'0'
	'2'	Content of address 2103H	·0'
LRC Check	'D'	Content of address 210511	·0'
ENC Check	'7'		·0'
END	CR	LRC Check	'7'
LIND	LF		<u>'1'</u>
		END	CR
			LF

RTU mode:

Command Mes	ssage:	Response Me	ssage
Address	01H	Address	01H
Function	03H	Function	03H
Starting data address	21H	Number of data	04H
	02H	(count by byte)	040
Number of data	00H	Content of data	17H
(count by world)	02H	address 2102H	70H

Chapter 12 Description of Parameter Settings

CRC CHK Low	6FH	Content of data	00H
CRC CHK High	F7H	address 2103H	00H
		CRC CHK Low	FEH
		CRC CHK High	5CH

06H: write single data to register.

Example: writing data 6000(1770H) to register 0100H. AMD address is 01H. ASCII mode:

Command Message:		Response Me	ssage
STX	·	STX	••• •
Address	·0'	Address	ʻ0'
Address	'1'	Address	'1'
Function	·0'	Function	ʻ0'
Tunction	'6'	Гипеціон	'6'
	·0'		ʻ0'
Data address	'1'	Data address	'1'
	·0'		ʻ0'
	ʻ0'		'0'
	'1'	Data content	'1'
Data content	'7'		'7'
Data content	'7'	Data content	'7'
	·0'		·0'
LRC Check	'7'	LRC Check	'7'
End Offeck	'1'	ENG ONECK	<u>'1'</u>
END	CR	END	CR
	LF	LIND	LF

RTU mode:

Command Message:		essage
01H	Address	01H
06H	Function	06H
01H	Data address	01H
00H	Data address	00H
17H	Data contant	17H
70H	Data content	70H
86H	CRC CHK Low	86H
22H	CRC CHK High	22H
	01H 06H 01H 00H 17H 70H 86H	01HAddress06HFunction01HData address00HData content17HData content70HCRC CHK Low

10H: write multiple registers (write multiple data to registers) (up to 20 sets of data can be written simultaneously)

Example: Set the multi-step speed,

Pr.04-00=50.00 (1388H), Pr.04-01=40.00 (0FA0H). AC drive address is 01H.

ASCII Mode

Command Message:		Response Me	ssage
STX	·	STX	·
ADR 1	·0'	ADR 1	·0'
ADR 0	'1'	ADR 0	'1'
CMD 1	'1'	CMD 1	'1'
CMD 0	·0'	CMD 0	·0'
	·0'		·0'
Starting data address	'5'	Starting data address	'5'
Starting data address	ʻ0'	Starting data address	·0'
	ʻ0'		·0'
Number of date	hhumah an af slata '0'	Number of date	ʻ0'
Number of data	ʻ0'	Number of data (count by word)	·0'
(count by word)	ʻ0'		·0'

	'2'		'2'
Number of data	' 0'		'E'
(count by byte)	'4'	LRC Check	'8'
	'1'		CR
The first slate contant	'3'	END	LF
The first data content	'8'		
	'8'		
	ʻ0'		
The second data content	'F'		
The second data content	'A'		
	ʻ0'		
I DC Chaok	' 9'		
LRC Check	'A'		
	CR		
END	LF		

RTU mode:

Command Message:		Response Message	
ADR	01H	ADR	01H
CMD	10H	CMD 1	10H
Starting data address	05H	Starting data address	05H
Starting data address	00H	Starting data address	00H
Number of data	00H	Number of data	00H
(count by word)	02H	(count by word)	02H
Number of data	04	CRC Check Low	41H
(count by byte)			
The first data content	13H	CRC Check High	04H
The first data content	88H		
The second data content	0FH		
	A0H		
CRC Check Low	' 9'		
CRC Check High	'A'		

Check sum

ASCII mode:

LRC (Longitudinal Redundancy Check) is calculated by summing up, module 256, and the values of the bytes from ADR1 to last data character then calculating the hexadecimal representation of the 2's-complement negation of the sum.

For example,

01H+03H+21H+02H+00H+02H=29H, the 2's-complement negation of 29H is **<u>D7</u>**H.

RTU mode:

CRC (Cyclical Redundancy Check) is calculated by the following steps:

Step 1:

Load a 16-bit register (called CRC register) with FFFFH.

Step 2:

Exclusive OR the first 8-bit byte of the command message with the low order byte of the 16-bit CRC register, putting the result in the CRC register.

Step 3:

Examine the LSB of CRC register.

Step 4:

If the LSB of CRC register is 0, shift the CRC register one bit to the right with MSB zero filling, then repeat step 3. If the LSB of CRC register is 1, shift the CRC register one bit to the right with MSB zero filling, Exclusive OR the CRC register with the polynomial value A001H, then repeat step 3.

Step 5:

Repeat step 3 and 4 until eight shifts have been performed. When this is done, a complete 8-bit byte will have been processed.

Step 6:

Repeat step 2 to 5 for the next 8-bit byte of the command message. Continue doing this until all bytes have been processed. The final contents of the CRC register are the CRC value. When transmitting the CRC value in the message, the upper and lower bytes of the CRC value must be swapped, i.e. the lower order byte will be transmitted first.

The following is an example of CRC generation using C language. The function takes two arguments:

Unsigned char* data \leftarrow a pointer to the message buffer

Unsigned char length \leftarrow the quantity of bytes in the message buffer

The function returns the CRC value as a type of unsigned integer.

Unsigned int crc_chk(unsigned char* data, unsigned char length)

```
{
    int j;
    unsigned int reg_crc=0Xffff;
    while (length--) {
        reg_crc ^= *data++;
        for(j=0;j<8;j++){
        if(reg_crc & 0x01){ /* LSB(b0)=1 */
            reg_crc=(reg_crc>>1) ^ 0Xa001;
        }else{
            reg_crc=reg_crc >>1;
        }
    }
    return reg_crc; // return register CRC
```

4. Address list

Content	Address	Function	
AC drive parameters	GGnnH		
			the address of Pr 4-01 is 0401H.
Command write only	2000H	Bit1~0	00B : No function
			01B : Stop
			10B:Run
			11B : JOG+RUN
		Bit3~2	Reserved
		Bit5~4	00B : No function
			01B : FWD
			10B : REV
			11B : Change direction
		Dit7C	00B : 1st accel/decel.
		Bit7~6	
			01B : 2nd accel/decel
			10B : 3rd accel/decel
			11B : 4th accel/decel
		Bit11~8	000B: master speed
			0001B: 1st Step Speed Frequency
			0010B: 2nd Step Speed Frequency
			0011B: 3rd Step Speed Frequency
			0100B: 4th Step Speed Frequency
			0101B: 5th Step Speed Frequency
			0110B: 6th Step Speed Frequency
			0111B: 7th Step Speed Frequency
			1000B: 8th Step Speed Frequency
			1001B: 9th Step Speed Frequency
			1010B: 10th Step Speed Frequency
			1011B: 11th Step Speed Frequency
			1100B: 12th Step Speed Frequency
			1101B: 13th Step Speed Frequency 1110B: 14th Step Speed Frequency
			1111B: 15th Step Speed Frequency
		Bit12	1: Enable bit06-11 function
			00B : No function
		DI(14*13	
			01B : Operated by digital keypad
			10B : Operated by Pr.00-21 setting
			11B : Change operation source
	0000	Bit15	Reserved
	2001H		/ command
	2002H	Bit0	1 : EF (external fault) on
		Bit1	1 : Reset
		Bit2	1 : B.B ON
		Bit15~3	Reserved
Status monitor read only	2100H	Error code	e: refer to Pr.06-17 to Pr.06-22
	2101H	Bit1~0	AC Drive Operation Status
			00B: Drive stops
			01B: Drive decelerating
			10B: Drive standby
			11B: Drive operating
		Bit2	1 : JOG Command
		Bit4~3	Operation Direction
			00B: FWD run

Content	Address	Function	
		01B: From REV run to FWD run	
		10B: REV run	
		11B: From FWD run to REV run	
		Bit8 1 : Master frequency controlled by communication	
		interface	
		Bit9 1 : Master frequency controlled by analog signal	
		Bit10 1 : Operation command controlled by	
		communication interface	
		Bit11 1 : Parameter locked	
		Bit12 1 : Enable to copy parameters from keypad	
		Bit15~13 Reserved	
	2102H	Frequency command (F)	
		Output frequency (H)	
		Output current (AXX.X.X)	
		DC-BUS Voltage (UXXX.X)	
	2106H	Output voltage (EXXX.X)	
	2107H	Current step number of Multi-Step Speed Operation	
	2108H 2109H	Reserved Counter value	
	2109H 210AH		
		Power Factor Angle (XXX.X)	
	210BH	Output Torque (%)	
		Actual motor speed (rpm)	
	210DH	Number of PG feed back pulses	
	210EH	Number of PG2 pulse commands	
	210FH	Power output (X.XXX)	
	2116H	Multi-function display (Pr.00-04)	
	211BH	Max. operation frequency (Pr.01-00) or Max. user defined value (Pr.00-26)	
	2201H	Display counter value (c)	
		Actual output frequency (H)	
	2203H	DC-BUS voltage (u)	
	2204H	Output voltage	
	2205H	Power angle	
	2206H	Display actual motor speed kW of U, V, W (P)	
	2207H	Display motor speed in rpm estimated by the drive or encoder feedback	
	2208H	Display positive/negative output torque in %, estimated by the	
	000011	drive (t0.0: positive torque, -0.0: negative torque)	
	2209H	Display PG feedback (as Pr. 00-04 NOTE 1)	
	220AH	PID feedback value after enabling PID function in % (b)	
	220BH	Display signal of AVI analog input terminal, 0-10V corresponds to 0-100% (1.) (as Pr. 00-04 NOTE 2)	
	220CH	Display signal of ACI analog input terminal, 4-V20mA/0-10V	
		corresponds to 0-100% (2.) (as Pr. 00-04 NOTE 2)	
	220DH	Display signal of AUI analog input terminal, -10V~10V	
	000511	corresponds to -100~100% (3.) (as Pr. 00-04 NOTE 2)	
	220EH		
	220FH		
	2210H	The status of digital input (ON/OFF), refer to Pr.02-12 (as Pr. 00-04 NOTE 3)	
	2211H	The status of digital output (ON/OFF), refer to Pr.02-18 (as Pr. 00-04 NOTE 4)	
	2212H	The multi-step speed that is executing (S)	

Content	Address	Function
	2213H	The corresponding CPU pin status of digital input (d.) (as Pr. 00-04 NOTE 3)
	2214H	The corresponding CPU pin status of digital output (O.) (as Pr. 00-04 NOTE 4)
	2215H	Number of actual motor revolution (PG1 of PG card) (P.) it will start from 9 when the actual operation direction is changed or keypad display at stop is 0. Max. is 65535
	2216H	Pulse input frequency (PG2 of PG card) (S.)
	2217H	Pulse input position (PG card PG2), maximum setting is 65535.
	2218H	Position command tracing error
	2219H	Display times of counter overload (0.00~100.00%)
	221AH	GFF in % (G.)
	221BH	DCbus voltage ripples (Unit: Vdc) (r.)
	221CH	PLC register D1043 data (C)
	221DH	Pole of Permanent Magnet Motor
	221EH	User page displays the value in physical measure
	221FH	Output Value of Pr.00-05
	2220H	Number of motor turns when drive operates (keeping when drive stops, and reset to zero when operation)
	2221H	Operation position of motor (keeping when drive stops, and reset to zero when operation)
	2222H	Fan speed of the drive (%)
	2223H	Control mode of the drive 0: speed mode 1: torque mode
	2224H	Carrier frequency of the drive
Content	Address	Function
AC drive Parameters	GGnnH	GG means parameter group, nn means parameter number, for example, the address of Pr 4-01 is 0401H.
	2225H	Carrier frequency of the drive
	2226H	Drive status
	2227H	Drive's estimated output torque(positive or negative direction)
	2228H	Torque command
	2229H	KWH display
	222AH	PG2 pulse input in Low Word
	222BH	PG2 pulse input in High Word
	222CH	Motor actual position in Low Word
	222DH	Motor actual position in High Word
	222EH	PID reference
	222FH	PID offset
	2230H	PID output frequency

5. Exception response:

The AC motor drive is expected to return a normal response after receiving command messages from the master device. The following depicts the conditions when no normal response is replied to the master device.

The AC motor drive does not receive the messages due to a communication error; thus, the AC motor drive has no response. The master device will eventually process a timeout condition. The AC motor drive receives the messages without a communication error, but cannot handle them. An exception response will be returned to the master device and an error message "CExx" will be displayed on the keypad of AC motor drive. The xx of "CExx" is a decimal code equal to the exception code that is described below.

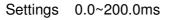
In the exception response, the most significant bit of the original command code is set to 1, and an exception code which explains the condition that caused the exception is returned.

Chapter 12 Description of Parameter Settings

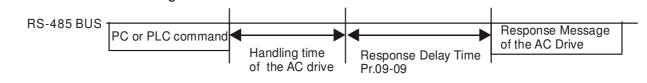
Example:

ASCII mo	de:	RTU mode:		
STX	(_) _	Address	01H	
Address	·0'	Function	86H	
Address	'1'	Exception code	02H	
Function	'8'	CRC CHK Low	C3H	
Function	·6'	CRC CHK High	A1H	
Exception code	·0'			
Exception code	'2'			
LRC CHK	'7'			
	'7'			
END	CR			
END	LF			

The explanation of exception codes:


Exception	Evalenation		
code	Explanation		
4	Illegal data value:		
I	The data value received in the command message is not available for the AC drive.		
	Illegal data address:		
2	The data address received in the command message is not available for the AC		
	motor drive.		
3	Parameters are locked: parameters can't be changed		
4	Parameters can't be changed during operation		
10	Communication time-out.		

× 89-85


Reserved

✓ ⑦ 9 - ⑦ 9 Response Delay Time

Factory Setting: 2.0

This parameter is the response delay time after AC drive receives communication command as shown in the following.

✓ 39 - 18 Main Frequency of the Communication

Factory Setting: 60.00

Settings 0.00~600.00Hz

When Pr.00-20 is set to 1 (RS485 communication). The AC motor drive will save the last frequency command into Pr.09-10 when abnormal turn-off or momentary power loss. After reboots the power, it will regards the frequency set in Pr.09-10 if no new frequency command is inputted.

N	89-11	Block Transfer 1
N	09-12	Block Transfer 2

Factory Setting: 0

Settings 0~65535

There is a group of block transfer parameter available in the AC motor drive (Pr.09-11 to Pr.09-26). Through communication code 03H, user can use them (Pr.09-11 to Pr.09-26) to save those parameters that you want to read.

09-27 ~

ק - ף

Reserved

39-30 Communication Decoding Method

Factory Setting: 1

Settings 0: Decoding Method 1

1: Decoding Method 2

		Decoding Method 1	Decoding Method 2	
Source of	Digital Keypad	Digital keypad controls the drive action regardless decoding method 1 or 2.		
Operation External External terminal controls the drive action		on regardless decoding method 1 or 2.		
Control	RS-485	Refer to address: 2000h~20FFh	Refer to address: 6000h ~ 60FFh	
	CANopen	Refer to index: 2020-01h~2020-FFh	Refer to index:2060-01h ~ 2060-FFh	
	Communicatior Card	Refer to address: 2000h ~ 20FFh	Refer to address: 6000h ~ 60FFh	
	PLC	PLC commands the drive action regardless decoding method 1 or 2.		

89-3

Internal Communication Protocol

Settings 0: Modbus 485

-1: Internal Communication Slave 1

- -2: Internal Communication Slave 2
- -3: Internal Communication Slave 3
- -4: Internal Communication Slave 4
- -5: Internal Communication Slave 5
- -6: Internal Communication Slave 6
- -7: Internal Communication Slave 7
- -8: Internal Communication Slave 8
- -9: Reserve
- -10: Internal Communication Master
- -11: Reserve
- -12: Internal PLC Control
- When it is defined as internal communication, see CH16-10 for information on Main Control Terminal of Internal Communication.
- When it is defined as internal PLC control, see CH16-12 for Remote IO control application (by using MODRW)

39-32 Reserved

39-33 PLC command force to 0

Factory Setting: 0

Factory Setting: 0

Settings 0~65535

bit	Explanation
bit0	Before PLC scan, set up PLC target frequency=0
bit1	Before PLC scan, set up the PLC target torque=0
bit2	Before PLC scan, set up the speed limit of torque control mode=0

89-34 Reserved

39-35 PLC Address

Factory Setting: 2

Factory Setting: 0

Settings 1~254

CANopen Slave Address

Settings 0: Disable 1~127

09-37	CANoper	Speed	
			Factory Setting: 0
	Settings	0: 1M	
		1: 500k	
		2: 250k	
		3: 125k	
		4: 100k (Delta only)	
		5: 50k	
09-38	Reserved		
09-39	CANopor	Warning Record	
05-55	CANoper	r warning necord	Eastery Satting 0
	Catting		Factory Setting: 0
	Settings	bit 0: CANopen Guarding Time out	
		bit 1: CANopen Heartbeat Time out	
		bit 2: CANopen SYNC Time out	
		bit 3: CANopen SDO Time out	
		bit 4: CANopen SDO buffer overflow	
		bit 5: Can Bus Off	
		bit 6: Error protocol of CANOPEN	
		bit 8: The setting values of CANopen indexes a	
		bit 9: The setting value of CANopen address is	
		bit10: The checksum value of CANopen indexe	es is fail
<u>89-48</u>	CANoper	Decoding Method	
			Factory Setting: 1
	Settings	0: Delta defined decoding method	
		1: CANopen Standard DS402 protocol	
89-41	CANoper	i Status	
			Factory Setting: 0
	Settings	0: Node Reset State	
		1: Com Reset State	
		2: Boot up State	
		3: Pre Operation State	
		4: Operation State	
	_	5: Stop State	
09-42	CANoper	Control Status	
			Factory Setting: Read Only
	Settings	0: Not ready for use state	
		1: Inhibit start state	
		2: Ready to switch on state	
		3: Switched on state	

	4: Enable operation state	
	7: Quick stop active state	
	13: Err reaction activation state	
	14: Error state	
- ¥ 3 Reset C	ANopen Index	
		Factory Setting: 65535
Setting	: bit0: reset address 20XX to 0	
	bit1: reset address 264X to 0	
	bit2: reset address 26AX to 0	
	bit3: reset address 60XX to 0	
- 44 Reserve	ed	
- 45 CANop	en Master Function	
		Factory Setting: 0
Settings	o 0: Disable	
	1: Enable	
CANop	en Master Address	
		Factory Setting: 100
Settings	s 1~127	
47		
Reserve	ed	
59		
bi Identific	ations for Communication Card	
		Factory Setting: ##
Settings		
	1: DeviceNet Slave	
	2: Profibus-DP Slave	
	3: CANopen Slave/Master	
	4: Modbus-TCP Slave	
	5: EtherNet/IP Slave	
	6~8: Reserved	
- 🔓 🕴 Firmwa	re Version of Communication Card	
		Factory Setting: ##
Setting	Read only	
- 52 Product	Code	
		Factory Setting: ##
Settings	Read only	

DeviceNet: As it connects to different kind of motor drive, it will have different product code.

Profibus: ID number of a communication card. Each Profibus selling in the market must apply for an ID number at the Profibus International to be a unique product.

89-	63 F	ault Cod	e	
				Factory Setting: ##
	S	ettings	Read only	
E F	or more	informa	tion about Fault codes, refer to Pr. 06-17~06-22 ar	nd Chapter 14.
09-	64			
~		eserved		
89-	69			
89-	7 <u>8</u> A	ddress c	f Communication Card	
				Factory Setting: 1
	S	ettings	DeviceNet: 0-63	
			Profibus-DP: 1-125	
89-	7 S	etting of	DeviceNet Speed (according to Pr.09-72)	
				Factory Setting: 2
	S	ettings	Standard DeviceNet:	
			0: 125Kbps	
			1: 250Kbps	
			2: 500Kbps	
			Non standard DeviceNet: (Delta only)	
			0: 10Kbps	
			1: 20Kbps	
			2: 50Kbps	
			3: 100Kbps	
			4: 125Kbps	
			5: 250Kbps	
			6: 500Kbps	
			7: 800Kbps	
			8: 1Mbps	
89-	<u> 75</u> o	ther Set	ting of DeviceNet Speed	
				Factory Setting: 0
	S	ettings	0: Disable	
	_		1: Enable	
🕮 lt	needs t	o use wi	th Pr.09-71.	
🖾 S	etting 0	: the bau	d rate can only be set to 0, 1, 2 or 3.	
🕮 S	etting 1	: setting	of DeviceNet baud rate can be the same as CANo	pen (setting 0-8).
89-	73 R	eserved		
89-	R	eserved		

19 - 15 IP Configuration of the Communication Card Factory Setting: 0 Settings 0: Static IP 1: DynamicIP (DHCP) Setting 0: it needs to set IP address manually. Setting 1: IP address will be auto set by host controller. 20 - IP Address 1 of the Communication Card 20 IP Address 2 of the Communication Card IP Address 3 of the Communication Card 89-IP Address 4 of the Communication Card Factory Setting: 0 Settings 0~255 Pr.09-76~09-79 needs to use with communication card. Address Mask 1 of the Communication Card Address Mask 2 of the Communication Card Address Mask 3 of the Communication Card Address Mask 4 of the Communication Card Factory Setting: 0 Settings 0~255 **Getway Address 1 of the Communication Card** Getway Address 2 of the Communication Card Getway Address 3 of the Communication Card Getway Address 4 of the Communication Card Factory Setting: 0 Settings 0~255 Password for Communication Card (Low word) Password for Communication Card (High word) Factory Setting: 0

Settings 0~255

89-98 **Reset Communication Card**

Factory Setting: 0

Settings 0: Disable

1: Reset, return to factory setting

89-91	Additiona	I Setting for Communication Card
		Factory Setting: 1
	Settings	Bit 0: Enable IP Filter
		Bit 1: Internet parameters enable(1bit)
		When IP address is set up, this bit need to be enabled to write down the
		parameters. This bit will change to disable when it finishes saving the
		update of internet parameters.
		Bit 2: Login password enable(1bit)
		Enable login password (1bit). This bit will be changed to disable when it
		finishes saving the update of internet parameters.
88-85	Status of	Communication Card
		Factory Setting: 0
	Settings	Bit 0: password enable
		When the communication card is set with password, this bit is enabled.
		When the password is clear, this bit is disabled.

10 PID Control

✓ This parameter can be set during operation.

In this parameter group, ASR is the abbreviation for Adjust Speed Regulator and PG is the abbreviation for Pulse Generator.

II - II I Encoder Type Selection	
	Factory Setting: 0

Settings 0: Disable

1: ABZ

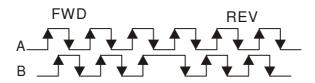
2: ABZ (Delta encoder for Delta Servo motor)

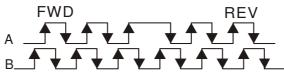
- 3: Resolver
- 4: ABZ/UVW
- 5. MI8 single phase pulse input
- For PG extension card EMC-PG01L and EMC-PG01O, set Pr.10-00=1. These extension cards are for IM motor only.
- For EMC-PG01U, when setting Pr.10-00=2 (Delta encoder) make sure SW1 is switched to D (Delta type). If the setting for Pr.10-00, 10-01 and 10-02 has changed, please turn off the drive's power and reboots to prevent PM motor stall. This mode is suggested for PM motor.
- For EMC-PG01R, when setting Pr.10-00=3 please also input 1024 ppr.
- For EMC-PG01U, when setting Pr.10-00=4 (Standard ABZ/UVW Encoder) make sure SW1 is switched to S (Standard Type). This mode is applicable for both IM and PM motor.
- When using MI8 single phase pulse input as frequency command, the Pr10-02 must set "5: Single-phase input". This only can be use with VF, VFPG, SVC, IM FOC Sensor-less, IM TQC Sensor-less control mode.
- When using MI8 single phase pulse as speed feedback, the drive must at VFPG control mode only.

H - **H** Encoder Pulse

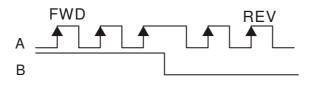
Factory Setting: 600

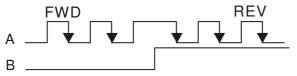
Settings 1~20000


- A Pulse Generator (PG) or encoder is used as a sensor that provides a feedback signal of the motor speed. This parameter defines the number of pulses for each cycle of the PG control, i.e. the number of pulses for a cycle of A phase/B phase.
- This setting is also the encoder resolution. With the higher resolution, the speed control will be more accurate.
- An incorrect input to Pr.10-00 may result drive over current, motor stall, PM motor magnetic pole origin detection error. If Pr.10-00 setting has changed, please trace the magnetic pole again, set Pr.05-00=4 (static test for PM motor magnetic pole and PG origin again).


Factory Setting: 0

Settings 0: Disable


1: Phase A leads in a forward run command and phase B leads in a reverse run command

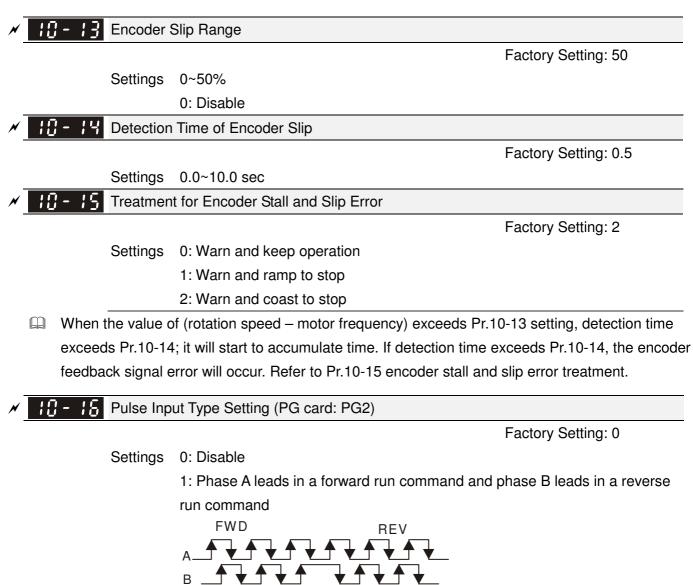

2: Phase B leads in a forward run command and phase A leads in a reverse run command

3: Phase A is a pulse input and phase B is a direction input. (L =reverse direction, H=forward direction)

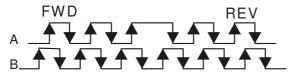
4: Phase A is a pulse input and phase B is a direction input. (L=forward direction, H=reverse direction)

5: Single-phase input

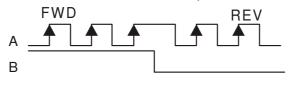
Output Setting for Frequency Division (denominator)

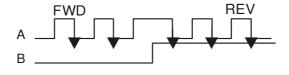

Factory Setting: 1

Settings 1~255

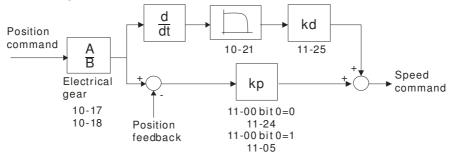

This parameter is used to set the denominator for frequency division (for PG card EMC-PG01L or EMC-PG01O). For example, when it is set to 2 with feedback 1024ppr, PG output will be 1024/2=512ppr.

*	Image: Control of the sector o
×	10 - 05 Electrical Gear at Motor Side B1
*	IC - C 5 Electrical Gear at Load Side A2




2: Phase B leads in a forward run command and phase A leads in a reverse run command

3: Phase A is a pulse input and phase B is a direction input. (L=reverse direction, H=forward direction)



4: Phase A is a pulse input and phase B is a direction input. (L=forward direction, H=reverse direction)

Chapter 12 Description of Parameter Settings

- When this setting is different from Pr.10-02 setting and the source of the frequency command is pulse input (Pr.00-20 is set to 4 or 5), it may have 4 times frequency problem.
 Example: Assume that Pr.10-01=1024, Pr.10-02=1, Pr.10-16=3, Pr.00-20=5, MI=37 and ON, it needs 4096 pulses to rotate the motor a revolution.
- Assume that Pr.10-01=1024, Pr.10-02=1, Pr.10-16=1, Pr.00-20=5, MI=37 and ON, it needs 1024 pulses to rotate the motor a revolution.
- Position control diagram

 III - III
 Electrical Gear A

 III - III
 Electrical Gear B

Settings

Factory Setting: 100

Rotation speed = pulse frequency/encoder pulse (Pr.10-01) * PG Electrical Gear A / PG Electrical Gear B.

✓ 10 - 19 Positioning for Encoder Position

Factory Setting: 0

Settings 0~65535 pulse

1~65535

Description of the internal position in the position mode.

It needs to be used with multi-function input terminal setting =35 (enable position control).

When it is set to 0, it is the Z-phase position of encoder.

Range for Encoder Position Attained

Factory Setting: 10

Settings 0~65535 pulse

In This parameter determines the range for internal positioning position attained.

For example:

When the position is set by Pr.10-19 Positioning for Encoder Position and Pr.10-20 is set to 1000, it reaches the position if the position is within 990-1010 after finishing the positioning.

Factory Setting: 0.100

Settings 0.000~65.535 sec

When Pr.00-20 is set to 5 and multi-function input terminal is set to 37 (OFF), the pulse command will be regarded as frequency command. This parameter can be used to suppress the jump of speed command.

10-22 Sp

Speed Mode (PG2)

Factory Setting: 0

Settings 0: Electronic Frequency

1: Mechanical Frequency (base on pole pair)

Reserved

FOC&TQC Function Control

Factory Setting: 0

Settings 0~65535

Bit#	Description	
0	ASR control at sensorless torque 0:use PI as ASR; 1:use P as ASR	
1~10	NA	
11	Activate DC braking when executing zero torque command 0:ON, 1:OFF	
12	FOC Sensorless mode, cross zero means speed goes from negative to positive or positive to negative (forward to reverse direction or reverse to forward direction). 0: determine by stator frequency, 1: determine by speed command	
13	NA	
14	NA	
15	Direction control at open loop status 0: Switch ON direction control 1: Switch OFF direction control	

Except Bit=0 set to be used in closed loop, other Bit settings are for open loop.

FOC Bandwidth of Speed Observer

Factory Setting:40.0

Settings 20.0~100.0Hz

Setting speed observer to higher bandwidth could shorten the speed response time but will create greater noise interference during the speed observation.

10 - 25 FOC Minimum Stator Frequency

Factory Setting:2.0

Settings 0.0~10.0%fN

This parameter is used to set the minimum level of stator frequency at operation status. This setting ensures the stability and accuracy of observer and avoid interferences from voltage, current and motor parameter.

10 - 2 7 FOC Low-pass Filter Time Constant

Factory Setting:50

Settings 1~1000ms

This parameter sets the low-pass filter time constant of a flux observer at start up. If the motor can not be activated during the high-speed operation, please lower the setting in this parameter.

FOC Gain of Excitation Current Rise Time

Factory Setting:100

Settings 33~100% Tr (Tr: rotor time constant)

This parameter sets the drive's excitation current rise time when activates at senslorless torque mode. When the drive's activation time is too long at torque mode, please adjust this parameter to a shorter time constant.

Top Limit of Frequency Deviation

Factory Setting: 20.00

Settings 0.00~100.00Hz

Pr.10-29 is for setting the maximum of frequency deviation.

- When this parameter is set too large, resulting in abnormal PG feedback malfunction.
- If customer application require a large Pr10-29 value, resulting in larger output slip, then it is tends to be PG Error (PGF3, PGF4) in such a case. To prevent PGF3 and PGF4 error, set Pr10-10 Encoder Stall Level and to 10-13 Encoder Slip Range to be 0 "No function" (means removing PGF3 and PGF4 detection). But this must only when the PG card connection and application are correct, or prompt PG protection function will be disable. Too large Pr10-29 setting is not a common set.

Resolver Pole Pair

Factory Setting: 1

Settings 1~50

To use Pr.10-30 function, user must set Pr.10-00=3(Resolver Encoder) first.

10-33 Reserved	
10 - 35 ARM (Kp)	
	Factory Setting: 1

Settings 0~3

: : - 35 ARM (Ki)

Factory Setting: 1

Settings 0~3

Factory Setting: 5.00

Settings 0.00~600.00Hz

H Sensorless Observer Low-pass Filter Gain

Factory Setting: 1.00

Settings 0.00~655.35Hz

PM Sensorless Control Word

Factory Setting: 0000

Settings	0000~FFFFh
----------	------------

Bit No.	Function	Description
0	Reserved	
1	Reserved	
2	Choose a control mode to start.	0 :Start by IF mode 1: Start by VF mode
3	Choose a mode to stop.	0 :Stop by IF mode 1 :Stop by VF mode
4	Reserved	
5		0 : When lower than Pr10-40, coast to stop If lower than Pr10-40, decelerate to stop by VF mode.
6	Reserved	
7	Reserved	

II - 39 Frequency Point when switch from I/F mode to PM Sensorless mode

Factory Setting: 20.00

Settings 0.00~600.00Hz

III - YII Frequency Point when switch from PM Sensorless Observation mode to I/F mode

Factory Setting: 20.00

Settings 0.00~600.00Hz

- 4 | I/F mode, low pass-filter time

Factory Setting: 0.2

Settings 0.0~6.0 sec

1 - 4 - Initial Angle Detection Time

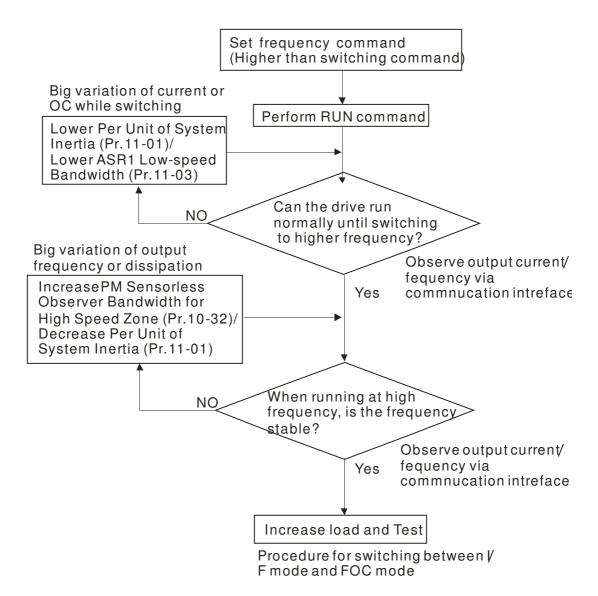
Factory Setting: 5

Settings 0~20 ms

PM Sensorless Adjustment Procedure

1. When using high frequency standstill VFD parameter tuning, use VFD software to monitor adjustment procedure. To download VFD Software go to:

http://www.delta.com.tw/product/em/download/download_main.asp?act=3&pid=1&cid=1&tpid=3


2. Testing PM High Frequency Standstill VFD (calculation of Rs, Ld, Lg)

Procedures:

- A. Set control mode as VF mode (Pr00-10=0, Pr00-11=0
- B. Output Frequency of Motor 1 (Pr01-01)
- C. Output Voltage of Motor 1 (Pr01-02)
- D. Induction Motor and Permanent Magnet Motor Selection (Pr05-33=1)
- E. Full-load current of Permanent Magnet Motor(Pr05-34
- F. Set Moto Auto Tuning Pr 05-00 =13; High frequency and blocked rotor test for PM motor. Then run the drive.

3. Set control mode as PM sensorless Mode (Parameters 00-10=0, 00-11=6)

- 4. Set VFD Parameters
 - Pr05-35 Rated Power of Permanent Magnet Motor
 - Pr05-36 Rated speed of Permanent Magnet Motor
 - Pr05-37 Pole number of Permanent Magnet Motor
 - Pr05-38 Inertia of Permanent Magnet Motor
- 5. Set ASR Parameters
 - Pr11-00 bit0=1: Auto tuning for ASR and APR
 - ✓ Pr11-02 : ASR1/ASR2 Switch Frequency, it is recommended to set Pr10-39 higher than 10Hz.
 - ✓ Pr11-03: ASR1 Low-speed Bandwidth and Pr11-03, ASR2 High-speed Bandwidth. Do not set Low-speed Bandwidth too high to avoid dissipation of the estimator.
- 6. Set speed estimator and speed control's parameter.
 - Pr10-39 Frequency when switch from I/F Mode to PM sensorless mode.
 - Pr10-32 PM Sensorless Observer Bandwidth for High Speed Zone
- 7. Zero-load test
 - ☑ Refer to switch point procedure of I/F and FOC as shown in the image below.

H - H - PG Card Version

Factory Setting:0

Settings 0~655.35

Reserved

10 - 49 Zero Voltage Time while Start up

Factory Setting: 0.2 sec.

Settings 0~65.535 sec.

- When the motor is in static status at the startup, the accuracy to estimate angles will be increased. Inorder to make the motor in "static status", the drive 3 phase U, V, W output 0V to motor to reach this goal. The Pr.10-49 setting time is the length of time when 3-phase output 0V.
- It is possible that even when this parameter is being applied but the motor at the installation site cannot go in to the "static status" caused by the inertia or by any external force. So, if the motor doesn't go into a completer "static status" in 0.2 sec., increase appropriately this setting value.
- III This parameter is functional only when the setting of Pr.07-12 Speed Search during Startup \neq 0.

10 - 50 Reverse Angle Limit (Electrical angle)

Factory Setting: 10.00

Settings 0~30.00 degree

- While forward run is staring, if there is sudden reverse run and the reverse angle is bigger than the Pr.10-50 setting, then, drive will has a ScRv error.
- Description This parameter is valid only when Pr.07-28 Enable textile machines's function.

Factory Setting: 500Hz

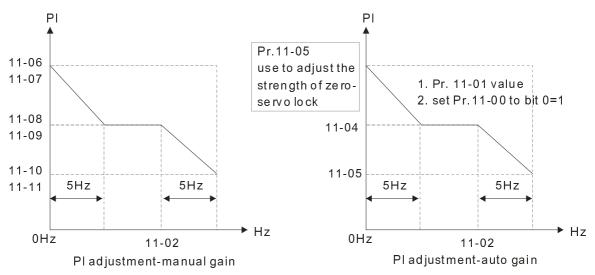
Settings 0~2000Hz

I This parameter is a High Frequency Injection Command when the motor drive is under IPM HFI sersor-less control mode and it doesn't often need to be adjusted. But, if a motor's rated frequency (i.e. 400Hz)

19 - 52 Injection Magnitude

Factory Setting: 15/30V

Settings 0.0~200.0V


- I This parameter is the High Frequency Injection Command's amplitude when the motor drive is under IPM HFI sensor-less control mode.
- By increase the setting value of this parameter, the accuracy of angles detected will also be increased. However, if the setting value is too big, it will cause a louder electromagnetic noise.

11 Advanced Parameters

✓ This parameter can be set during operation.

In this parameter group, ASR is the abbreviation for Adjust Speed Regulator

	· · · ·
II- III System Control	
	Factory Setting: 0
Settings 0: Auto tuning for ASR and	APR
1: Inertia estimate (only in	FOCPG mode)
2: Zero servo	
3: Dead time compensation	n closed
7: Selection to save or not	save the frequency
8: Maximum speed of point	t to point position control
Bit 0=0: Pr.11-06 to 11-11 will be valid and Pr.	.11-03~11-05 are invalid.
Bit 0=1: system will generate an ASR setting.	At this moment, Pr.11-06~11-11 will be invalid and
Pr.11-03~11-05 are valid.	
Bit 1=0: no function.	
Bit 1=1: Inertia estimate function is enabled.	(Bit 1 setting would not activate the estimation
process, please set Pr.05-00=12 to begin FO	C/TQC Sensorless inertia estimating)
Bit 2=0: no function.	
Bit 2=1: when frequency command is less that	an Fmin (Pr.01-07), it will use zero servo function.
NO	
Estimate inertia value —	
YES	
↓	
Setting auto gain adjustment	
Pr.11-00=1	Adjust gain value by manual Pr.11-00=0 (factory setting)
Adjust Pr.11-03, 11-04 and 11-05	
separately by speed response	Adjust Pr.11-06, 11-07, 11-08, 11-09, 11-10 and 11-11
Adjust by requirement	separately by speed response
Pr.11-13 (PDFF function)	Adjust by requirement
	Pr.11-14 (for general, no need to adjust)
Adjust by requirement	
Pr.11-02 (ASR1/ASR2 switch frequency)	▲
Adjust by requirement Pr.11-17~20 (torque limit)	
	•

Bit 7=1: frequency is not saved before power turns off. When power turns ON again, the display frequency will be 0.00Hz.

Bit 8=0: maximum speed for point-to-point position control is control by the setting of Pr.11-43. Bit 8=1: maximum speed for point-to-point position control is control by the multi-step speed setting of the external terminal device. When multi-step speed of the external device is set to 0, the maximum operation speed will bet the setting of Pr.11-43.

Factory Setting: 400

Settings 1~65535 (256=1PU)

To get the system inertia from Pr.11-01, user needs to set Pr.11-00 to bit1=1 and execute continuous forward/reverse running.

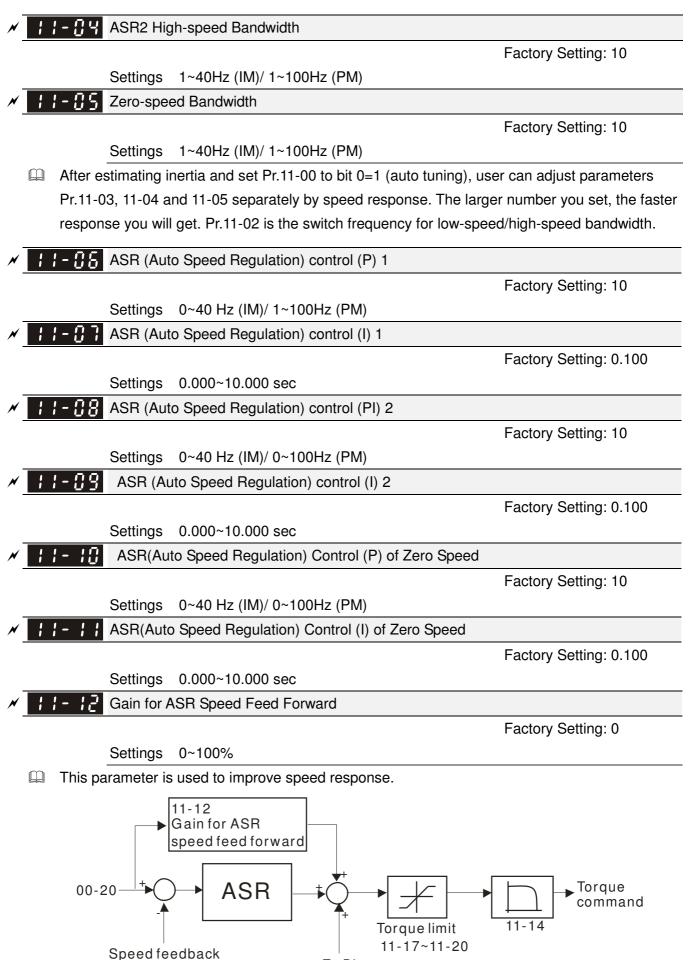
Unit of induction motor system inertia is 0.001kg-m^2:

Power	Setting	Power	Setting	Power	Setting
1HP	2.3	20HP	95.3	100HP	1056.5
2HP	4.3	25HP	142.8	125HP	1275.3
3HP	8.3	30HP	176.5	150HP	1900.0
5HP	14.8	40HP	202.5	175HP	2150.0
7.5HP	26.0	50HP	355.5	215HP	2800.0
10HP	35.8	60HP	410.8	300HP	3550.0
15HP	74.3	75HP	494.8		

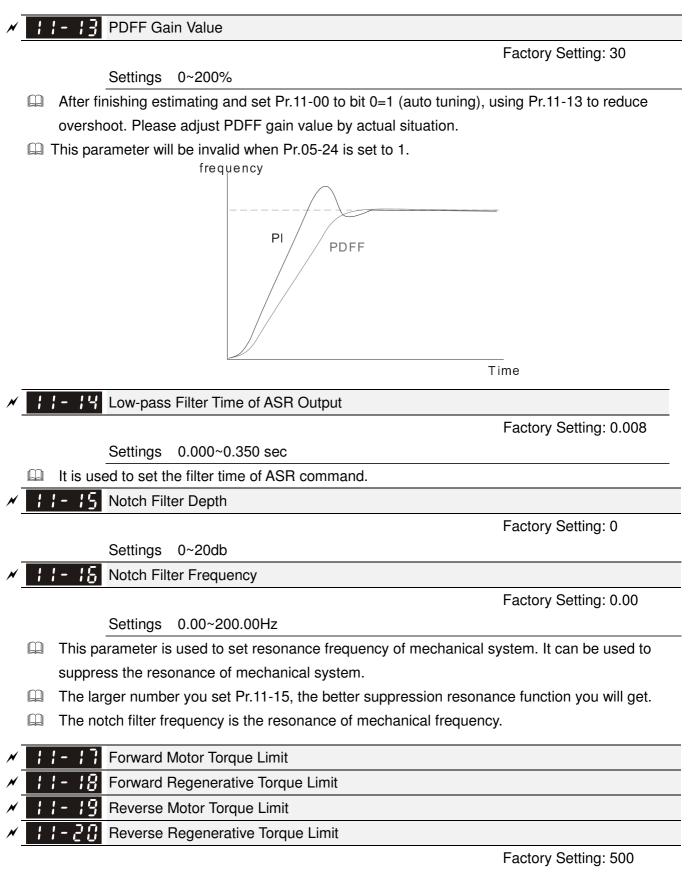
The base value for induction motor system inertia is set by Pr.05-38 and the unit is in 0.001kg-m^2.

ASR1/ASR2 Switch Frequency

Factory Setting: 7.00


Settings 5.00~600.00Hz

I I - **I A**SR1 Low-speed Bandwidth


Factory Setting: 10

Settings 1~40Hz (IM)/ 1~100Hz (PM)

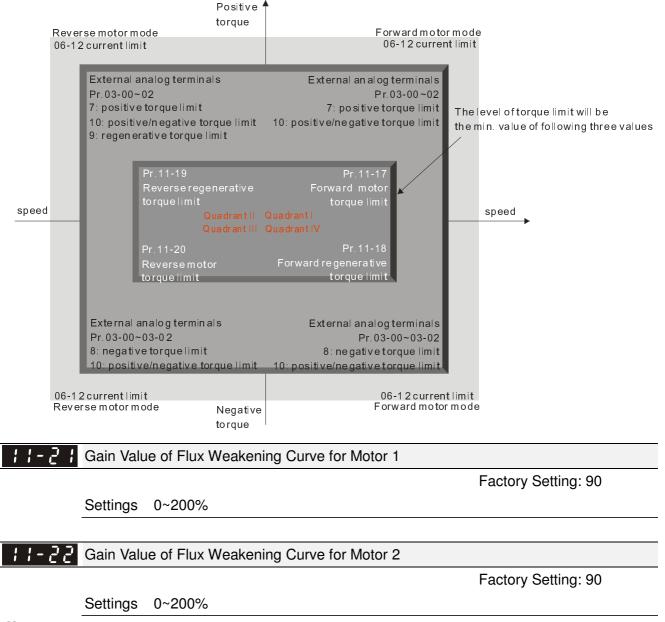
Chapter 12 Description of Parameter Settings

Settings 0~500%

- The motor drive rated current is 100%. The settings for Pr.11-17 to Pr.11-20 will compare with Pr.03-00=7, 8, 9, 10. The minimum of the comparison result will be torque limit. Please refer the chart as below.
- **Calculation equation for motor rated torque:**

$$T(N.M) = \frac{P(W)}{\omega(rad/s)}; P(W) \text{ value} = Pr.05-02;$$

$$\frac{RPM \times 2\pi}{60} = rad/s$$


Motor rated torque=

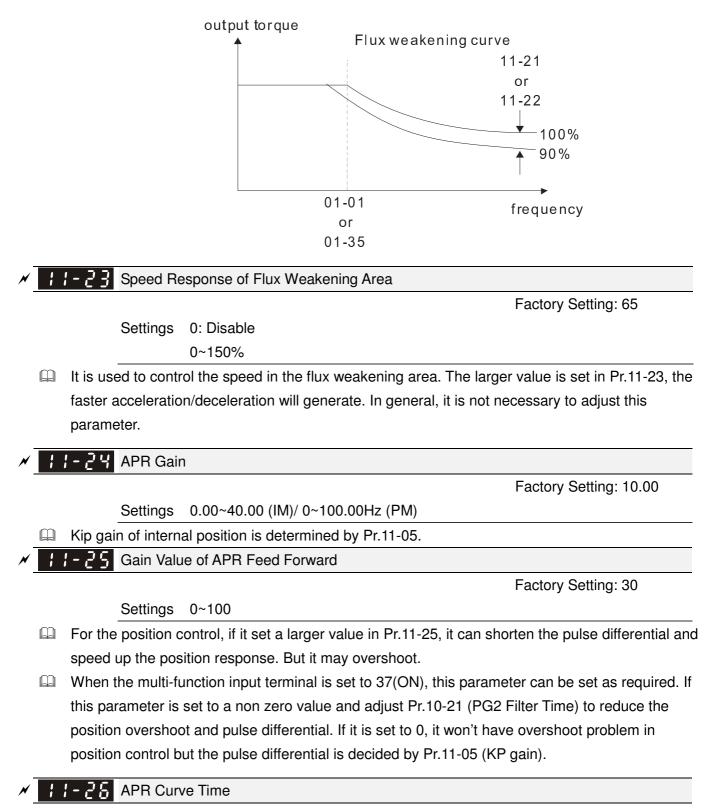
 ω (rad/s) value= Pr.05-03 \circ

The drive rated current=100%. The setting value of parameters Pr11-17~Pr11-20 will compare to Pr03-00=7, 8, 9 and 10. The smallest value will become the torque limit value. Please refer to the torque limit diagram.

- TQCPG and TQC Sensor-less control mode The drive rated current=100%. The setting value of parameters Pr11-17~Pr11-20 will compare to Pr06-12. The smallest value will become the torque limit value.
- III VF, VFPG and SVC control mode

The Pr11-17~Pr11-20 are output current limit and its 100%=drive rated current. The smallest value between the Pr11-17~Pr11-20 and Pr06-12 will become output current limit. If the output current has reached this limit during acceleration or normal running, drive will enable "Over current Stall" function. Until the output current drops to limit value, drive can run normally.

Pr.11-21 and 11-22 are used to adjust the output voltage of flux weakening curve.

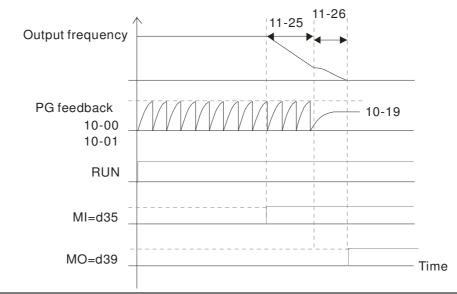

Given For the spindle application, the adjustment method is

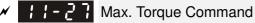
1. It is used to adjust the output voltage when exceeding rated frequency.

2. Monitor the output voltage

3. Adjust Pr.11-21 (motor 1) or Pr.11-22 (motor 2) setting to make the output voltage reach motor rated voltage.

4. The larger number it is set, the larger output voltage you will get.




Settings 0.00~655.35 sec

Factory Setting: 3.00

Chapter 12 Description of Parameter Settings

It is valid when the multi-function input terminal is set to 35(ON). The larger it is set, the longer the position time will be.

Factory Setting: 100

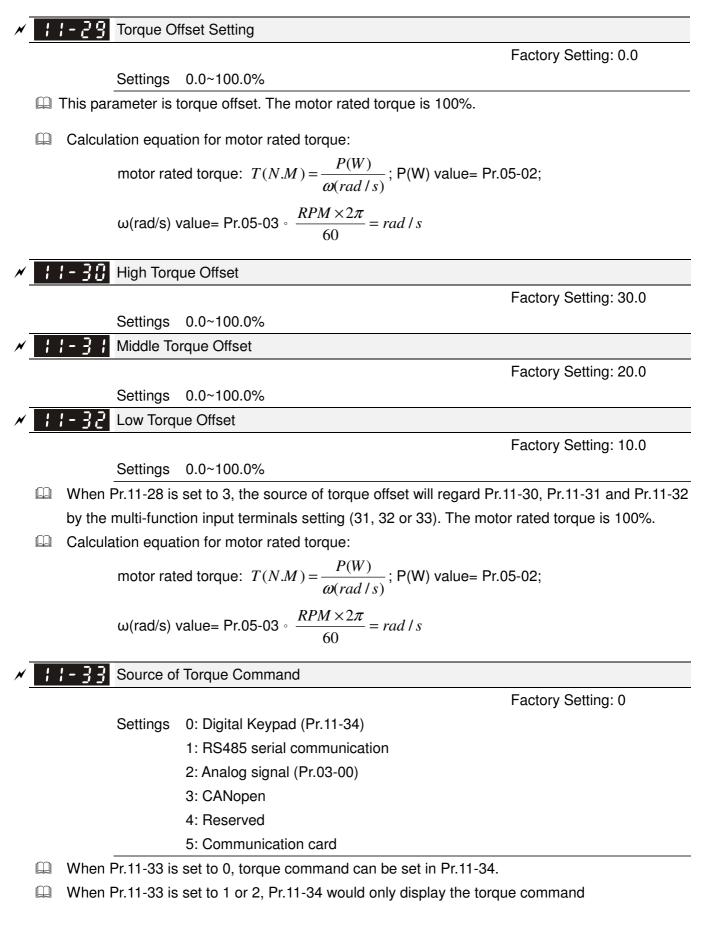
Settings 0~500%

Description: The upper limit of torque command is 100%.

Calculation equation for motor rated torque:

motor rated torque: $T(N.M) = \frac{P(W)}{\omega(rad/s)}$; P(W) value= Pr.05-02;

$$\omega$$
(rad/s) value= Pr.05-03 $\circ \frac{RPM \times 2\pi}{60} = rad / s$


; ; - ? 8 Source of Torque Offset

Factory Setting: 0

- Settings 0: Disable
 - 1: Analog input (Pr.03-00)
 - 2: Torque offset setting (Pr.11-29)
 - 3: Control by external terminal (by Pr.11-30 to Pr.11-32)
- Description: This parameter is the source of torque offset.
- When it is set to 3, source of torque offset would determine Pr.11-30 to Pr.11-32 by
- When it is set to 3, the source of torque offset will regard Pr.11-30~11-32 by the multi-function input terminals (MI) setting (31, 32 or 33).

N.O. switch status: ON= contact closed, OFF= contact open

Pr. 11-32	Pr. 11-31	Pr. 11-30	
MI=33(High)	MI=32(Mid)	MI=31(Low)	Torque Offset
OFF	OFF	OFF	None
OFF	OFF	ON	11-30
OFF	ON	OFF	11-31
OFF	ON	ON	11-30+11-31
ON	OFF	OFF	11-32
ON	OFF	ON	11-30+11-32
ON	ON	OFF	11-31+11-32
ON	ON	ON	11-30+11-31+11-32

✓ Image: Sector production ✓ Factory Setting: 0.0

Settings -100.0~100.0% (Pr.11-27=100%)

- This parameter is for the torque command. When Pr.11-27 is set to 250% and Pr.11-34 is set to 100%, actual torque command=250X100%=250% motor rated torque.
- In the drive will save the setting to the record before power turns off.

11-35 Low-pass Filter Time of Torque Command

Factory Setting: 0.000

Settings 0.000~1.000 sec

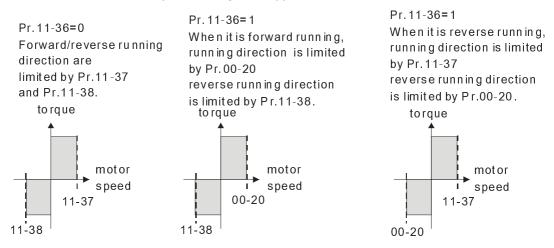
When the setting is too long, the control will be stable but the control response will be delay. When the setting is too short, the response will be quickly but the control maybe unstable. User can adjust the setting by the control and response situation.

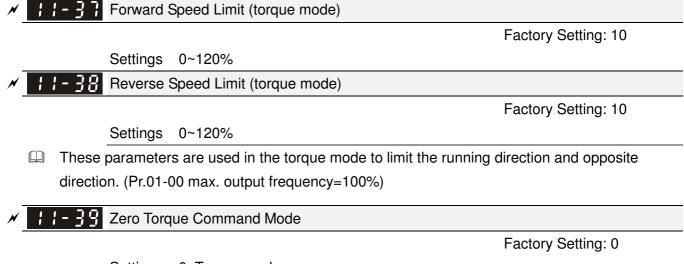
1 - 3 Speed Limit Selection

Factory Setting: 0

Settings 0: Set by Pr.11-37 (Forward speed limit) and Pr.11-38 (Reverse speed limit) 1: Set by Pr.11-37,11-38 and Pr.00-20 (Source of Master Frequency Command)

2: Set by Pr.00-20 (Source of Master Frequency Command).


Speed limit function: in TQCPG, when the motor speed is accelerated to speed limit value (Pr.11-36, 11-37 and 11-38), it will switch to speed control mode to stop acceleration.


Pr11-36=1:

When the torque command is positive, the forward speed limit is Pr00-20 and reverse speed limit is Pr11-38.

When the torque command is negative, the forward speed limit is Pr11-37 and reverse speed limit is Pr00-20.

Unwind application, Torque command direction is different to motor operating direction, this indicates that the motor is being load dragging. At this moment, the speed limit must be Pr11-37 or Pr11-38. When the torque command direction and speed limit have same direction, the speed limit will refer to the setting of Pr00-20. About the keypad display, please refer to the "LED function Descriptions" in User manual chapter10 "Digital Keypad".

Settings 0: Torque mode 1: Speed mode

The drive is running at Torque control mode, Pr11-39 defines the operation mode when torque command=0%.

When Pr.11-39 is set as 0 (the torque mode), if torque command is 0%, the motor will produce excitation current but no torque current.

When Pr.11-39 is set as 1 (the speed mode), if torque command is 0% and speed limit is 0Hz, the AC motor drive can still produce torque current through speed controller(at this moment, the torque limit is Pr06-12) and the control mode will changed from TQCPG to become FOCPG mode. The motor will have a holding torque.

: :- :: Command Source of Point-to-Point Position Control	
	Factory Settings: 0

Settings 0: External terminal

- 1: Reserved
 - 2: RS485
 - 3: CAN
 - 4: PLC
 - 5: Communication card

; ; - + ; Reserved

11-42 System control flag

Factory Settings: 0000

Settings 0000~FFFFh

Bit No. Function Description 0: Speed control at torque mode, the largest current 0 At torque mode, selection between speed control and current control. limit is the torque command. 1: Speed control at torque mode, P06-12 the largest current limit is Pr06-12 1 FWD/REV direction control 0: FWD/REV cannot be controlled by 02-12 bit 0 & 1 1: FWD/REV can be controlled by 02-12 bit 0&1 2~15 Reserved

Chapter 13 Warning Codes

 HAND Warning CE01 Comm. Error 1 Display error signal Display error code The code is displayed as shown on KPC-CE01. Display error description 			
ID No.	Display on LCM Keypad	Descriptions	
1	Warning CE01 Comm. Error 1	Modbus function code error	
2	Warning CE02 Comm. Error 2	Address of Modbus data is error	
3	HAND Warning CE03 Comm. Error 3	Modbus data error	
4	Warning CE04 Comm. Error 4	Modbus communication error	
5	Warning CE10 Comm. Error 10	Modbus transmission time-out	
6	Warning CP10 Keypad time out	Keypad transmission time-out	
7	Warning SE1 Save Error 1	Keypad COPY error 1 Keypad simulation error, including communication delays, communication error (keypad recived error FF86) and parameter value error.	
8	Warning SE2 Save Error 2	Keypad COPY error 2 Keypad simulation done, parameter write error	
9	Warning 0H1 Over heat 1 warn	IGBT over-heating warning	

ID No.	Display on LCM Keypad	Descriptions
10	Warning 0H2 Over heat 2 warn	Capacity over-heating warning
11	Warning PID PID FBK Error	PID feedback error
12	Warning ANL Analog loss	ACI signal error When Pr03-19 is set to 1 and 2.
13	Warning UC Under Current	Low current
14	Warning AUE Auto-tune error	Auto tuning error
15	Warning PGFB PG FBK Warn	PG feedback error
16	Warning PGL PG Loss Warn	PG feedback loss
17	Warning OVer Speed Warn	Over-speed warning
18	Warning DAvE Deviation Warn	Over speed deviation warning
19	Warning PHL Phase Loss	Phase loss
20	Warning ot1 Over Torque 1	Over torque 1
21	Warning ot2 Over Torque 2	Over torque 2

ID No.	Display on LCM Keypad	Descriptions
22	Warning oH3 Motor Over Heat	Motor over-heating
24	Warning oSL Over Slip Warn	Over slip
25	Warning tUn Auto tuning	Auto tuning processing
28	Warning OPHL Output PHL Warn	Output phase loss
30	Warning SE3 Copy Model Err 3	Keypad COPY error 3 Keypad copy between different power range drive
36	Warning CGdn Guarding T-out	CAN guarding time-out 1
37	Warning CHbn Heartbeat T-out	CAN heartbeat time-out 2
38	Warning CSYn SYNC T-out	CAN synchrony time-out
39	Warning CbFn Can Bus Off	CAN bus off
40	Warning Cldn CAN/S ldx exceed	CAN index error
41	Warning CAdn CAN/S Addres set	CAN station address error
42	Warning CFrn CAN/S FRAM fail	CAN memory error

ID No.	Display on LCM Keypad	Descriptions
43	Warning CSdn SDO T-out	CAN SDO transmission time-out
44	Warning CSbn Buf Overflow	CAN SDO received register overflow
45	Warning Cbtn Boot up fault	CAN boot up error
46	Warning CPtn Error Protocol	CAN format error
47	Warning PIra RTC Adjust	Adjust RTC
50	Warning PLod Opposite Defect	PLC download error
51	Warning PLSv Save mem defect	Save error of PLC download
52	Warning PLdA Data defect	Data error during PLC operation
53	Warning PLFn Function defect	Function code of PLC download error
54	Warning PLor Buf overflow	PLC register overflow
55	Warning PLFF Function defect	Function code of PLC operation error
56	HAND Warning PLSn Check sum error	PLC checksum error

ID No.	Display on LCM Keypad	Descriptions
57	Warning PLEd No end command	PLC end command is missing
58	Warning PLCr PLC MCR error	PLC MCR command error
59	Warning PLdF Download fail	PLC download fail
60	Warning PLSF Scane time fail	PLC scan time exceed
61	Warning PCGd CAN/M Guard err	CAN Master guarding error
62	HAND Warning PCbF CAN/M bus off	CAN Master bus off
63	Warning PCnL CAN/M Node Lack	CAN Master node error
64	Warning PCCt CAN/M Cycle Time	CAN/M cycle time-out
65	HAND Warning PCSF CAN/M SDO over	CAN/M SDOover
66	HAND Warning PCSd CAN/M Sdo Tout	CAN/M SDO time-out
67	HAND Warning PCAd CAN/M Addres set	CAN/M station address error
68	Warning PCTo CAN/MT-Out	PLC/CAN Master Slave communication time out

ID No.	Display on LCM Keypad	Descriptions
70	Warning ECid ExCom ID failed	Duplicate MAC ID error Node address setting error
71	Warning ECLv ExCom pwr loss	Low voltage of communication card
72	Warning ECtt ExCom Test Mode	Communication card in test mode
73	Warning ECbF ExCom Bus off	DeviceNet bus-off
74	Warning ECnP ExCom No power	DeviceNet no power
75	Warning ECFF ExCom Facty def	Factory default setting error
76	Warning ECiF ExCom Inner err	Serious internal error
77	Warning ECio ExCom IONet brk	IO connection break off
78	Warning ECPP ExCom Pr data	Profibus parameter data error
79	Warning ECPi ExCom Conf data	Profibus configuration data error
80	Warning ECEF ExCom Link fail	Ethernet Link fail
81	Warning ECto ExCom Inr T-out	Communication time-out for communication card and drive

ID No.	Display on LCM Keypad	Descriptions
82	Warning ECCS ExCom Inr CRC	Check sum error for Communication card and drive
83	Warning ECrF ExCom Rtn def	Communication card returns to default setting
84	Warning ECo0 ExCom MTCP over	Modbus TCP exceed maximum communication value
85	Warning ECo1 ExCom EIP over	EtherNet/IP exceed maximum communication value
86	Warning ECiP ExCom IP fail	IP fail
87	Warning EC3F ExCom Mail fail	Mail fail
88	HAND Warning Ecby ExCom Busy	Communication card busy
90	HAND Warning CPLP CopyPLCP assWd	Copy PLC password error
91	Warning CPL0 CopyPLCModeRd	Copy PLC Read mode error
92	Warning CPL1 CopyPLCModeWt	Copy PLC Write mode error
93	HAND Warning CPLv CopyPLCVersion	Copy PLC Version error
94	HAND Warning CPLS CopyPLCS ize	Copy PLC Capacity size error

Chapter 13 Warning Codes

ID No.	Display on LCM Keypad	Descriptions
96	Warning CPLt CopyPLCTimeOut	Copy PLC time out
101	Warning ictn InrCOM Time Out	Internal communication is off

	HAT
1	Warning
2	CE01
3	Comm. Error 1

Display error signal

Abbreviate error code

The code is displayed as shown on KPC-CE01.

3 Display error description

* Refer to setting of Pr06-17~Pr06~22.

ID*	Fault Name	Fault Descriptions	Corrective Actions
1	Fault ocA Oc at accel	Over-current during acceleration (Output current exceeds triple rated current during acceleration.)	 Short-circuit at motor output: Check for possible poor insulation at the output. Acceleration Time too short: Increase the Acceleration Time. AC motor drive output power is too small: Replace the AC motor drive with the next higher power model.
2	Fault ocd Oc at decel	Over-current during deceleration (Output current exceeds triple rated current during deceleration.)	 Short-circuit at motor output: Check for possible poor insulation at the output. Deceleration Time too short: Increase the Deceleration Time. AC motor drive output power is too small: Replace the AC motor drive with the next higher power model.
3	Fault ocn Oc at normal SPD	Over-current during steady state operation (Output current exceeds triple rated current during constant speed.)	 Short-circuit at motor output: Check for possible poor insulation at the output. Sudden increase in motor loading: Check for possible motor stall. AC motor drive output power is too small: Replace the AC motor drive with the next higher power model.
4	Fault GFF Ground fault	Ground fault	 When (one of) the output terminal(s) is grounded, short circuit current is more than 50% of AC motor drive rated current, the AC motor drive power module may be damaged. NOTE: The short circuit protection is provided for AC motor drive protection, not for protecting the user. Check the wiring connections between the AC motor drive and motor for possible short circuits, also to ground. Check whether the IGBT power module is damaged. Check for possible poor insulation at the output.
5	Fault occ Short Circuit	Short-circuit is detected between upper bridge and lower bridge of the IGBT module	Return to the factory

ID*	Fault Name	Fault Descriptions	Corrective Actions
6	Fault ocS Oc at stop	Hardware failure in current detection	Return to the factory
7	Fault ovA Ov at accel	DC BUS over-voltage during acceleration (230V: DC 450V; 460V: DC 900V)	 Check if the input voltage falls within the rated AC motor drive input voltage range. Check for possible voltage transients. If DC BUS over-voltage due to regenerative voltage, please increase the acceleration time or add an optional brake resistor.
8	Fault ovd Ov at decel	DC BUS over-voltage during deceleration (230V: DC 450V; 460V: DC 900V)	 Check if the input voltage falls within the rated AC motor drive input voltage range. Check for possible voltage transients. If DC BUS over-voltage due to regenerative voltage, please increase the Deceleration Time or add an optional brake resistor.
9	HAND Fault Ov at normal SPD	DC BUS over-voltage at constant speed (230V: DC 450V; 460V: DC 900V)	 Check if the input voltage falls within the rated AC motor drive input voltage range. Check for possible voltage transients. If DC BUS over-voltage due to regenerative voltage, please increase the Deceleration Time or add an optional brake resistor.
10	Fault ovS Ov at stop	Hardware failure in voltage detection	 Check if the input voltage falls within the rated AC motor drive input voltage range. Check for possible voltage transients.
11	Fault LvA Lv at accel	DC BUS voltage is less than Pr.06-00 during acceleration	 Check if the input voltage is normal Check for possible sudden load
12	Fault Lvd Lv at decel	DC BUS voltage is less than Pr.06-00 during deceleration	 Check if the input voltage is normal Check for possible sudden load
13	Fault Lvn Lv at normal SPD	DC BUS voltage is less than Pr.06-00 in constant speed	 Check if the input voltage is normal Check for possible sudden load
14	Fault LvS Lv at stop	DC BUS voltage is less than Pr.06-00 at stop	 Check if the input voltage is normal Check for possible sudden load

ID*	Fault Name	Fault Descriptions	Corrective Actions				
15	Fault OrP Phase lacked	Phase Loss	Check Power Source Input if all 3 input phases are connected without loose contacts. For models 40hp and above, please check if the fuse for the AC input circuit is blown.				
16	Fault oH1 IGBT over heat	IGBT overheating IGBT temperature exceeds protection level	 Ensure that the ambient temperature falls within the specified temperature range. Make sure that the ventilation holes are not obstructed. Remove any foreign objects from the heatsinks and check for possible dirty heat sink fins. Check the fan and clean it. Provide enough spacing for adequate ventilation. 				
17	Fault oH2 Heat Sink oH	Heatsink overheating Capacitance temperature exceeds cause heatsink overheating.	 Ensure that the ambient temperature falls within the specified temperature range. Make sure heat sink is not obstructed. Check if the fan is operating Check if there is enough ventilation clearance for AC motor drive. 				
18	Fault tH1o Thermo1 open	IGBT Hardware Error	Return to the factory				
19	Fault tH2o Thermo 2 open	Capacitor Hardware Error	Return to the factory				
21	Fault oL Over load	Overload The AC motor drive detects excessive drive output current.	 Check if the motor is overloaded. Take the next higher power AC motor drive model. 				
22	Fault EoL1 Thermal relay 1	Electronics thermal relay 1 protection	 Check the setting of electronics thermal relay (Pr.06-14) Take the next higher power AC motor drive model 				
23	Fault EoL2 Thermal relay 2	Electronics thermal relay 2 protection	 Check the setting of electronics thermal relay (Pr.06-28) Take the next higher power AC motor drive model 				

ID*	Fault Name	Fault Descriptions	Corrective Actions				
24	Fault oH3 Motor over heat	Motor overheating The AC motor drive detecting internal temperature exceeds the setting of Pr.06-30 (PTC level) or Pr.06-57 (PT100 level 2).	 Make sure that the motor is not obstructed. Ensure that the ambient temperature falls within the specified temperature range. Change to a higher power motor. 				
26	HAND Fault Over torque 1	These two fault codes will be displayed when output current exceeds the over-torque detection level (Pr.06-07 or Pr.06-10) and exceeds	 Check whether the motor is overloaded. Check whether motor rated current setting (Pr.05-01) is suitable Take the next bicker power AC motor drive 				
27	Fault ot2 Over torque 2	over-torque detection (Pr.06-08 or Pr.06-11) and it is set to 2 or 4 in Pr.06-06 or Pr.06-09.	 Take the next higher power AC motor drive model. 				
28	Fault uC Under torque	Low current detection	Check Pr.06-71, Pr.06-72, Pr.06-73.				
29	Fault LMIT Limit Error	Limit error					
30	Fault cF1 EEPROM write err	Internal EEPROM can not be programmed.	 Press "RESET" key to the factory setting Return to the factory. 				
31	Fault cF2 EEPROM read err	Internal EEPROM can not be read.	 Press "RESET" key to the factory setting Return to the factory. 				
33	Fault cd1 las sensor err	U-phase error	Reboots the power. If fault code is still displayed on the keypad please return to the factory				
34	Fault cd2 Ibs sensor err	V-phase error	Reboots the power. If fault code is still displayed on the keypad please return to the factory				
35	Fault cd3 lcs sensor err	W-phase error	Reboots the power. If fault code is still displayed on the keypad please return to the factory				

ID*	Fault Name	Fault Descriptions	Corrective Actions
36	Fault Hd0 cc HW error	CC (current clamp)	Reboots the power. If fault code is still displayed on the keypad please return to the factory
37	Fault Hd1 Oc HW error	OC hardware error	Reboots the power. If fault code is still displayed on the keypad please return to the factory
38	Fault Hd2 Ov HW error	OV hardware error	Reboots the power. If fault code is still displayed on the keypad please return to the factory
39	Fault Hd3 occ HW error	Occ hardware error	Reboots the power. If fault code is still displayed on the keypad please return to the factory
40	Fault AUE Auto tuning err	Auto tuning error	 Check cabling between drive and motor Try again.
41	Fault AFE PID Fbk error	PID loss (ACI)	 Check the wiring of the PID feedback Check the PID parameters settings
42	Fault PGF1 PG Fbk error	PG feedback error	Check if encoder parameter setting is accurate when it is PG feedback control.
43	Fault PGF2 PG Fbk loss	PG feedback loss	Check the wiring of the PG feedback
44	Fault PGF3 PG Fbk over SPD	PG feedback stall	 Check the wiring of the PG feedback Check if the setting of PI gain and deceleration is suitable Return to the factory
45	Fault PGF4 PG Fbk deviate	PG slip error	 Check the wiring of the PG feedback Check if the setting of PI gain and deceleration is suitable Return to the factory

ID*	Fault Name	Fault Descriptions	Corrective Actions
46	Fault PGr1 PG Ref error	Pulse input error	 Check the pulse wiring Return to the factory
47	Fault PGr2 PG Ref loss	Pulse input loss	 Check the pulse wiring Return to the factory
48	Fault ACE ACI loss	ACI loss	 Check the ACI wiring Check if the ACI signal is less than 4mA
49	Fault EF External fault	External Fault	 Input EF (N.O.) on external terminal is closed to GND. Output U, V, W will be turned off. Give RESET command after fault has been cleared.
50	HAND Fault EF1 Emergency stop	Emergency stop	 When the multi-function input terminals MI1 to MI6 are set to emergency stop, the AC motor drive stops output U, V, W and the motor coasts to stop. Press RESET after fault has been cleared.
51	Fault bb Base block	External Base Block	 When the external input terminal (B.B) is active, the AC motor drive output will be turned off. Deactivate the external input terminal (B.B) to operate the AC motor drive again.
52	HAND Fault Pcod Password error	Password is locked.	Keypad will be locked. Turn the power ON after power OFF to re-enter the correct password. See Pr.00-07 and 00-08.
54	HAND Fault CE1 PC err command	Illegal function code	Check if the function code is correct (function code must be 03, 06, 10, 63)
55	Fault CE2 PC err address	Illegal data address (00H to 254H)	Check if the communication address is correct
56	Fault CE3 PC err data	Illegal data value	Check if the data value exceeds max./min. value

ID*	Fault Name	Fault Descriptions	Corrective Actions				
57	Fault CE4 PC slave fault	Data is written to read-only address	Check if the communication address is correct				
58	Fault CE10 PC time out	Modbus transmission time-	out				
59	Fault CP10 PU time out	Keypad transmission time-o	out				
60	Fault bF Braking fault	Brake resistor fault	If the fault code is still displayed on the keypad after pressing "RESET" key, please return to the factory.				
61	Fault ydc Y-delta connect	Y-connection/Δ-connectio n switch error	 Check the wiring of the Y-connection/Δ-connection Check the parameters settings 				
62	Hand Fault dEb Dec. Energy back	When Pr.07-13 is not set to 0 and momentary power off or power cut, it will display dEb during accel./decel. stop.	 Set Pr.07-13 to 0 Check if input power is stable 				
63	HAND Fault OVer slip error	It will be displayed when slip exceeds Pr.05-26 setting and time exceeds Pr.05-27 setting.	 Check if motor parameter is correct (please decrease the load if overload Check the settings of Pr.05-26 and Pr.05-27 				
64	Fault ry F MC Fault	Electric valve switch error when executing Soft Start. (This warning is for frame E and higher frame of AC drives) Do not disconnect RST when drive is still operating.					
65	Fault PGF5 PG HW Error	Hardware error of PG Card Check if PG Card is insert to the right slot and parameter settings for encoder are accurate.					
68	Fault SdRv SpdFbk Dir Rev	sensorless. Solution Verify if the parameter settin	olution 'erify if the parameter setting of the motor drive is correct ncrease the estimator's bandwidth and verify if parameters relating to the sensorless				

ID*	Fault Name	Fault Descriptions Corrective Actions
69	Fault SdOr SpdFbk over SPD	Overspeed rotation detected by the sensorless Solution Verify if the parameter setting of the motor drive is correct Increase the estimator's bandwidth and verify if parameters relating to the sensorless are correct. Verify if the gains of the speed circuit is reasonable.
70	Fault SdDe SpdFbk deviate	Big difference between the rotating speed and the command deteced by the sensorless Solution Verify if the parameter setting of the motor drive is correct Increase the estimator's bandwidth and verify if parameters relating to the sensorless are correct. Verify if the gains of the speed circuit is reasonable.
72	HAND Fault STOL STO Loss 1	STO1~SCM1 internal hardware detect error
73	Fault S1 S1-emergy stop	Emergency stop for external safety
76	Fault STO STO	Safety Torque Off function active
77	Fault STOL STO Loss 2	STO2~SCM2 internal hardware detect error
78	Fault STOL STO Loss 3	STO1~SCM1 and STO2~SCM2 internal hardware detect error
79	Fault Uoc U phase oc	Phase U short circuit
80	Fault Voc V phase oc	Phase V short circuit

ID*	Fault Name	Fault Descriptions Corrective Actions
81	Fault Woc W phase oc	W phase short circuit
82	HAND Fault OPHL U phase lacked	Output phase loss (Phase U)
83	Fault OPHL V phase lacked	Output phase loss (Phase V)
84	Fault OPHL W phase lacked	Output phase loss (Phase W)
85	Fault AboF PGABZ Line off	PG card ABZ signal loss Solution Verify if the parameter setting of PG card and PG card cable is correct.
86	Fault UvoF PG UVW Line off	PG card UVW signal loss Solution Verify if the parameter setting of PG card and PG card cable is correct.
89	Fault RoPd Rotor Pos. Error	Rotor position detection error Solution Verify if the UVW output cable are loss. Verify if the motor internal coil is broken. Verify if the drive UVW output are normal.
90	Fault Fstp For ce Stop	Internal PLC forced to stop Verify the setting of Pr.00-32
101	Fault CGdE Guarding T-out	CANopen guarding error
102	Fault CHbE Heartbeat T-out	CANopen heartbeat error

ID*	Fault Name	Fault Descriptions	Corrective Actions
103	Fault CSYE SYNC T-out	CANopen synchronous er	ror
104	Fault CbFE Can bus off	CANopen bus off error	
105	Fault CIdE Can bus Index Err	CANopen index error	
106	Fault CAdE Can bus Add. Err	CANopen station address	error
107	Fault CFrE Can bus off	CANopen memory error	
111	Fault ictE InrCom Time Out	Internal communication tir	ne-out
112	Fault SfLK PMLess ShaftLock	Motor Shaft lock error(N zero) Solution Verify if the motor parar	Notor does not turn but the output frequency is not neter setting is correct.
113	Fault SwOc Software OC	Software OC protection	

Chapter 15 CANopen Overview

Newest version is available at http://www.delta.com.tw/industrialautomation/

- 15.1 CANopen Overview
- 15.2 Wiring for CANopen
- 15.3 CANopen Communication Interface Description

15.3.1 CANopen Control Mode Selection

15.3.2 DS402 Standard Control Mode

- 15.3.3 By using Delta Standard (Old definition, only support speed mode)
- 15.3.4 By using Delta Standard (New definition)
- 15.3.5 DI/DO AI AO are controlled via CANopen
- 15.4 CANopen Supporting Index

15.5 CANopen Fault Code

15.6 CANopen LED Function

Built-in EMC-COP01 card is included in VFDXXXC23E/VFDXXXC43E models.

The built-in CANopen function is a kind of remote control. Master can control the AC motor drive by using CANopen protocol. CANopen is a CAN-based higher layer protocol. It provides standardized communication objects, including real-time data (Process Data Objects, PDO), configuration data (Service Data Objects, SDO), and special functions (Time Stamp, Sync message, and Emergency message). And it also has network management data, including Boot-up message, NMT message, and Error Control message. Refer to CiA website http://www.can-cia.org/ for details. The content of this instruction sheet may be revised without prior notice. Please consult our distributors or download the most updated version at http://www.delta.com.tw/industrialautomation

Delta CANopen supporting functions:

- Support CAN2.0A Protocol;
- Support CANopen DS301 V4.02;
- Support DSP-402 V2.0.

Delta CANopen supporting services:

- PDO (Process Data Objects): PDO1~ PDO4
- SDO (Service Data Object):

Initiate SDO Download; Initiate SDO Upload; Abort SDO; SDO message can be use

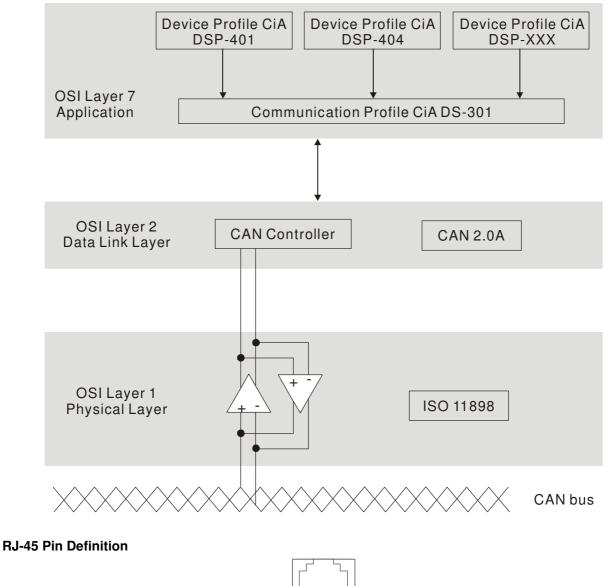
SDO message can be used to configure the slave node and access the Object Dictionary in every node.

■ SOP (Special Object Protocol):

Support default COB-ID in Predefined Master/Slave Connection Set in DS301 V4.02; Support SYNC service; Support Emergency service.

NMT (Network Management):

Support NMT module control; Support NMT Error control; Support Boot-up.


Delta CANopen not supporting service:

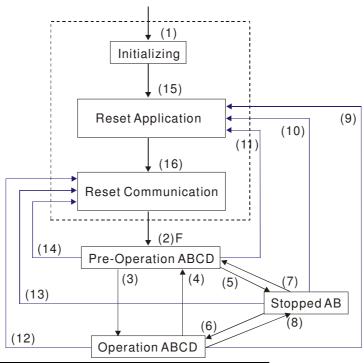
■ Time Stamp service

15.1 CANopen Overview

CANopen Protocol

CANopen is a CAN-based higher layer protocol, and was designed for motion-oriented machine control networks, such as handling systems. Version 4.02 of CANopen (CiA DS301) is standardized as EN50325-4. The CANopen specifications cover application layer and communication profile (CiA DS301), as well as a framework for programmable devices (CiA 302), recommendations for cables and connectors (CiA 303-1) and SI units and prefix representations (CiA 303-2).

PIN	Signal	Description
1	CAN_H	CAN_H bus line (dominant high)
2	CAN_L	CAN_L bus line (dominant low)
3	CAN_GND	Ground / 0V /V-
6	CAN_GND	Ground / 0V /V-


CANopen Communication Protocol

It has services as follows:

- NMT (Network Management Object)
- SDO (Service Data Objects)
- PDO (Process Data Object)
- EMCY (Emergency Object)

NMT (Network Management Object)

The Network Management (NMT) follows a Master/Slave structure for executing NMT service. Only one NMT master is in a network, and other nodes are regarded as slaves. All CANopen nodes have a present NMT state, and NMT master can control the state of the slave nodes. The state diagram of a node is shown as follows:

(1) After power is applied, it is auto in initialization state

- (2) Enter pre-operational state automatically
- (3) (6) Start remote node

(4) (7) Enter pre-operational state

(5) (8) Stop remote node

(9) (10) (11) Reset node

- (12) (13) (14) Reset communication
- (15) Enter reset application state automatically
- (16) Enter reset communication state automatically

	Initializing	Pre-Operational	Operational	Stopped
PDO			0	
SDO		0	0	
SYNC		0	0	
Time Stamp		0	0	
EMCY		0	0	
Boot-up	0			
NMT		0	0	0

- A: NMT
- B: Node Guard
- C: SDO
- D: Emergency
- E: PDO
- F: Boot-up

SDO (Service Data Objects)

SDO is used to access the Object Dictionary in every CANopen node by Client/Server model. One SDO has two COB-ID (request SDO and response SDO) to upload or download data between two nodes. No data limit for SDOs to transfer data. But it needs to transfer by segment when data exceeds 4 bytes with an end signal in the last segment.

The Object Dictionary (OD) is a group of objects in CANopen node. Every node has an OD in the system, and OD contains all parameters describing the device and its network behavior. The access path of OD is the index and sub-index, each object has a unique index in OD, and has sub-index if necessary. The request and response frame structure of SDO communication is shown as follows:

PDO (Process Data Object)

PDO communication can be described by the producer/consumer model. Each node of the network will listen to the messages of the transmission node and distinguish if the message has to be processed or not after receiving the message. PDO can be transmitted from one device to one another device or to many other devices. Every PDO has two PDO services: a TxPDO and a RxPDO. PDOs are transmitted in a non-confirmed mode.

PDO Transmission type is defined in the PDO communication parameter index (1400h for the 1st RxPDO or 1800h for the 1st TxPDO), and all transmission types are listed in the following table:

Type Number	PDO						
	Cyclic	Acyclic	Synchronous	Asynchronous	RTR only		
0		0 0					
1-240	0		0				
241-251	Reserved						
252			0		0		
253				0	0		
254				0			
255				0			

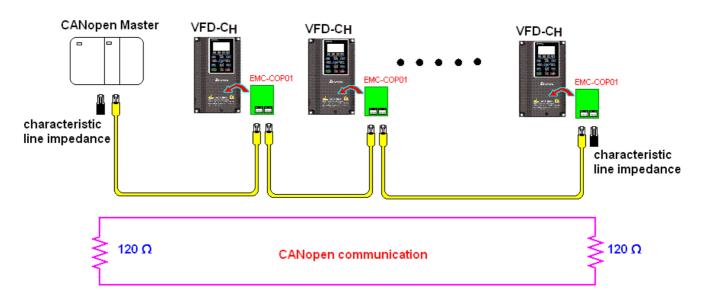
Type number 1-240 indicates the number of SYNC message between two PDO transmissions.

Type number 252 indicates the data is updated (but not sent) immediately after receiving SYNC.

Type number 253 indicates the data is updated immediately after receiving RTR.

Type number 254: Delta CANopen doesn't support this transmission format.

Type number 255 indicates the data is asynchronous transmission.


All PDO transmission data must be mapped to index via Object Dictionary.

EMCY (Emergency Object)

When errors occurred inside the hardware, an emergency object will be triggered an emergency object will only be sent when an error is occurred. As long as there is nothing wrong with the hardware, there will be no emergency object to be served as a warning of an error message.

15.2 Wiring for CANopen

An external adapter card: EMC-COP01 is used for CANopen wiring to connect CANopen to VFD CH2000. The link is enabled by using RJ45 cable. The two farthest ends must be terminated with 120Ω terminating resistors.

15.3 CANopen Communication Interface Description

15.3.1 CANopen Control Mode Selection

There are two control modes for CANopen; Pr.09-40 set to 1 is the factory setting mode DS402 standard and Pr.09-40 set to 0 is Delta's standard setting mode.

Actually, there are two control modes according to Delta's standard, one is the old control mode (Pr09-30=0).

This control mode can only control the motor drive under frequency control. Another mode is a new standard (Pr09-30=1)

This new control mode allows the motor drive to be controlled under all sorts of mode. Currently, CH2000 support speed, torque, position and home mode.

The definition of relating control mode are:

CANopen	Control Mode							
Control	Speed		Torque		Position		Home	
Mode Selection	Index	Description	Index	Description	Index	Description	Index	Description
DS402 standard Pr. 09-40=1	6042-00	Target rotating speed (RPM)	6071-00	Target Torque (%)	607A-00	Target Position		
			6072-00	Max. Torque Limit(%)				
Delta Standard (Old definition) P09-40=1, P09-30=0	2020-02	Target rotating speed (Hz)						
Delta Standard (New definition)	2060-03	Target rotating speed (Hz)	2060-07	Target Torque (%)	2060-05	Target Position		
P09-40=0, P09-30=1	2060-04	Torque Limit (%)	2060-08	Speed Limit (Hz)				

CANopen Control Mode	Operation Control				
Selection	Index	Description			
DS402 standard	6040-00	Operation Command			
Pr. 09-40=1					
Delta Standard (Old definition) P09-40=1, P09-30=0	2020-01	Operation Command			
Delta Standard (New definition)	2060-01	Operation Command			
P09-40=0, P09-30=1					

CANopen Control Mode		Other
Selection	Index	Description
DS402 standard	605A-00	Quick stop processing mode
Pr. 09-40=1	605C-00	Disable operation processing mode
Delta Standard (Old definition)		
P09-40=1, P09-30=0		
Delta Standard (New		
definition)		
P09-40=0, P09-30=1		

However, you can use some index regardless DS402 or Delta's standard.

For example:

- 1. Index which are defined as RO attributes.
- 2. Index correspond to parameters such as (2000 ~200B-XX)
- 3. Accelerating/Decelerating Index: 604F 6050

15.3.2 DS402 Standard Control Mode

15.3.2.1 Related set up of ac motor drive (by following DS402 standard)

If you want to use DS402 standard to control the motor drive, please follow the steps below:

- 1. Wiring for hardware (refer to chapter 15-2 Wiring for CANopen)
- 2. Operation source setting: set Pr.00-21 to 3 for CANopen communication card control.
- 3. Frequency source setting: set Pr.00.20 to 6. (Choose source of frequency commend from CANopen setting.)
- 4. Source of torque setting is set by Pr.11-33. (Choose source of torque commend from CANopen setting.)
- 5. CANopen station setting: set Pr.09-36 (Choose source of position commend from CANopen setting.)
- 6. Set DS402 as control mode: Pr09-40=1
- CANopen station setting: set Pr.09-36 (Range of setting is 1~127. When Pr.09-36=0, CANopen slave function is disabled.) (Note: If error arise (CAdE or CANopen memory error) as station setting is completed, press Pr.00-02=7 for reset.)
- CANopen baud rate setting: set Pr.09.37 (CANBUS Baud Rate: 1M(0), 500K(1), 250K(2), 125K(3), 100K(4) and50K(5))
- Set multiple input functions to Quick Stop (it can also be enable or disable, default setting is disable). If it is necessary to enable the function, set MI terminal to 53 in one of the following parameter: Pr.02.01 ~Pr.02.08 or Pr.02.26 ~ Pr.02.31. (Note: This function is available in DS402 only.)

15.3.2.1 The status of the motor drive (by following DS402 standard)

According to the DS402 definition, the motor drive is divided into 3 blocks and 9 status as described below.

3 blocks

Power Disable: That means without PWM output Power Enable: That means with PWM output Fault: One or more than one error has occurred.

9 status

Start: Power On

Not ready to switch on: The motor drive is initiating.

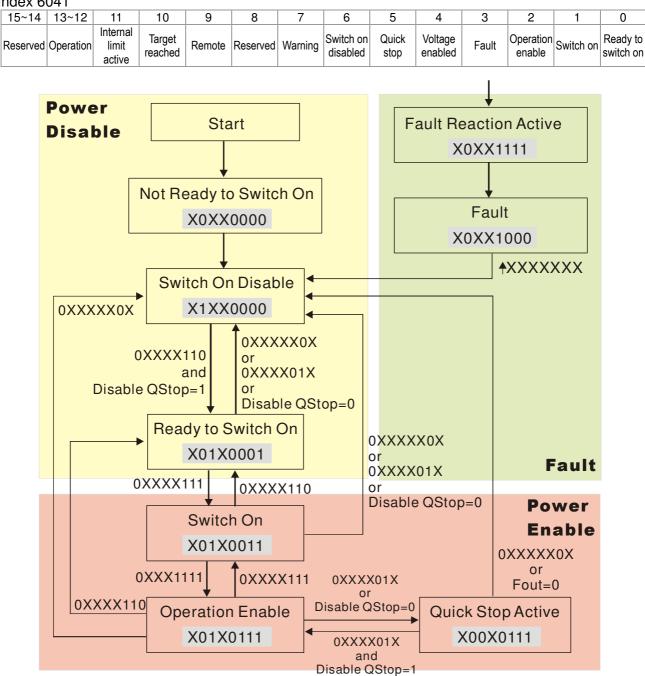
Switch On Disable: When the motor drive finishes the initiation, it will be at this mode.

Ready to switch on: Warming up before running.

Switch On: The motor derive has the PWM output now, but the reference commend is not effective.

Operate Enable: Able to control normally.

Quick Stop Active: When there is a Quick Stop request, you have to stop running the motor drive.


Fault Reaction Active: The motor drive detects conditions which might trigger error(s). Fault: One or more than errors has occurred to the motor drive.

Therefore, when the motor drive is turned on and finishes the initiation, it will remain at Ready to Switch on status. To control the operation of the motor drive, you need to change this status to Operate Enable status. The way to change it is to commend the control word's bit0 ~ bit3 and bit7 of the Index 6040H and to pair with Index Status Word (Status Word 0X6041). The control steps and index definition are described as below:

Index 6040

15~9	8	7	6~4	3	2	1	0
Reserved	Halt	Fault Reset	Operation	Enable operation	Quick Stop	Enable Voltage	Switch On

Index 6041

Set command 6040 = 0xE, then set another command 6040 = 0xF. Then the motor drive can be switched to Operation Enable. The Index 605A decides the dashed line of Operation Enable when

the control mode changes from Quick Stop Active. (When the setting value is 1~3, this dashed line is active. But when the setting value of 605A is not 1~3, once he motor derive is switched to Quick Stop Active, it will not be able to switch back to Operation Enable.)

Index	Sub	Definition	Factory Setting	R/W	Size	Unit	PDO Map	Mode	note
605Ah	0	Quick stop option code	2	RW	S16		No		 0 : disable drive function 1 :slow down on slow down ramp 2: slow down on quick stop ramp 5 slow down on slow down ramp and stay in QUICK STOP 6 slow down on quick stop ramp and stay in QUICK STOP 7 slow down on the current limit and stay in Quick stop

Besides, when the control section switches from Power Enable to Power Disable, use 605C to define parking method.

Index	Sub	Definition	Factory Setting	R/W	Size	Unit	PDO Map	Mode	note
605Ch	0	Disable operation option code	1	RW	S16		No		0: Disable drive function 1: Slow down with slow down ramp; disable of the drive function

15-3-2-3 Various mode control method (by following DS402 standard)

Control mode of CH2000, supporting speed, torque, position and home control are described as below:

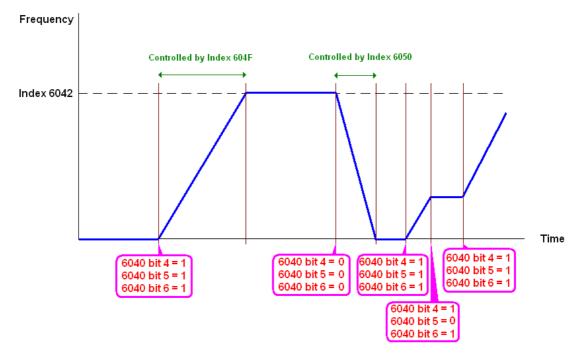
Speed mode

- 1. Let Ac Motor Drive be at the speed control mode: Set Index6060 to 2.
- 2. Switch to Operation Enable mode: Set 6040=0xE, then set 6040=0xF.
- 3. To set target frequency: Set target frequency of 6042, since the operation unit of 6042 is rpm, there is a transformation:

 $n = f \times \frac{120}{p}$ n: rotation speed (rpm) (rounds/minute) P: motor's pole number (Pole)

f: rotation frequency (Hz)

For example:

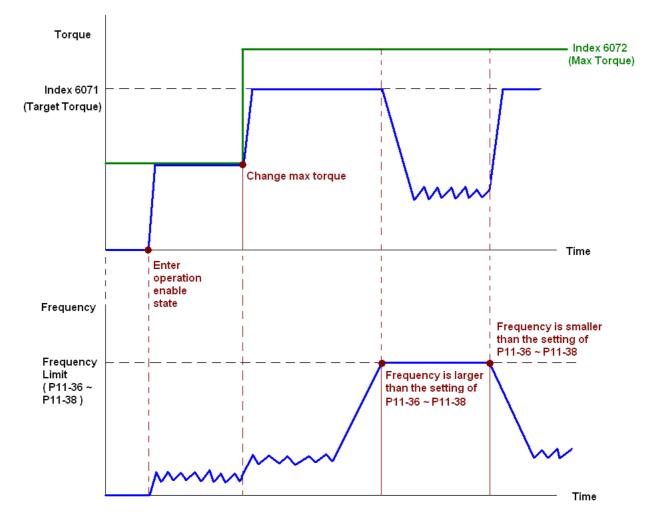

Set 6042H = 1500 (rpm), if the motor drive's pole number is 4 (Pr05-04 or Pr05-16), then the motor drive's operation frequency is 1500(120/4)=50Hz.

Besides, the 6042 is defined as a signed operation. The plus or minus sign means to rotate clockwise or counter clockwise

4. To set acceleration and deceleration: Use 604F(Acceleration) and 6050(Deceleration).

5. Trigger an ACK signal: In the speed control mode, the bit 6~4 of Index 6040 needs to be controlled. It is defined as below:

		Index 6040	SUM Locked at the current signal. Run to reach targeting signal.	
Creadered	Bit 6	Bit 5	Bit 4	30M
Speed mode	1	0	1	Locked at the current signal.
(Index 6060=2)	1	1	1	Run to reach targeting signal.
		Other		Decelerate to 0Hz.


NOTE 01: To know the current rotation speed, read 6043. (unit: rpm)

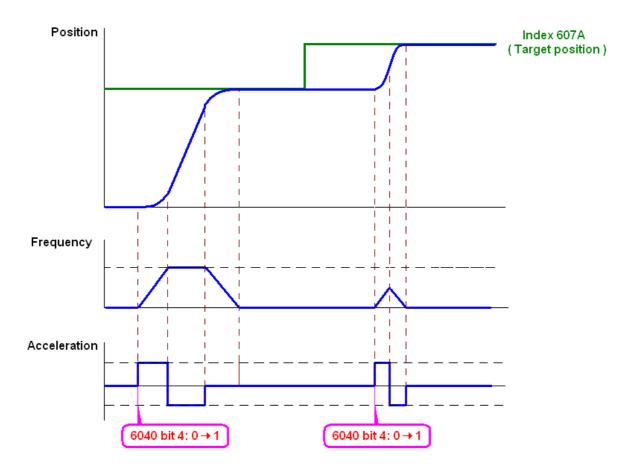
NOTE 02: To know if the rotation speed can reach the targeting value; read bit 10 of 6041. (0: Not reached; 1: Reached)

Torque mode

- 1. Let Ac Motor Drive be at the torque control mode: Set Index6060 = 4.
- 2. Switch the current mode to Operation Enable, set 6040 = 0xE, then set 6040 = 0xF.
- 3. To set targeting torque: Set 6071 as targeting torque and 6072 as the largest output torque.

Taraua mada		Index 6040	SUM	
lorque mode (Index 6060=4)	Bit 6	Bit 5	Bit 4	30101
(Index 0000=4)	Х	Х	Х	RUN to reach the targeting torque.

NOTE: The standard DS402 doesn't regulate the highest speed limit. Therefore if the motor drive defines the control mode of DS402, the highest speed will go with the setting of Pr11-36 to Pr11-38.


NOTE 01: To know the current torque, read 6077 (unit: 0.1%).

NOTE02: To know if reaching the targeting torque, read bit 10 of 6041. (0: Not reached; 1: Reached)

Position mode

1. Set the parameter of a trapezium curve to define position control (Pr11-43 Max. Frequency of Point- to-Point Position Control, Pr11-44 Accel. Time of Point-to Point Position Control and Pr11-45 Decel. Time of Point-to Point Position Control)

- 2. Let Ac Motor Drive be at the position control mode: Then set Index 6060 = 1.
- 3. Switch the current mode to Operation Enable, set 6040 = 0xE and then set 6040 = 0xF.
- 4. To set targeting position: set 607A as the targeting position.
- 5. Trigger an ACK signal: Set 6040 = 0x0F then set 6040 = 0x1F. (Bit4 changes from 0 to 1).

NOTE 01: To know the current position, read 6064.

- NOTE 02: To know if the position reaches the targeting position, read bit 10 of 6041. (0: reached, 1: Not reached)
- NOTE 03: To know if the position is over the limited area, read bit 11 of 6041 (0: in the limit, 1: over the limit)

Home mode

- 1. Set Pr00-12 to choose a home method.
- 2. Set the left and right limits correspond to the position of MI terminal.
- 3. To switch Ac Motor Drive control mode to Home mode: Set Index 6060 = 6.
- 4. To switch from current mode to Operation Enable: Set 6040 = 0xE, then set 6040 = 0xF.
- 5. To trigger an ACK signal: Set 6040 = 0x0F, then set 6040 = 0x1F (Bit4 changes from 0 to 1 and the motor drive will be back to home.)

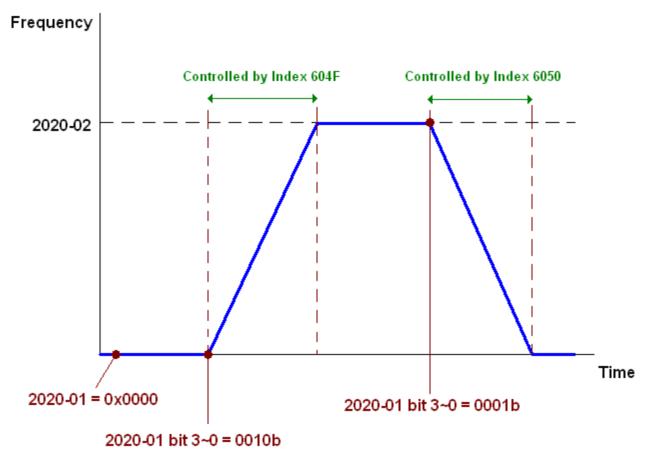
Note 01: To know if the home mode is completed, read bit 12 of 6041. (0: reached, 1: Not reached)

15.3.3 By using Delta Standard (Old definition, only support speed mode)

15-3.3.1 Various mode control method (by following DS402 standard)

If you want to use DS402 standard to control the motor drive, please follow the steps below:

- 1. Wiring for hardware (Refer to chapter 15.2 Wiring for CANopen)
- 2. Operation source setting: set Pr.00-21 to 3 for CANopen communication card control.
- 3. Frequency source setting: set Pr.00.20 to 6. (Choose source of frequency commend from CANopen setting.)


4. Set Delta Standard (Old definition, only support speed mode) as control mode: Pr. 09-40 = 0 and 09-30 = 0.

CANopen station setting: set Pr.09-36 (Range of setting is 1~127. When Pr.09-36=0, CANopen slave function is disabled.) (Note: If error arised (CAdE or CANopen memory error) as station setting is completed, press Pr.00-02=7 for reset.)

5. CANopen baud rate setting: set Pr.09.37 (CANBUS Baud Rate: 1M(0), 500K(1), 250K(2), 125K(3), 100K(4) and50K(5))

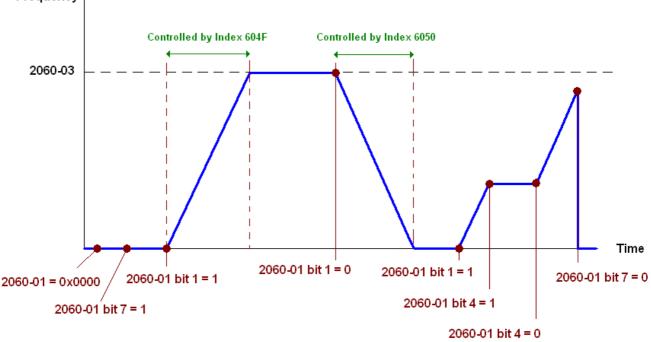
15-3-3-2 By speed mode

- 1. Set the target frequency: Set 2020-02, the unit is Hz, with a number of 2 decimal places. For example 1000 is 10.00.
- 2. Operation control: Set 2020-01 = 0002H for Running, and set 2020-01 = 0001H for Stopping.

15.3.4 By using Delta Standard (New definition)

15-3-4-1 Related set up of ac motor drive (Delta New Standard)

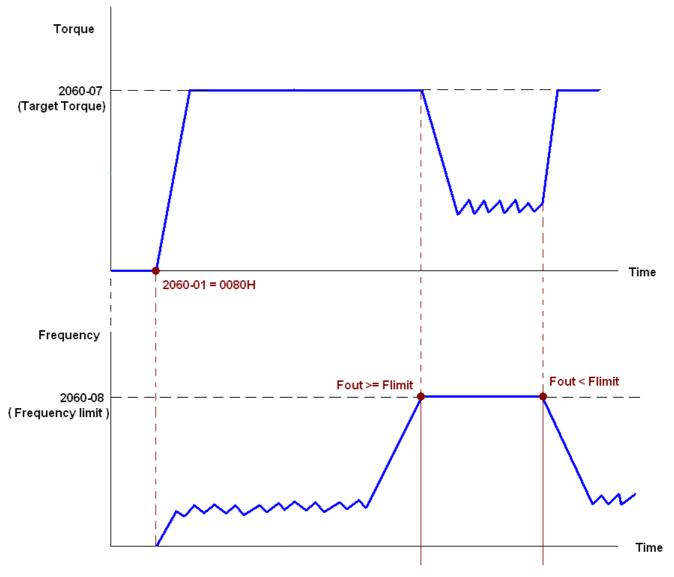
If you want to use DS402 standard to control the motor drive, please follow the steps below:


- 1. Wiring for hardware (Refer to chapter 15.2 Wiring for CANopen)
- 2. Operation source setting: set Pr.00-21 to 3 for CANopen communication card control.
- 3. Frequency source setting: set Pr.00.20 to 6. (Choose source of frequency commend from CANopen setting.)
- 4. Source of torque setting is set by Pr.11-33. (Choose source of torque commend from CANopen setting.)

- 5. CANopen station setting: set Pr.09-36 (Choose source of position commend from CANopen setting.)
- 6. Set Delta Standard (Old definition, only support speed mode) as control mode: Pr. 09-40 = 0 and 09-30 = 0.
- CANopen station setting: set Pr.09-36 (Range of setting is 1~127. When Pr.09-36=0, CANopen slave function is disabled.) (Note: If error arised (CAdE or CANopen memory error) as station setting is completed, press Pr.00-02=7 for reset.)
- 8. CANopen baud rate setting: set Pr.09.37 (CANBUS Baud Rate: 1M(0), 500K(1), 250K(2), 125K(3), 100K(4) and50K(5))

15-3-4-2 Various mode control method (Delta New Standard)

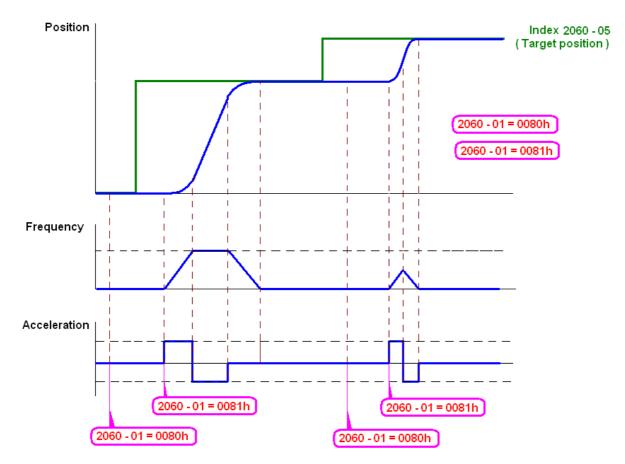
Speed Mode


- 1. Let Ac Motor Drive be at the speed control mode: Set Index6060 = 2.
- 2. Set the target frequency: set 2060-03, unit is Hz, with a number of 2 decimal places. For example 1000 is 10.00Hz.
- 3. Operation control: set 2060-01 = 008H for Server on, and set 2060-01 = 0081H for Running.

Frequency

Torque Mode

- 1. Let Ac Motor Drive be at torque control mode: set Index 6060 = 4.
- 2. Set target torque: set 2060-07, unit is %, a number of 1 decimal place. For example 100 is 10.0%.
- 3. Operation control: Set 2060-01 = 0080H for Server on, then the motor drive will start to run to reach target torque.


Note01 To know what the current torque is, read 2061-07 (unit is 0.1%).

Note02 To know if the torque can reach the setting value, read the bit 0 of 2061-01 (0: Not reached, 1: Reached).

Note 03: When doing torque output and if the motor drive's speed reaches the speed limit, the output torque will decrease to ensure the speed is under the limit.

Position Mode

- 1. Set the parameter of a trapezium curve to define position control (Pr11-43 Max. Position Control Frequency), Pr11-44 Accel. Time of Position Control, Pr11-45 Decel. Time of Position Control)
- 2. Let Ac motor drive be at the position control mode, set Index 6060 = 1.
- 3. Set 2060-01 = 0080h, then motor drive will have server on.
- 4. Set target position: set 2060-05 = target position.
- 5. Set 2060-01 =0081h to trigger the motor drive to run to the target position.
- 6. To move to another position, simply repeat step 3 to 5.

NOTE01: To know the current position, read 2061-05.

NOTE02: To know if reaching the target position, read bit 0 of 2061 (0: Not reached, 1: Reached).

Home Mode

- 1. Set Pr00-12 to choose how to return home.
- 2. Set the left and right limits correspond to the position of MI terminal.
- 3. To switch CH2000 control mode to Home mode: Set Index 6060 = 6.
- 4. Set 2060-01 = 0080h, then motor drive will have server on.
- 5. Set the ACK signal: set 2060-01 = 0081h, then the motor drive will start to go back home.

NOTE 01: To know if returning home is completed, read bit12 of 6041 (0: Not reached, 1: Reached).

15-3-5 DI/DO AI AO are controlled via CANopen

To control the DO AO of the motor drive through CANopen, follow the steps below:

- 1. To set the DO to be controlled, define this DO to be controlled by CANopen. For example, set Pr02-14 to control RY2.
- 2. To set the DO to be controlled, define this AO to be controlled by CANopen. For example, set Pr03-23 to control AFM2.
- 3. To control the mapping index of CANopen. If you want to control DO, then you will need to control Index2026-41. If you want to control AO, then you will need to control 2026-AX. If you want to set RY2 as ON, set the bit 1 of Index 2026-41 =1, then RY2 will output 1. If you want to control AFM2 output = 50.00%, then you will need to set Index 2026-A2 =5000, then AFM2 will output 50%.

Mapping table of CANopen DI DO AI AO:

Terminal	Terminal Related Parameters		Mapping Index		
FWD	==	RO	2026-01 bit 0		
REV	EV ==		2026-01 bit 1		
MI 1	==	RO	2026-01 bit 2		
MI 2	==	RO	2026-01 bit 3		
MI 3	==	RO	2026-01 bit 4		
MI 4	==	RO	2026-01 bit 5		
MI 5	==	RO	2026-01 bit 6		
MI 6	==	RO	2026-01 bit 7		
MI 7	==	RO	2026-01 bit 8		
MI 8	==	RO	2026-01 bit 9		
MI 10	==	RO	2026-01 bit 10		
MI 11	==	RO	2026-01 bit 11		
MI 12	==	RO	2026-01 bit 12		
MI 13	==	RO	2026-01 bit 13		
MI 14	==	RO	2026-01 bit 14		
MI 15	==	RO	2026-01 bit 15		
DO :					
Terminal	Related Parameters	R/W	Mapping Index		
RY1	P2-13 = 50	RW	2026-41 bit 0		
DV2	P2-14 = 50	RW	2026-41 bit 1		
RY2	P2-15 = 50	RW	2026-41 bit 2		

DI:

MO1

MO2

MO3

MO4

P2-16 = 50

P2-17 = 50

P2-18 = 50

P2-19 = 50

2026-41 bit 3

2026-41 bit 4

2026-41 bit 5

2026-41 bit 6

RW

RW

RW

RW

MO5	P2-20 = 50	RW	2026-41 bit 7
MO6	P2-21 = 50	RW	2026-41 bit 8
MO7	P2-22 = 50	RW	2026-41 bit 9
MO8	P2-23 = 50	RW	2026-41 bit 10

AI :

Terminal	Related Parameters	R/W	Mapping Index		
AVI	VI ==		Value of 2026-61		
ACI	==	RO	Value of 2026-62		
AUI	AUI ==		Value of 2026-63		

AO :

[Terminal	Related Parameters	R/W	Mapping Index
	AFM1	P3-20 = 20	RW	Value of 2026-A1
	AFM2	P3-23 = 20	RW	Value of 2026-A2

15.4 CANopen Supporting Index

CH2000 Index:

Parameter index corresponds to each other as following:

2000H + Group

sub-Index member+1

For example:

Pr.10.15 (Encoder Slip Error Treatment)

Group		member
10(0 A H)	-	15(0FH)
Index = 2000H ·	+ 0AF	H = 200A

Sub Index = 0FH + 1H = 10H

CH2000 Control Index:

Delta Standard Mode (Old definition)

Index	Sub	Definition	Factory Setting	R/W	Size	Note			
	0	Number	3	R	U8				
Index 2020H			Setting			Bit 1~0 Bit3~2 Bit5~4 Bit7~6 Bit11~8	Note00B:disable01B:stop10B:disable11B: JOG EnableReserved00B:disable01B: Direction forward10B: Reverse11B: Switch Direction00B: 1 st step Accel. /Decel.01B: 2 nd step Accel. /Decel.10B: 3 rd step Accel. /Decel.10B: 3 rd step Accel. /Decel.10B: 3 rd step Accel. /Decel.000B: Master speed0000B: Master speed0010B: 2 nd step speed0010B: 2 nd step speed010B: 4 th step speed010B: 5 th step speed0110B: 6 th step speed1000B: 8 th step speed1010B: 10 th step speed1010B: 10 th step speed1010B: 12 th step speed1011B: 11 th step speed1101B: 12 th step speed1101B: 12 th step speed1101B: 12 th step speed1111B: 15 th step speed1110B: 14 th step speed1110B: 15 th step speed		
						Bit12 Bit14~13	1: Enable the function of Bit6-11 00B: no function 01B: Operation command by		
							the digital keypad		

Index	Sub	Definition	Factory Setting	R/W	Size		Note
							10B: Operation command by Pr. 00-21 setting
							11B: Switch the source of
							operation command
						Bit 15	Reserved
	2	Freq. command	0	RW	U16		1
		(XXX.XXHz)				Bit0	1: E.F. ON
	3	Other trigger	0	RW	U16	Bit1	1: Reset
			0			Bit15~2	Reserved
2021H	0	Number	DH	R	U8	DITIO	
	1	Error code	0	R	U16		
	2	AC motor drive status	0	R	U16	Bit 1~0	00B: stop
							01B: decelerate to stop
							10B: waiting for operation
							command
							11B: in operation
						Bit 2	1: JOG command
						Bit 4~3	00B: forward running
							01B: switch from reverse
							running to forward running
							10B: switch from forward
							running to reverse running
							11B: reverse running
						Bit 7~5	Reserved
						Bit 8	1: master frequency command controlled by communication interface
						Bit 9	1: master frequency command controlled by analog signal input
						Bit 10	1: operation command controlled by communication interface
						Bit 15~11	Reserved
	3	Freq. command (XXX.XXHz)	0	R	U16		
	4	Output freq. (XXX.XXHz)	0	R	U16		
	5	Output current (XX.XA)	0	R	U16		
	6	DC bus voltage (XXX.XV)	0	R	U16		
	7	Output voltage (XXX.XV)	0	R	U16		
	8	the current segment run by the multi-segment speed	0	R	U16		
	9	commend Reserved	0	R	U16		
	A	Display counter value (c)	0	R	U16		
		Display output power angle					
	В	(XX.X°)	0	R	U16		
	С	Display output torque (XXX.X%)	0	R	U16		
	D	Display actual motor speed (rpm)	0	R	U16		
	E	Number of PG feed back pulses (0~65535)	0	R	U16		
	F	Number of PG2 pulse commands (0~65535)	0	R	U16		
	10	power output (X.XXXKWH)	0	R	U16		
2022H	0	Reserved	0	R	U16		
	1	Display output current	0	R	U16		

Index	Sub	Definition	Factory Setting	R/W	Size	Note
	2	Display counter value	0	R	U16	
	3	Display actual output frequency (XXX.XXHz)	0	R	U16	
	4	Display DC-BUS voltage (XXX.XV)	0	R	U16	
	5	Display output voltage (XXX.XV)	0	R	U16	
	6	Display output power angle (XX.X°)	0	R	U16	
	7	Display output power in kW	0	R	U16	
	8	Display actual motor speed (rpm)	0	R	U16	
	9	Display estimate output torque (XXX.X%)	0	R	U16	
	A	Display PG feedback	0	R	U16	
	В	Display PID feedback value after enabling PID function in % (To 2 decimal places)	0	R	U16	
	с	Display signal of AVI analog input terminal, 0-10V corresponds to 0-100% (To 2 decimal places)	0	R	U16	
	D	Display signal of ACI analog input terminal, 4-V20mA/0-10V corresponds to 0-100% (To 2 decimal places)	0	R	U16	
	E	Display signal of AUI analog input terminal, -10V~10V corresponds to -100~100% (To 2 decimal places)	0	R	U16	
	F	Display the IGBT temperature of drive power module in °C	0	R	U16	
	10	Display the temperature of capacitance in °C	0	R	U16	
	11	The status of digital input (ON/OFF), refer to Pr.02-12	0	R	U16	
	12	The status of digital output (ON/OFF), refer to Pr.02-18	0	R	U16	
	13	Display the multi-step speed that is executing	0	R	U16	
	14	The corresponding CPU pin status of digital input	0	R	U16	
	15	The corresponding CPU pin status of digital output	0	R	U16	
	16	Number of actual motor revolution (PG1 of PG card). it will start from 9 when the actual operation direction is changed or keypad display at stop is 0. Max. is 65535	0	R	U16	
	17	Pulse input frequency (PG2 of PG card)	0	R	U16	
	18	Pulse input position (PG card PG2), maximum setting is 65535.	0	R	U16	
	19	Position command tracing error	0	R	U16	
	1A	Display times of counter overload (0.00~100.00%)	0	R	U16	

Index	Sub	Definition	Factory Setting	R/W	Size	Note
	1B	Display GFF in %	0	R	U16	
	1C	Display DCbus voltage ripples (Unit: Vdc)	0	R	U16	
	1D	Display PLC register D1043 data	0	R	U16	
	1E	Display Pole of Permanent Magnet Motor	0	R	U16	
	1F	User page displays the value in physical measure	0	R	U16	
	20	Output Value of Pr.00-05	0	R	U16	
	21	Number of motor turns when drive operates	0	R	U16	
	22	Operation position of motor	0	R	U16	
	23	Fan speed of the drive	0	R	U16	
	24	Control mode of the drive 0: speed mode 1: torque mode	0	R	U16	
	25	Carrier frequency of the drive	0	R	U16	

CANopen Remote IO mapping

•			
Index	Sub	R/W	Definition
2026H	01h	R	Each bit corresponds to the different input terminals
	02h	R	Each bit corresponds to the different input terminals
	03h~40h	R	Reserved
	41h	RW	Each bit corresponds to the different output terminals
	42h~60h	R	Reserved
	61h	R	AVI (%)
	62h	R	ACI (%)
	63h	R	AUI (%)
	64h~A0h	R	Reserved
	A1h	RW	AFM1 (%)
	A2h	RW	AFM2 (%)

Delta Standard Mode (New definition)

Index	euh	DVV	Sizo	[Descriptions		Speed Mode	Position Mode	Home Mode	Torque Mode
IIIUEX	Sub			bit	Definition Priority		Speed Mode			
	00h	R	U8							
				0	Ack	4		Pulse 1: Position control	Pulse 1: Return to home	
				1	Dir	4	0: FWD run command 1: REV run command			
	01h			2						
2060h		RW	U16	3	Halt		0: drive run till target speed is attained 1: drive stop by declaration setting			
				4	Hold		0: drive run till target speed is attained 1: frequency stop at current frequency			
				5	JOG		0:JOG OFF Pulse 1:JOG RUN			
				6	QStop		Quick Stop			

Index	Index sub R/		Sizo	C	Descriptions	Speed Mode	Position Mode	Home Mode	Torque Mode
muex			Size	bit	DefinitionPriority	/ Speed Mode	Position Mode		Torque Mode
				7	Power	0:Power OFF 1:Power ON	0:Power OFF 1:Power ON	0:Power OFF 1:Power ON	0:Power OFF 1:Power ON
				14~8	Cmd SW	Multi-step frequency switching	Multi-step position switching		
				15		Pulse 1: Fault code cleared	Pulse 1: Fault code cleared	Pulse 1: Fault code cleared	Pulse 1: Fault code cleared
	02h	RW	U16						
		RW				Speed command (unsigned decimal)			
		RW							
		RW	S32				Position command		
	06h	RW							
	07h	RW	U16						Torque command (signed decimal)
	08h	RW	U16						Speed limit (unsigned decimal)
				0	Arrive	Frequency attained	Position attained	Homing complete	Torque attained
				1	Dir	0: Motor FWD run 1: Motor REV run			
				2	Warn	Warning	Warning	Warning	Warning
	01h	R	U16	3	Error	Error detected	Error detected	Error detected	Error detected
				4					
				5	JOG	JOG	JOG	JOG	JOG
				6	QStop	Quick stop	Quick stop	Quick stop	Quick stop
2061h				7	Power On	Switch ON	Switch ON	Switch ON	Switch ON
				15~8					
	02h	R							
	03h	R	U16			Actual output frequency	Actual output frequency	Actual output frequency	Actual output frequency
	04h	R							
	05h		S32			Actual position (absolute)	Actual position (absolute)	Actual position (absolute)	Actual position (absolute)
	06h	R				<u> </u>	/		
	07h		S16			Actual torque	Actual torque	Actual torque	Actual torque

DS402 Standard

Index	Sub	Definition	Factory Setting	R/W	Size		PDO Map	Mode	Note
6007h	0	Abort connection option code	2	RW	S16		Yes		0: No action 2: Disable Voltage, 3: quick stop
603Fh	0	Error code	0	R0	U16		Yes		
6040h	0	Control word	0	RW	U16		Yes		
6041h	0	Status word	0	R0	U16		Yes		
6042h	0	vl target velocity	0	RW	S16	rpm	Yes	vl	
6043h	0	vl velocity demand	0	RO	S16	rpm	Yes	vl	
6044h	0	vl control effort	0	RO	S16	rpm	Yes	vl	
604Fh	0	vl ramp function time	10000	RW	U32	1ms	Yes	vl	Unit must be: 100ms, and
6050h	0	vl slow down time	10000	RW	U32	1ms	Yes	vl	check if the setting is set to
6051h	0	vl quick stop time	1000	RW	U32	1ms	Yes	vl	0.
605Ah	0	Quick stop option code	2	RW	S16		No		0 : disable drive function 1 :slow down on slow down ramp 2: slow down on quick stop ramp

Index	Sub	Definition	Factory Setting	R/W	Size	Unit	PDO Map	Mode	Note
									5 slow down on slow down ramp and stay in QUICK STOP
									6 slow down on quick stop ramp and stay in QUICK STOP
605Ch	0	Disable operation option code	1	RW	S16		No		0: Disable drive function 1: Slow down with slow down ramp; disable of the drive function
6060h	0	Mode of operation	2	RW	S8		Yes		1: Profile Position Mode 2: Velocity Mode 4: Torque Profile Mode 6: Homing Mode
6061h	0	Mode of operation display	2	RO	S8		Yes		Same as above
6064h	0	pp Position actual value	0	RO	S32		Yes	рр	
6071h	0	tq Target torque	0	RW	S16	0.1%	Yes	tq	Valid unit: 1%
6072h	0	tq Max torque	150	RW	U16	0.1%	No	tq	Valid unit: 1%
6075h	0	tq Motor rated current	0	RO	U32	mA	No	tq	
6077h	0	tq torque actual value	0	RO	S16	0.1%	Yes	tq	
6078h	0	tq current actual value	0	RO	S16	0.1%	Yes	tq	
6079h	0	tq DC link circuit voltage	0	RO	U32	mV	Yes	tq	
607Ah	0	pp Target position	0	RW	S32	1	Yes	рр	

15.5 CANopen Fault Code

Display	Fault code	Description	CANopen fault code	CANopen fault register (bit 0~7)
Fault ocA Oc at accel	0001H	Over-current during acceleration	2213 H	1
Fault ocd Oc at decel	0002H	Over-current during deceleration	2213 H	1
Fault ocn Oc at normal SPD	0003H	Over-current during steady status operation	2214H	1
Fault GFF Ground fault	0004H	Ground fault. When (one of) the output terminal(s) is grounded, short circuit current is more than 50% of AC motor drive rated current. NOTE: The short circuit protection is provided for AC motor drive protection, not for protection of the user.	2240H	1
HAND Fault occ Short Circuit	0005H	Short-circuit is detected between upper bridge and lower bridge of the IGBT module.	2250H	1
Fault ocS Oc at stop	0006H	Over-current at stop. Hardware failure in current detection	2314H	1
Fault ovA Ov at accel	0007H	Over-current during acceleration. Hardware failure in current detection	3210H	2
Fault ovd Ov at decel	0008H	Over-current during deceleration. Hardware failure in current detection.	3210H	2
Fault ovn Ov at normal SPD	0009H	Over-current during steady speed. Hardware failure in current detection.	3210H	2
Fault ovS Ov at stop	000AH	Over-voltage at stop. Hardware failure in current detection	3210H	2

Display	Fault code	Description	CANopen fault code	CANopen fault register (bit 0~7)
Fault LvA Lv at accel	000BH	DC BUS voltage is less than Pr.06.00 during acceleration.	3220H	2
Fault Lvd Lv at decel	000CH	DC BUS voltage is less than Pr.06.00 during deceleration.	3220H	2
Fault Lvn Lv at normal SPD	000DH	DC BUS voltage is less than Pr.06.00 in constant speed.	3220H	2
Fault LvS Lv at stop	000EH	DC BUS voltage is less than Pr.06-00 at stop	3220H	2
Fault OrP Phase Lacked	000FH	Phase Loss Protection	3130H	2
Fault OH1 IGBT over heat	0010H	IGBT overheat IGBT temperature exceeds protection level. 1~15HP: 90°C 20~100HP: 100°C	4310H	3
Fault oH2 Hear Sink oH	0011H	Heat sink overheat Heat sink temperature exceeds 90oC	4310H	3
HAND Fault tH1o Thermo 1 open	0012H	Temperature detection circuit error (IGBT) IGBT NTC	FF00H	3
HAND Fault tH2o Thermo 2 open	0013H	Temperature detection circuit error (capacity module) CAP NTC	FF01H	3
Fault PWR Power RST OFF	0014H	Power RST off	FF02H	2

Display	Fault code	Description	CANopen fault code	CANopen fault register (bit 0~7)
Fault oL Inverter oL	0015H	Overload. The AC motor drive detects excessive drive output current. NOTE: The AC motor drive can withstand up to 150% of the rated current for a maximum of 60 seconds.	2310H	1
Fault EoL1 Thermal relay 1	0016H	Electronics thermal relay 1 protection	2310H	1
Fault EoL2 Thermal relay 2	0017H	Electronics thermal relay 2 protection	2310H	1
Fault ot1 Over torque 1	001AH	These two fault codes will be displayed when output current exceeds the over-torque detection level (Pr.06.07 or	8311H	3
Fault ot2 Over torque 2	001BH	Pr.06.10) and exceeds over-torque detection (Pr.06.08 or Pr.06.11) and it is set 2 or 4 in Pr.06-06 or Pr.06-09.	8311H	3
Fault uC Under torque 1	001CH	Low current	8321H	1
Fault cF1 EEPROM write Err	001EH	Internal EEPROM can not be programmed.	5530H	5
Fault cF2 EEPROM read Err	001FH	Internal EEPROM can not be read.	5530H	5
Fault cd1 las sensor Err	0021H	U-phase error	FF04H	1
Fault cd2 Ibs sensor Err	0022H	V-phase error	FF05H	1
Fault cd3 Ics sensor Err	0023H	W-phase error	FF06H	1

Display	Fault code	Description	CANopen fault code	CANopen fault register (bit 0~7)
HAND Fault Hd0 cc HW Error	0024H	cc (current clamp) hardware error	FF07H	5
HAND Fault Hd1 oc HW Error	0025H	oc hardware error	FF08H	5
Fault Hd2 ov HW Error	0026H	ov hardware error	FF09H	5
HAND Fault Hd3 GFF HW Error	0027H	GFF hardware error	FF0AH	5
Fault AUE Auto tuning Err	0028H	Auto tuning error	FF21H	1
Fault AFE PID Fbk Error	0029H	PID loss (ACI)	FF22H	7
Fault PGF1 PG Fbk Error	002AH	PG feedback error	7301H	7
Fault PGF2 PG Fbk Loss	002BH	PG feedback loss	7301H	7
Fault PGF3 PG Fbk Over SPD	002BH	PG feedback stall	7301H	7
Fault PGF4 PG Fbk deviate	002CH	PG slip error	7301H	7
Fault ACE ACI loss	0030H	ACI loss	FF25H	1

Display	Fault code	Description	CANopen fault code	CANopen fault register (bit 0~7)
Fault EF External Fault	0031H	External Fault When input EF (N.O.) on external terminal is closed to GND, AC motor drive stops output U, V, and W.	9000H	5
Fault EF1 Emergency stop	0032H	Emergency stop When the multi-function input terminals MI1 to MI6 are set to emergency stop, the AC motor drive stops output U, V, W and the motor coasts to stop.	9000H	5
Fault bb Base block	0033H	External Base Block When the external input terminals MI1 to MI16 are set as bb and active, the AC motor drive output will be turned off	9000H	5
Fault Pcod Password Error	0034H	Password will be locked if three fault passwords are entered	FF26H	5
Fault ccod SW code Error	0035H	Software error	6100H	5
Fault cE1 Modbus CMD err	0036H	Illegal function code	7500H	4
Fault cE2 Modbus ADDR err	0037H	Illegal data address (00H to 254H)	7500H	4
Fault cE3 Modbus DATA err	0038H	Illegal data value	7500H	4
Fault cE4 Modbus slave FLT	0039H	Data is written to read-only address	7500H	4
Fault cE10 Modbus time out	003AH	Modbus transmission timeout.	7500H	5

Display	Fault code	Description	CANopen fault code	CANopen fault register (bit 0~7)
Fault cP10 Keypad time out	003BH	Keypad transmission timeout.	7500H	4
Fault bF Braking fault	003CH	Brake resistor fault	7110H	4
Fault ydc Y-delta connect	003DH	Motor Y-Δ switch error	3330H	2
Fault dEb Dec. Energy back	003EH	Energy regeneration when decelerating	FF27H	2
Fault oSL Over slip Error	003FH	Over slip error. Slip exceeds Pr.05.26 limit and slip duration exceeds Pr.05.27 setting.	FF28H	7
Fault PGF5 PG HW Error	0041H	PG Card Error	FF29H	5
Fault ocU Unknow Over Apm	0042H	over current caused by unknown reason	2310H	1
Fault ovU Unknow Over volt.	0043H	over voltage caused by unknown reason	3210H	2
Fault S1 S1-Emergy stop	0049H	external safety emergency stop	FF2AH	5
Fault OPHL U phase lacked	0052H	U phase output phase loss	2331H	2
Fault OPHL U phase lacked	0053H	V phase output phase loss	2332H	2

Display	Fault code	Description	CANopen fault code	CANopen fault register (bit 0~7)
Fault OPHL U phase lacked	0054H	W phase output phase loss	2333H	2
Fault aocc A phase short	004FH	A phase short	FF2BH	1
Fault bocc B phase short	0050H	B phase short	FF2CH	1
Fault cocc C phase short	0051H	C phase short	FF2DH	1
Fault CGdE Guarding T-out	0065H	Guarding time-out 1	8130H	4
Fault CHbE Heartbeat T-out	0066H	Heartbeat time-out	8130H	4
Fault CSyE SYNC T-out	0067H	CAN synchrony error	8700H	4
Fault CbFE CAN/S bus off	0068H	CAN bus off	8140H	4
Fault CIdE CAN/S Idx exceed	0069H	Can index exceed	8110H	4
Fault CAdE CAN/S add. set	006AH	CAN address error	0x8100	4
Fault CFdE CAN/S FRAM fail	006BH	CAN frame fail	0x8100	4

15.6 CANopen LED Function

There are two CANopen flash signs: RUN and ERR.

RUN LED:

LED status	Condition	CANopen State
OFF		Initial
Blinking	ON-200 200 ms ms ms	Pre-Operation
Single flash	ON 200 200 100 ms ms ms ms	Stopped
ON		Operation

ERR LED:

LED status	Condition/ State
OFF	No Error
Single	One Message fail
flash	ON - 200 200 100 ms ms ms ms to ms
Double	Guarding fail or heartbeat fail
flash	ON 200 200 100 ms ms ms ms ms
Triple flash	SYNC fail
	ON 200 200 200 200 100 ms ms m
ON	Bus off

16 PLC Function Applications

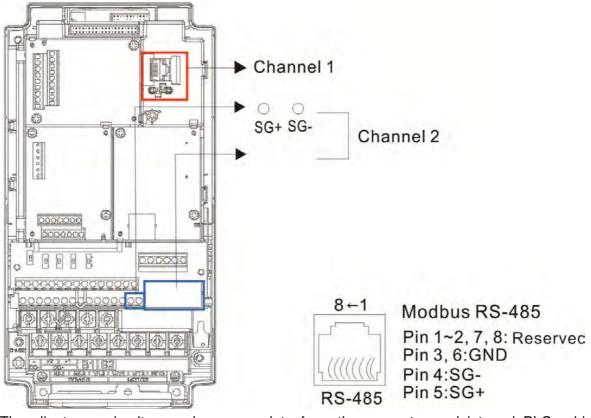
16-1	PLC Summary								
16-2									
16-3	Turn on								
	16-3-1	Connect to PC							
	16-3-2	I/O device explanation							
	16-3-3	Installation WPLSoft							
	16-3-4	Program writing							
	16-3-5	Program download							
	16-3-6	Program monitoring							
16-4	Basic p	rinciples of PLC ladder diagrams							
	16-4-1	Schematic diagram of PLC ladder diagram program							
	scannir	ng							
	16-4-2	Introduction to ladder diagrams							
	16-4-3	Overview of PLC ladder diagram editing							
	16-4-4	Commonly-used basic program design examples							
16-5	Various	PLC device functions							
	16-5-1	Introduction to device functions							
	16-5-2	Introduction to special relay functions (special M)							
	16-5-3	Introduction to special register functions (special D)							
	16-5-4	PLC Communication address							
16-6	Introduc	ction to the Command Window							
	16-6-1	Overview of basic commands							
	16-6-2	Detailed explanation of basic commands							
	16-6-3	Overview of application commands							
	16-6-4	Detailed explanation of applications commands							
	16-6-5	Detailed explanation of driver special applications							
	comma	Inds							
16-7	Error di	splay and handling							
16-8	CANop	en Master control applications							
16-9	Explana	ation of various PLC mode controls (speed, torque,							
homin	g, and po	sition)							
16-10	Internal	communications main node control							
16-11	Count f	unction using MI8							
	16-11-1 H	High-speed count function							
	16-11-2 F	Frequency calculation function							
16-12	Modbus	s remote IO control applications (use MODRW)							
16-13	Calend	ar							

16-1 PLC Summary

16-1-1 Introduction

The commands provided by the CH2000's built-in PLC functions, including the ladder diagram editing tool WPLSoft, as well as the usage of basic commands and applications commands, chiefly retain the operating methods of Delta's PLC DVP series.

16-1-2 WPLSoft ladder diagram editing tool

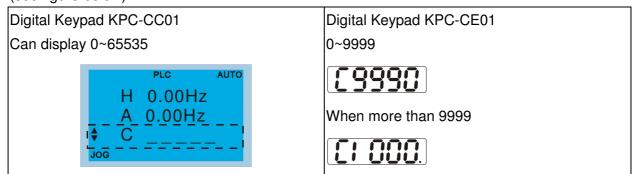

WPLSoft is Delta's program editing software for the DVP and CH2000 programmable controllers in the Windows operating system environment. Apart from general PLC program design general Windows editing functions (such as cut, paste, copy, multiple windows, etc.), WPLSoft also provides many Chinese/English annotation editing and other convenience functions (such as registry editing, settings, file reading, saving, and contact graphic monitoring and settings, etc.).

Item	System requirements						
Operating system	Windows 95/98/2000/NT/ME/XP						
CPU	At least Pentium 90						
Memory	At least 16MB (we recommend at least 32MB)						
Hard drive	Hard drive capacity: at least 100MB free space						
	One optical drive (for use in installing this software)						
Dicplay	Resolution: 640×480, at least 16 colors; it is recommended that the screen						
Display	area be set at 800×600 pixels						
Mouse	Ordinary mouse or Windows-compatible device						
Printer	Printer with a Windows driver program						
RS-485 port	Must have at least an RS-485 port to link to the PLC						
Suitable PLC	Delta's full DVP-PLC series, VFD-CH2000 series						
models							

The following basic requirements that need to install WPLSoft editing software:

16-2 Notes before PLC use

- 1. The PLC has a preset communications format of 7,N,2,9600, with node 2; the PLC node can be changed in parameter 09-35, but this address may not be the same as the converter's address setting of 09-00.
- 2. The CH2000 provides 2 communications serial ports that can be used to download PLC programs (see figure below). Channel 1 has a fixed communications format of 19200,8,N,2 RTU.


3. The client can simultaneously access data from the converter and internal PLC, which is performed through identification of the node. For instance, if the converter node is 1 and the internal PLC node is 2, then the client command will be

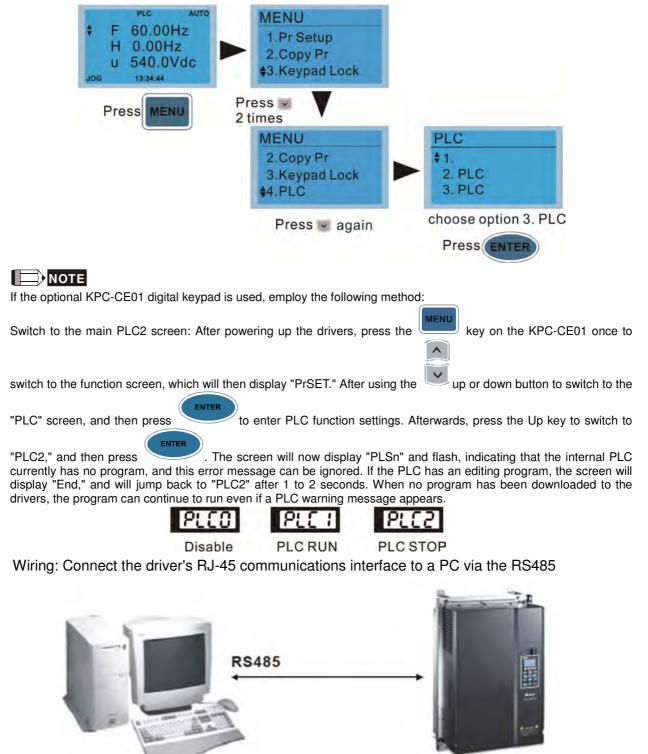
01 (node) 03 (read) 0400 (address) 0001 (1 data item), indicating that it must read the data in converter parameter 04-00

02 (node) 03 (read) 0400 (address) 0001 (1 data item), indicating that it must read the data in internal PLC X0

- 4. The PLC program will be disabled when uploading/downloading programs.
- 5. Please note when using WPR commands to write in parameters, values may be modified up to a maximum of 10⁹ times, otherwise a memory write error will occur. The calculation of modifications is based on whether the entered value has been changed. If the entered value is left unchanged, the modifications will not increase afterwards. But if the entered value is different from before, the number of modifications will increase by one.

6. When parameter 00-04 is set as 28, the displayed value will be the value of PLC register D1043 (see figure below):

- 7. In the PLC Run and PLC Stop mode, the content 9 and 10 of parameter 00-02 cannot be set and cannot be reset to the default value.
- 8. The PLC can be reset to the default value when parameter 00-02 is set as 6.
- 9. The corresponding MI function will be disabled when the PLC writes to input contact X.
- 10. When the PLC controls converter operation, control commands will be entirely controlled by the PLC and will not be affected by the setting of parameter 00-21.
- 11. When the PLC controls converter frequency commands (FREQ commands), frequency commands will be entirely controlled by the PLC, and will not be affected by the setting of parameter 00-20 or the Hand ON/OFF configuration.
- 12. When the PLC controls converter frequency (TORQ commands), torque commands will be entirely controlled by the PLC, and will not be affected by the setting of parameter 11-33 or the Hand ON/OFF configuration.
- 13. When the PLC controls converter frequency (POS commands), position commands will be entirely controlled by the PLC, and will not be affected by the setting of parameter 11-40 or the Hand ON/OFF configuration.
- 14. When the PLC controls converter operation, if the keypad Stop setting is valid, this will trigger an FStP error and cause stoppage.


16-3 Turn on

2.

16-3-1 Connect to PC

Start operation of PLC functions in accordance with the following four steps

1. After pressing the Menu key and selecting 4: PLC on the KPC-CC01 digital keypad, press the Enter key (see figure below).

CH2000

3. PLC function usage

DLO	PLC funct	ions are as shown in the figure on the left; select				
PLC 1.Disable 2.PLC Run 3.PLC Stop	item 2 and implement PLC functions.					
	1: No function (Disable)					
	2: Enable PLC (PLC Run)					
	3: Stop PLC functions (PLC Stop)					
Optional product: PLC fu	unction display	PLC 0 : Do not implement PLC functions				
method on KPC-CE01 d	igital keypad	PLC 1 : Initiate PLC Run				

When the external multifunctional input terminals (MI1 to MI8) are in PLC Mode select bit0 (51) or PLC Mode select bit1 (52), and the terminal contact is closed or open, it will compulsorily switch to the PLC mode, and keypad switching will be ineffective. Corresponding actions are as follows:

PLC 2 : Initiate PLC Stop

PLC	mode	PLC Made select bit1(52)	PLC Mode select bit0 (51)		
Using KPC-CC01	Using KPC-CE01	PLC Mode select bit1(52)	FLC Mode select bito (51)		
Disable	PLC 0	OFF	OFF		
PLC Run	PLC 1	OFF	ON		
PLC Stop	PLC 2	ON	OFF		
Maintain previous	Maintain previous	ON	ON		
state	state	ON	ON		

Use of KPC-CE01 digital keypad to implement PLC functions

- ☑ When the PLC screen switches to the PLC1 screen, this will trigger one PLC action, and the PLC program start/stop can be controlled by communications via the WPL.
- ☑ When the PLC screen switches to the PLC2 screen, this will trigger one PLC stop, and the PLC program start/stop can be controlled by communications via the WPL.
- \square The external terminal control method is the same as shown in the table above.

- When input/output terminals (FWD REV MI1 to MI8 MI10 to 15, Relay1, Relay2 RY10 to RY15, MO1 to MO2 MO10 to MO11,) are included in the PLC program, these input/output terminals will only be used by the PLC. As an example, when the PLC program controls Y0 during PLC operation (PLC1 or PLC2), the corresponding output terminal relay(RA/RB/RC) will operate in accordance with the program. At this time, the multifunctional input/output terminal setting will be ineffective. Because these terminal functions are already being used by the PLC, the DI DO AO in use by the PLC can be determined by looking at parameter 02-52, 02-53, and 03-30.
- When the PLC's procedures use special register D1040, the corresponding AO contact AFM1 will be occupied, and AFM2 corresponding to special register D1045 will have the same situation.
- Parameter 03-30 monitors the state of action of the PLC function analog output terminal; Bit0 corresponds to the AFM1 action state, and Bit1 corresponds to the AFM2 action state.

16-3-2 I/O device explanation

Input devices:

Serial No.	X0	X1	X2	Х3	X4	X5	X6	X7	X10	X11	X12	X13	X14	X15	X16	X17
1	FWD	REV	MI1	MI2	MI3	MI4	MI5	MI6	MI7	MI8						
2											MI10	MI11	MI12	MI13	MI14	MI15
3											MI10	MI11	MI12	MI13		

1: Control I/O |

2: Expansion card EMC-D611A (D1022=4)

3: Expansion card EMC-D42A (D1022=5)

Output devices:

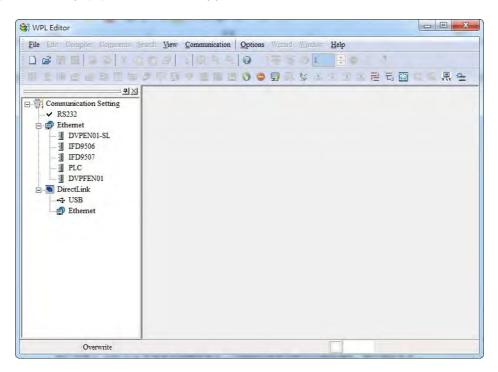
0,	Serial No.	Y0	Y1	Y2	Y3	Y4	Y5	Y6	Y7	Y10	Y11	Y12	Y13	Y14	Y15	Y16	Y17
	1	RY1	RY2		MO1	MO2											
	2						MO10	MO11									
	3						RY10	RY11	RY12	RY13	RY14	RY15					

1: Control I/O |

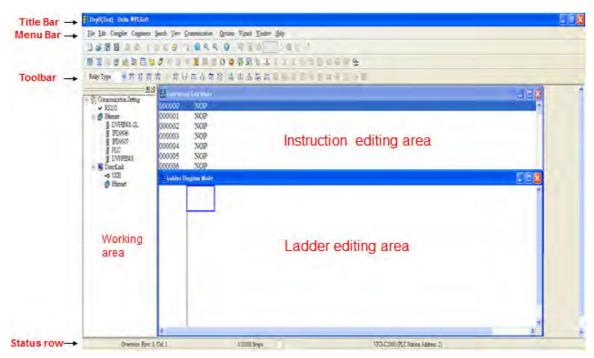
2: Expansion card EMC-D42A (D1022=5)

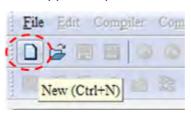
3: Expansion card EMC-R6AA (D1022=6)

16-3-3 Installation WPLSoft


See Delta's website for WPLSoft editing software: <u>http://www.delta.com.tw/industrialautomation/</u>download.

16-3-4 Program writing


After completing installation, the WPLSoft program will be installed in the designated subfolder "C:\Program Files\Delta Industrial Automation\WPLSoft x.xx." The editing software can now be run by clicking on the WPL icon using the mouse.


The WPL editing window will appear after 3 seconds (see figure below). When running WPLSoft for the first time, before "New file" has been used, only the "File (F)," "Communications (C)," View (V)," "Options (O)," and "Help (H)" columns will appear on the function toolbar.

After running WPLSoft for the second time, the last file edited will open and be displayed in the editing window. The following figure provides an explanation of the WPLSoft editing software window:

Click on the icon on the toolbar in the upper left part of the screen: opens new file (Ctrl+N)

You can also use "File (F)"=> New file (N) (Ctrl+N)

	File	Edit	Compiler Comme
See.		New	Ctrl+N
	Ĩ	<u>O</u> pen	Ctrl+O
1 10		Save	Ctrl+8
[Save As	Ctrl+Alt+S

The "Device settings" window will appear after clicking. You can now enter the project title and filename, and select the device and communication settings to be used

Program Title	
Test	
Select	VFD-C2000/CH2000/C -
Communication RS232 (COM	SE
-	VFD-C2000/CH2000/CT20
File Name	VFD-C200 VFD-CP2000
Dvp0	TP04P
	VFD-CP2000

Communications settings: Perform settings in accordance with the desired communications method

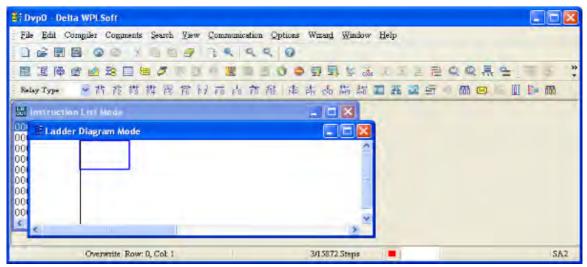
Connection Setup	1	
Туре	RS232	<u> </u>
Communication Sett	ing	
COM Port	COM3	ASCII
Data Length	7 💌	RTU (8 bits
Parity	Even 💌]
Stop Bits	1 -	Auto-detect
Baud Rate	9600 👻]
Station Address	1	Default
Ethernet Setting	-	
🖵 Assign IP	1	
Port	12346	-
Baud Rate Decide	dby	
· PLC Setting		
© WPL Setting		
Setup Responding	g Time	-
Times of Auto-ret	ry	3
Time Interval of A	uto-retry (sec.)	3

Press Confirm after completing settings and begin program editing. There are two program editing methods; you can choose whether to perform editing in the command mode or the ladder diagram mode.

Dvp0[Test] - Delta WPLSoft		The second se	en De
		unication Options Wizard Window Help	
		10000日本(1000年間)	
lay Type 7件 微 档	推 信行员	「古龍」はある新聞ニューをクラーをしている。	
শ্ব চ	Instruction Li	Mode	
Communication Setting		NOP	•
D Ethemet		NOP	-
DVPEN01-SL IFD9506	00000	Ladder Diagram Mode	_ [D] ×[
IFD9507	000004		-
I PLC	000005		
DVPFEN01 DirectLink	000007		
	000008		
- D Ethemet	000009		
	000011		
	000012		
			-
	1		
	_		
Overwrite Row: 0	Cot 1	0/10000 Steps VFD-C2000 CH	2000 CT2000 (PLC Station Address: 1)

In ladder diagram mode, you can perform program editing using the buttons on the function icon row

File Edit Compi	er Comments Search View Communication Options Wizard Window Help
0 🗳 🖬 🗃	9 2 1 5 6 9 3 Q 4 4 0 = 5 0 1 2 6 3 1
2 2 2	2 \$ □ <u>></u> 2 3 0 0 0 <u>5</u> 3 2 0 0 0 8 9
Relay Type	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
p0[Test] - Delta WPLSoft	
and the second sec	earch New Communication Options Wizard Window Help
	T930440 = 101 ; 07 1
I CZROL	
ay Type +ト 日村 後 描	
Communication Setting	Ladder Diagram Mode
Ethemet Diversion SL Diversion SL Diversion	


Basic Operation

Example: Input the ladder diagram in the following figure

Γ	MID	-(YD	
		(10	1
		END	٦
L		640	

Mouse operation and keyboard function key (F1 to F12) operation

1. The following screen will appear after a new file has been established:

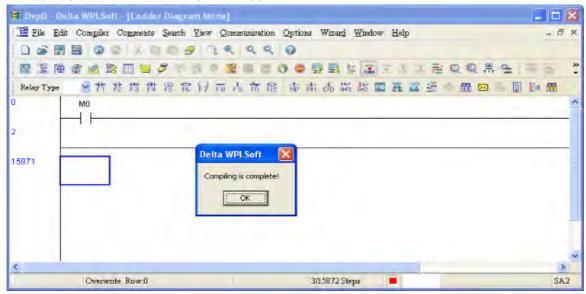
2. Use the mouse to click on the always-open switch icon the function key F1:

Dvp0	- Del	ta WPL	Soft	- [L	adde	r Die	agra	im M	ode]																×
Eile	Edit	Comp	iler (Comn	nente	Sea	rch	<u>V</u> jew	C		nucatio	n Qp	tions	Wizan	<u>W</u> u	woh	Help	2						- 8	2
		3		2 3	C II	h E	16	2 1	1	K X		0	2												
m 12	節	e 🔬	题		S	5	2	15	9.1	21		0	0		\$ 1		1 28	1	팥		Q 5	-		5	
Relay Ty	ре	47	۲, ۴	5 帽	間	鑃	0FF	H	FS	F's	前	陸下	in inte	do l	装 静	Plu	-	22	5	0 5		- 0	Ba I	6770	
			16 No	rmally	- 0	n Car	and acred																		
									111															18	í
-		Ow	ownit	e Ros	w 0.1	Col: 1				1			3	15872	2hone									SA	1

3. After the name of the input device and the comment dialog box have appeared, the device name (such as "M"), device number (such as "10"), and input comments (such as "auxiliary contact") can be selected; press the Confirm button when finished.

Constantly	opened contact	
evice Name	M •	ОК
evice Number	10 *	Cancel
temal Relay		
Range	MDM4095	
Comment	Internal Relay	

Dvp0 - Delta WPLSoft - [Ladder i	Nagram Mode)	
	earch Yiew Communication Options Wizard Window Help	A P X
	- ● ● ● ■ ■ ■ ● ● ● ■ ■ ● ● ● ● ● ● ● ●	= 3 ×
Relay Type	● 〒 17 〒5 ch 前 松 水 水 水 小 水 小 水 小 水 小 本 小 本 小 本 小 本 小 本 小	. [>+ M . ▲
4	· · · · · · · · · · · · · · · · · · ·	3
Overwrite Row: 0, Col	2 3/1/38/72 Steps	SA2

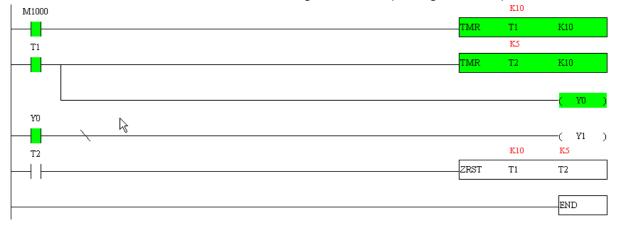

5. Click on application command icon 🗟 or press function key F6. Click on "All application

commands" in the function classification field, and click on the End command in the application command pull-down menu, or use the keyboard to key in "End" in that field, and press the confirm button.

St Dypti - Delta WPESolt -	Ludder Diagram	Mode)			
📲 File Edit Compiler Co		iew Communication Options Wizard	Window Help		- a x
Image:	Application Inst		5 M 3 2 2 A	EQQRE!	
	Instruction Type API Number Explanation	All Application Instructions Application Instruction Program end	END FAND FAND FAND FAND	Cancel]
C	IOW T, CUE I	36.2767.1%	FAND> FAND>= FEND		5

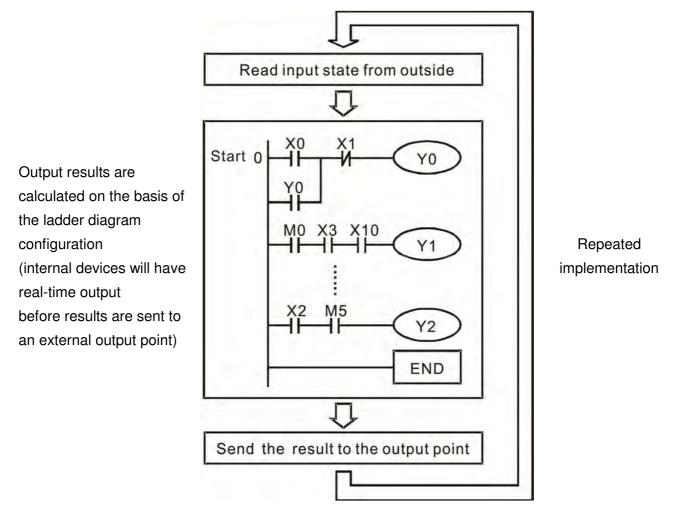
6. Click on the dicon, which will compile the edited ladder diagram as a command program.

After compiling, the number of steps will appear on the left side of the busbar.


16-3-5 Program download

After inputting a program using WPLSoft, select compile *inputting*. After completing compilation, select

the sto download a program. WPLSoft will perform program download with the online PLC in the communications format specified in communications settings.


16-3-6 Program monitoring

While confirming that the PLC is in the Run mode, after downloading a program, click on *solution* in the communications menu and select start ladder diagram control (see figure below)

16-4 Basic principles of PLC ladder diagrams

16-4-1 Schematic diagram of PLC ladder diagram program scanning

16-4-2 Introduction to ladder diagrams

Ladder diagrams comprise a graphic language widely applied in automatic control, and employs common electrical control circuit symbols. After a ladder diagram editor has been used to create a ladder pattern, PLC program designed is completed. The use of a graphic format to control processes is very intuitive, and is readily accepted by personnel who are familiar with electrical control circuit technology. Many of the basic symbols and actions in a ladder diagram comprise commonly-seen electrical devices in conventional automatic control power distribution panels, such as buttons, switches, relays, timers, and counters.

Internal PLC devices: The types and quantities of internal PLC devices vary in different brands of products. Although these internal devices use the same names as conventional electrical control circuit elements such as relays, coils, and contacts, a PLC does not actually contain these physical devices, and they instead correspond to basic elements in the PLC's internal memory (bits). For instance, if a bit is 1, this may indicate that a coil is electrified, and if that bit is 0, it will indicate that the coil is not electrified. An NO contact (Normal Open, or contact a) can be used to directly read the value of the corresponding bit, and an NC contact (Normal Close, or contact b) can be used to obtain the inverse of the bit's value. Multiple relays occupy multiple bits, and 8 bits comprise one byte; two

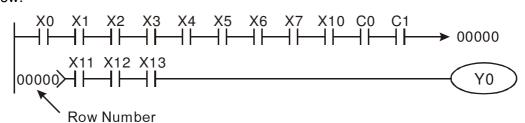
bytes comprise one word, and two words comprise a double word. When multiple relays are processing at the same time (such as addition/subtraction or displacement, etc.), a byte, word, or double word can be used. Furthermore, a PLC contains two types of internal devices: a timer and a counter. It not only has a coil, but can count time and numerical values. Because of this, when it is necessary to process some numerical values, these values are usually in the form of bytes, words, or double words.

The various internal devices in a PLC all account for a certain quantity of storage units in the PLC's storage area. When these devices are used, the content of the corresponding storage area is red in the form of bits, bytes, or words.

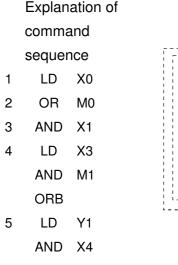
Device type	Description of Function
Input Relay	 An input relay constitutes the basic unit of storage in a PLC's internal memory corresponding to an external input point (which serves as a terminal connecting with an external input switch and receiving external input signals). It is driven by external input signals, to which it assigns values of 0 or 1. A program design method cannot change the input relay status, and therefore cannot rewrite the corresponding basic units of an input relay, and WPLSoft cannot be used to perform compulsory On/Off actions. A relay's contacts (contacts a and b) can be used an unlimited number of times. An input relay with no input signal must be left idle and cannot be used for some other purpose. ✓ Device indicated as: X0, X1, X7, X10, X11, etc. This device is expressed with the symbol "X," and a device's order is indicated with an octal number. Input point numbers are indicated in the main computer and in expansion
	devices.
Output Relay	An output relay constitutes the basic unit of storage in a PLC's internal memory corresponding to an external output point (which connects with an external load). It may be driven by an input relay contact, a contact on another internal device, or its own contacts. It uses one NO contact to connect with external loads or other contacts, and, like input contacts, can use the contact an unlimited number of times. An output relay with no input signal will be idle, but may be used an internal relay if needed. Device indicated as: Y0, Y1, Y7, Y10, Y11, etc. This device is expressed with the symbol "Y," and a device's order is indicated with an octal number.
	Output point numbers are indicated in the main computer and in expansion devices.
Internal Relay	Internal relays have no direct connection with the outside. These relays are auxiliary relays inside a PLC. Their function is the same as that of an auxiliary (central) relay in an electrical control circuit: Each auxiliary relay corresponding to a basic unit of internal storage; they can be driven by input relay contacts, output relay contacts, and the contacts of other internal devices. An internal auxiliary relay's contact can also be used an unlimited number of times. Internal relays have no outputs to outside, and must output via an output point.
	☑ Device indicated as: M0, M1 to M799, etc. This device is expressed as the symbol "M," expressed, and its order is expressed as a decimal number.
Counter	 A counter is used to perform counting operations. A count setting value (such as the number of pulses to be counted) must be assigned when a counter is used. A counter contains a coil, contact, and a counting storage device. When the coil goes from Off →to On, this indicates that the counter has an input pulse, and one is added to its count. There are 16 bits that can be employed by the user. ✓ Device indicated as: C0, C1 to C79, etc. This device is expressed as the symbol "C," expressed, and its order is expressed as a decimal number.

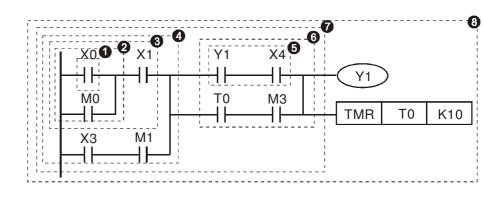
Introduction to the basic internal devices in a PLC

Device type	Description of Function
Timer	A timer is used to complete control of timing. The timer contains a coil, contact, and a time value register. When the coil is electrified, if the preset time is reached, the contact will be actuated (contact a will close, contact b will open), and the timer's fixed value be given by the set value. Timer has a regulated clock cycle (timing units: 100 ms). As soon as power to the coil is cut off, the contact will no longer be actuated (contact a will open, contact b will close), and the original timing value will return to zero.
	Device indicated as: T0, T1 to T159, etc. The device is expressed as the symbol "T," and its order is expressed as a decimal number.
Data register	When a PLC is used to perform various types of sequence control and set time value and count value control, it most commonly perform data processing and numerical operations, and data registers are used exclusively for storage of data and various parameters. Each data register contains 16 bits of binary data, which means that it can store one word. Two data registers with adjacent numbers can be used to process double words.
	Device indicated as: D0, D1 to D399, etc. The device is expressed as the symbol "D," and its order is expressed as a decimal number.


Ladder diagram images and their explanation

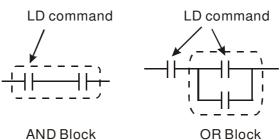
Ladder diagram structures	Explanation of commands	Command	Using Device
	NO switch, contact a	LD	Χ、Υ、Μ、Τ、Ο
	NC switch, contact b	LDI	Χ、Υ、Μ、Τ、Ο
	Series NO	AND	Χ、Υ、Μ、Τ、Ϲ
	Series NC	ANI	$X \mathrel{\scriptstyle{\scriptstyle\vee}} Y \mathrel{\scriptstyle{\scriptstyle\vee}} M \mathrel{\scriptstyle{\scriptstyle\vee}} T \mathrel{\scriptstyle{\scriptstyle\vee}} C$
	Parallel NO	OR	$X \mathrel{\scriptstyle{\scriptstyle\vee}} Y \mathrel{\scriptstyle{\scriptstyle\vee}} M \mathrel{\scriptstyle{\scriptstyle\vee}} T \mathrel{\scriptstyle{\scriptstyle\vee}} C$
	Parallel NC	ORI	$X \mathrel{\scriptstyle{\scriptstyle\vee}} Y \mathrel{\scriptstyle{\scriptstyle\vee}} M \mathrel{\scriptstyle{\scriptstyle\vee}} T \mathrel{\scriptstyle{\scriptstyle\vee}} C$
	Positive edge-triggered switch	LDP	Χ、Υ、Μ、Τ、Ϲ
	Negative edge-triggered switch	LDF	Χ、Υ、Μ、Τ、Ϲ
	Positive edge-triggered series	ANDP	Χ、Υ、Μ、Τ、Ο
	Negative edge-triggered series	ANDF	Χ、Υ、Μ、Τ、Ϲ
	Positive edge-triggered parallel	ORP	Χ、Υ、Μ、Τ、Ϲ
	Negative edge-triggered parallel	ORF	$X \cdot Y \cdot M \cdot T \cdot C$
	Block series	ANB	N/A

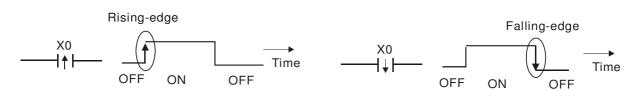

Ladder diagram structures	Explanation of commands	Command	Using Device
	Block parallel	ORB	N/A
	Multiple outputs	MPS MRD MPP	N/A
O	Coil driven output commands	OUT	Υ×Μ
	Some basic commands, applications commands	Some basic commands Applications commands	
	Inverted logic	INV	N/A


16-4-3 Overview of PLC ladder diagram editing

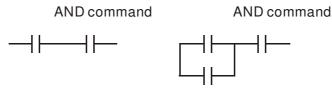
The program editing method begins from the left busbar and proceeds to the right busbar (the right busbar is omitted when editing using WPLSoft). Continue to the next row after completing each row; there is a maximum of 11 contacts on each row. If this is not sufficient, a continuous line will be will be generated to indicate the continued connection and more devices can be added. A continuous series of numbers will be generated automatically and identical input points can be used repeatedly. See figure below:

The ladder diagram programming method involves scanning from the upper left corner to the lower right corner. The coils and applications command computing box are handled in the output, and the ladder diagram is placed on the farthest right. Taking the figure below as an example, we can gradually analyze the procedural sequence of the ladder diagram. The number in the upper right corner gives the sequential order.



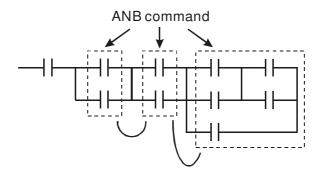

- 6 LD T0 AND M3 ORB 7 ANB
- 8 OUT Y1
 - TMR T0 K10

Explanation of basic structure of ladder diagrams

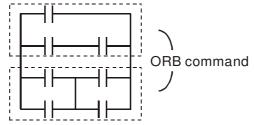

LD (LDI) command: An LD or LDI command is given at the start of a block.

LDP and LDF have this command structure, but there are differences in their action state. LDP, LDF only act at the rising or falling edge of a conducting contact. (see figure below):

AND (ANI) command: A series configuration in which a single device is connected with one device or a block.


ANDP, ANDF also have structures like this, but their action occurs at the rising and falling edge.

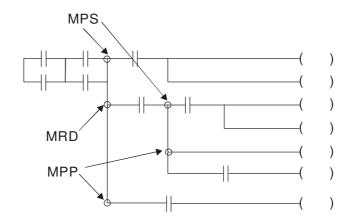
OR (ORI) command: A single device is connected with one device or a block.



ORP, ORF also have identical structures, but their action occurs at the rising and falling edge.

ANB command: A configuration in which one block is in series with one device or block.

ORB command: A configuration in which one block is in parallel with one device or block.

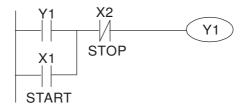

In the case of ANB and ORB operations, if a number of blocks are connected, they should be combined to form a block or network from the top down or from left to right.

MPS, MRD, MPP commands: Branching point memory for multiple outputs, enabling multiple, different outputs. The MPS command begins at a branching point, where the so-called branching point refers to the intersection of horizontal and vertical lines. We have to rely on the contact status along a single vertical line to determine whether the next contact can give a memory command. While each contact is basically able to give memory commands, in view of convenience and the PLC's capacity restrictions, this can be omitted from some places when converting a ladder diagram. The structure of the ladder diagram can be used to judge what kinds of contact memory commands are used.

MPS can be distinguished by use of the " $_{T}$ " symbol; this command can be used consecutively for up to 8 times. The MRD command is read from branching point memory; because logic states along any one vertical line must be the same, in order to continue analysis of other ladder diagrams, the original contact status must be read.

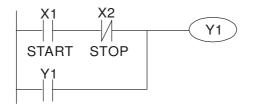
MRD can be distinguished by use of the " - symbol. The MPP command is read from the starting state of the uppermost branching point, and it is read from the stack (pop); because it is the final command along a vertical line, it indicates that the state of the vertical line can be concluded.

MPP can be distinguished by use of the "L" symbol. Although there should basically be no errors when using the foregoing analytical approach, the compiling program may sometimes omit identical state output, as shown in the following figure:


16-4-4 Commonly-used basic program design examples

Start, stop, and protection

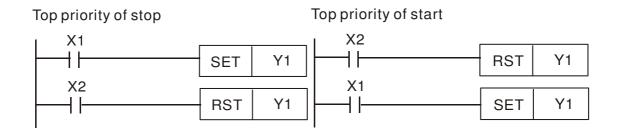
Some applications may require a brief close or brief break using the buttons to start and stop equipment. A protective circuit must therefore be designed to maintain continued operation in these situations; this protective circuit may employ one of the following methods:


Example 1: Priority stop protective circuit

When the start NO contact X1=On, and the stop NC contact X2=Off, Y1=On; if X2=On at this time, coil Y1 will no longer be electrified, and this is therefore referred to as priority stop.

Example 2: Priority start protective circuit

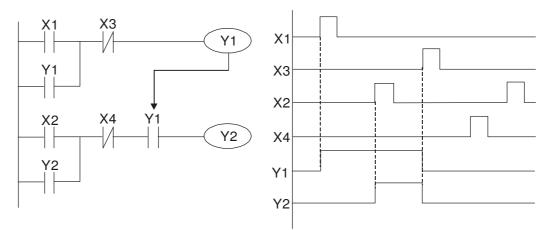
When start NO contact X1=On, and the stop NC contact X2=Off, Y1=On, and coil Y1 will be electrified and protected. At this time, if X2=On, coil Y1 will still protect the contact and continue to be electrified, and this is therefore priority start.



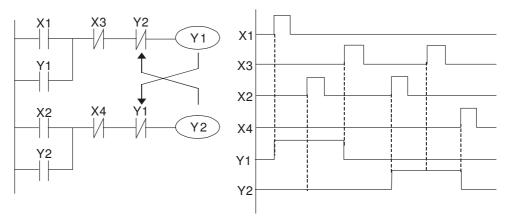
Example 3: Setting (SET) and reset (RST) command protective circuit

The following figure shows a protective circuit composed of RST and SET commands.

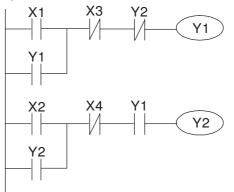
Priority stop occurs when the RST command is placed after the SET command. Because the PLC executes programs from the top down, at the end of the program, the state of Y1 will indicate whether coil Y1 is electrified. When X1 and X2 are both actuated, Y1 will lose power, and this is therefore priority stop.


Priority start occurs when the SET command is placed after the RST command. When X1 and X2 are both actuated, Y1 will be electrified, and this is therefore priority start.

Commonly-used control circuits

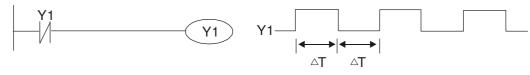

Example 4: Conditional control

X1, X3 are respectively start/stop Y1, and X2, X4 are respectively start/stop Y2; all have protective circuits. Because Y1's NO contact is in series with Y2's circuit, it becomes an AND condition for the actuation of Y2. The action of Y1 is therefore a condition for the action of Y2, and Y1 must be actuated before Y2 can be actuated.

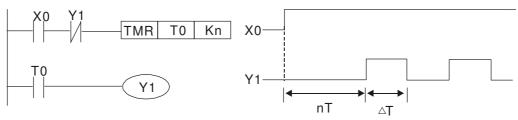

Example 5: Interlocking control

The figure below shows an interlocking control circuit. Depending on which of the start contacts X1, X2 is valid first, the corresponding output Y1 or Y2 will be actuated, and when one is actuated, the other will not be actuated. This implies that Y1 and Y2 cannot be actuated at the same time (interlocking effect). Even if both X1 and X2 are valid at the same time, because the ladder diagram program is scanned from the top down, it is impossible for Y1 and Y2 to be actuated at same time. This ladder diagram assigns priority only to Y1.

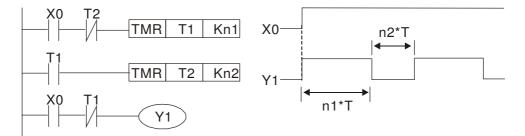
Example 6: Sequence control


If the NC contact of Y2 in the interlocking control configuration of example 5 is put in series with the Y1 circuit, so that it is an AND condition for actuation of Y1 (see figure below), not only is Y1 a condition for the actuation of Y2 in this circuit, the actuation of Y2 will also stop the actuation of Y1. This configuration confirms the actuation order of Y1 and Y2.

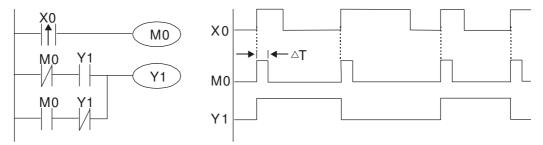
Example 7: Oscillating circuit


Oscillating circuit with a period of $\Delta T + \Delta T$

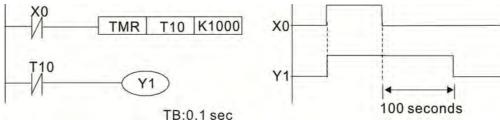
The figure below shows a very simple ladder diagram. When starting to scan the Y1 NC contact, because the Y1 coil has lost power, the Y1 NC contact will be closed. When the Y1 coil is then scanned, it will be electrified, and the output will be 1. When the Y1 NC contact is scanned in the scanning cycle, because Y1 coil is electrified, the Y1 NC contact will be open, the Y1 coil will then lose power, and the output will be 0. Following repeated scanning, the output of Y1 coil will have an oscillating waveform with a period of $\Delta T(On) + \Delta T(Off)$.

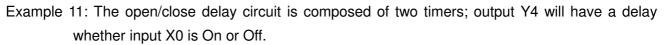

Oscillating circuit with a period of $nT+\Delta T$

The program of the ladder diagram shown below uses timer T0 to control coil Y1's electrified time. After Y1 is electrified, it causes timer T0 to close during the next scanning cycle, which will cause the output from Y1 to have the oscillating waveform shown in the figure below. Here n is the timer's decimal setting value, and T is the clock cycle of the timer.

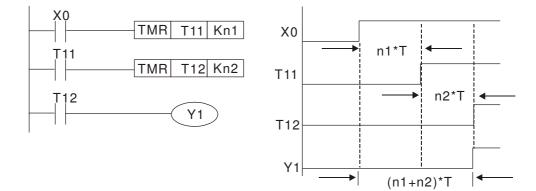

Example 8: Flashing circuit

The following figure shows an oscillating circuit of a type commonly used to cause an indicator light to flash or a buzzers to buzz. It uses two timers to control the On and Off time of Y1 coil. Here n1, n2 are the timing set values of T1 and T2, and T is the clock cycle of the timer.


Example 9: Triggering circuit


In the figure below, a command consisting of the differential of the rising edge of X0 causes coil M0 to generate a single pulse for ΔT (length of one scanning cycle), and coil Y1 is electrified during this scanning cycle. Coil M0 loses power during the next scanning cycle, and NC contact M0 and NC contact Y1 are both closed. This causes coil Y1 to stay in an electrified state until there is another rising edge in input X0, which again causes the electrification of coil M0 and the start of another scanning cycle, while also causing coil Y1 to lose power, etc. The sequence of these actions can be seen in the figure below. This type of circuit is commonly used to enable one input to perform two actions in alternation. It can be seen from the time sequence in the figure below that when input X0 is a square wave signal with a period of T, the output of coil Y1 will be a square wave signal with a period of 2T.

Example 10: Delay circuit


When input X0 is On, because the corresponding NC contact will be Off, the timer T10 will be in no power status, and output coil Y1 will be electrified. T10 will receive power and begin timing only after input X0 is Off, and output coil Y1 will be delayed for 100 sec. (K1000*0.1 sec. =100 sec.) before losing power; please refer to the sequence of actions in the figure below.

Example 12: Extended timing circuit

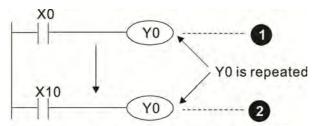
In the circuit in the figure on the left, the total delay time from the moment input X0 closes to the time output Y1 is electrified is $(n1+n2)^{*}T$, where T is the clock cycle. Timers: T11, T12; clock cycle: T.

16-5 Various PLC device functions

Item	Specifications	Notes
Algorithmic control method	Program stored internally, alternating back-and-forth scanning method	
Input/output control method	When it starts again after ending (after execution to the END command), the input/output has an immediate refresh command	
Algorithmic processing speed	Basic commands (several us);	Applications command (1-several tens of us)
Programming language	Command + ladder diagram	
Program capacity	10000 steps	
Input/output terminal	Input (X): 10, output (Y): 4	This number of contacts constitutes CH2000 input/output contacts; other devices have different correspondences

Туре	Device	Ite	m	Range		Function	
	Х	External input relay			Total 32	Corresponds to external input point	
	Y	External outp		number		Corresponds to external output point	
	М	Auxiliary	General Use	M0~M799, 800 points	Total 880	Contact can switch On/Off within the	
Rel			Special ourpose	M1000~M1079, 80 points	points	program	
Relay bit form	т	l limor l	100ms imer	T0~T159, 160 points	Total 160 points	Timers referred to by the TMR command; contact of the T with the same number will go On when the time is reached	
	С	Counter	16-bit counter, general use	C0~C79, 80 points	Total 80 points	Counter referred to by the CNT command; contact of the C with the same number will go On when the count is reached	
	Т	Current time	r value	T0~T159, 160 points		The contact will be On when the time is reached	
Regist	С	Current cour	nter value	C0~C79, 16-bit count points	er 80	The counter contact will come On when the count is reached	
Register word data	D	Data Register	Used maintain power Off Special	to D0~D399, 400 points D1000~D1199, 200 points	Total 1400 points	Used as data storage memory area	
			purpose	D2000~D2799, 800 points			
	K	Decimal	Single-byte	e Setting Range: K-32,76	8 ~ K32	2,767	
Constant	r\	Decimal	Double-by	byte Setting Range: K-2,147,483,64		8~K2,147,483,647	
Constant	Н	Hexadecima	Singlo-byt	-byte Setting Range:H0000 ~ HFFFF			
			Double-by	te Setting Range: H00000	000 ~ H	IFFFFFFF	

write/read)		RS-485/keypad port
Input/output		Built-in three analog inputs and two analog outputs
Function expansion module	Optional Accessories	EMC-D42A; EMC-R6AA; EMCD611A
Communication Expansion Module	Optional Accessories	EMC-COP01,(CANopen)


16-5-1 Introduction to device functions

Input/output contact functions

Input contact X functions: Input contact X is connected with an input device, and reads input signals entering the PLC. The number of times that contact a or b of input contact X is used in the program is not subject to restrictions. The On/Off state of input contact X will change as the input device switches On and Off; a peripheral device (WPLSoft) cannot be used to force contact X On or Off.

Output contact Y functions

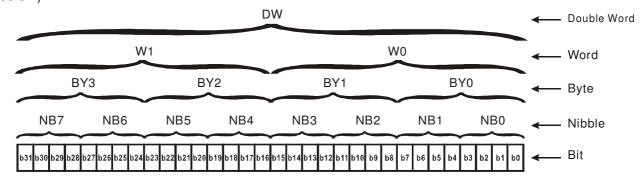
The job of output contact Y is to send an On/Off signal to drive the load connected with output contact Y. Output contacts consist of two types: relays and transistors. While number of times that contact a or b of each output contact Y is used in the program is not subject to restrictions, it is recommended that the number of output coil Y be used only once in a program, otherwise the right to determine the output state when the PLC performs program scanning will be assigned to the program's final output Y circuit.

The output of Y0 will be decided by circuit ②, i.e. decided by On/Off of X10.

Numerical value, constant [K]/[H]

ngle-byte	К	Decimal	K-32,768 ~ K32,767
ouble-byte			K-2,147,483,648~K2,147,483,647
ngle-byte	Ц	Hovadooimal	H0000 ~ HFFFF
ouble-byte	п	nexauecimai	H0000000 ~ HFFFFFF
)	uble-byte igle-byte	uble-byte K Igle-byte H	uble-byte H Hexadecimal

The PLC can use five types of numerical values to implement calculations based on its control tasks; the following is an explanation of the missions and functions of different numerical values.


Binary Number, BIN

The PLC's numerical operations and memory employ binary numbers. Binary nibbles and relevant terms are explained as follows:

Bit	Bits are the fundamental units of binary values, and have a state of either 1 or 0
Nibble	Comprised of a series of 4 bits (such as b3-b0); can be used to express a
one-nibble decimal number 0-9 or hexadecimal number: 0-F.	
Duto	Comprised of a series of two nibbles (i.e. 8 bits, b7-b0); can express a
Byte	hexadecimal number: 00-FF.
Word	Comprised of a series of two bytes (i.e. 16 bits, b15-b0); can express a
vvoru	hexadecimal number with four nibbles: 0000-FFFF.

Double Word	Comprised of a series of two words (i.e. 32 bits, b31-b0); can express a
	hexadecimal number with eight nibbles: 00000000-FFFFFFFF

Relationship between bits, digits, nibbles, words, and double words in a binary system (see figure below):

Octal Number, OCT

The external input and output terminals of a DVP-PLC are numbered using octal numbers Example: External input: X0~X7, X10~X17...(Device number table); External output: Y0~Y7, Y10~Y17...(Device number table)

Decimal Number, DEC

Decimal numbers are used for the following purposes in a PLC system:

The setting values of timer T or counter C, such as TMR C0 K50. (K constant)

The numbers of devices including M, T, C, or D, such as M10 or T30. (device number)

Used as a operand in an application command, such as MOV K123 D0. (K constant)

Binary Code Decimal, BCD

Uses one nibble or 4 bits to express the data in a decimal number; a series of 16 bits can therefore express a decimal number with 4 nibbles. Chiefly used to read the input value of a fingerwheel numerical switch input or output a numerical value to a seven-segment display driver.

Hexadecimal Number, HEX

Applications of hexadecimal numbers in a PLC system: Used as operands in application commands, such as MOV H1A2B D0. (H constant)

Constant K

Decimal numbers are usually prefixed with a "K" in a PLC system, such as K100. This indicates that it is a decimal number with a numerical value of 100.

Exceptions: K can be combined with bit device X, Y, M, or S to produce data in the form of a nibble, byte, word, or double word, such as in the case of K2Y10 or K4M100. Here K1 represents a 4-bit combination, and K2-K4 variously represent 8-, 12-, and 16-bit combinations.

Constant H

Hexadecimal numbers are usually prefixed with the letter "H" in a PLC system, such as in the case of H100, which indicates a hexadecimal number with a numerical value of 100.

Functions of auxiliary relays

Like an output relay Y, an auxiliary relay M has an output coil and contacts a and b, and the number

of times they can be used in a program is unrestricted. Users can use an auxiliary relay M to configure the control circuit, but cannot use it to directly drive an external load. Auxiliary relays have the following two types of characteristics:

Ordinary auxiliary relays: Ordinary auxiliary relays will all revert to the Off state if a power outage occurs while the PLC is running, and will remain in the Off state if power is again turned down.

Special purpose auxiliary relays: Each special purpose auxiliary relay has its own specific use. Do not use any undefined special purpose auxiliary relays.

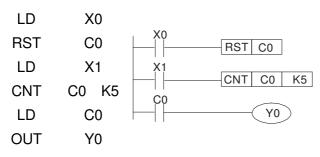
Timer functions

Timers take 100 ms as their timing units. When the timing method is an upper time limit, when the current timer value = set value, power will be sent to the output coil. Timer setting values consist of decimal K values, and the data register D can also serve as a setting value.

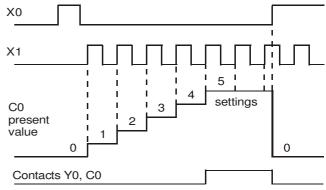
Actual timer setting time = timing units * set value

Counter features

Item	16-bit counter
Туре	General Type
CT Direction:	Score:
Setting	0~32,767
Designation of	Constant K or data register D
set value	
Change in current	When the count reaches the set value, there is no
value	longer a count
Output contact	When the count reaches the set value, the contact
	comes On and stays On
Reset	The current value reverts to 0 when an RST
	command is executed, and the contact reverts to Off
Contact actuation	All are actuated after the end of scanning


Counter functions

When a counter's counting pulse input signal goes $Off \rightarrow On$, if the counter's current value is equal to the set value, the output coil will come On. The setting value will be a decimal K values, and the data register D can also serve as a setting value.


16-bit counter C0-C79:

- ☑ 16-bit counter setting range: K0-K32,767. (when K0 and K1 are identical, the output contact will immediately be On during the first count.)
- ☑ The current counter value will be cleared from an ordinary counter when power is shut off to the PLC.
- ☑ If the MOV command or WPLSoft is used to transmit a value greater than the set value to the C0 current value register, when the next X1 goes from Off→On, the C0 counter contact will change to On, and the current value will change to the set value.
- ☑ A counter's setting value may be directly set using a constant K or indirectly set using the value in register D (not including special data registers D1000- D1199 或 D2000 ~ D2799).
- ☑ If the set value employs a constant K, it may only be a positive number; the set value may be either a positive or negative number if the value in data register D is used. The current counter value will change from 32,767 to -32,768 as the count continues to accumulate.

Example

- When X0=On and the RST command is executed, the current value of C0 will revert to 0, and the output contact will revert to Off.
- When X1 changes from Off→On, the current value of the counter will execute an increase (add one).
- When the count of counter C0 reaches the set value K5, the contact C0 will come On, and the current value of C0= set value =K5. Afterwards, signal C0 triggered by X1 cannot be received, and the current value of C0 will remain K5.

16-5-2 Introduction to special relay functions (special M)

Special M	Description of Function	R/W *
M1000	Operates monitor NO contact (contact a). NO while RUN, contact a. This contact is On while in the RUN state.	RO
M1001	Operates monitor NC contact (contact b). NC while RUN, contact b. This contact is Off while in the RUN state.	RO
M1002	Initiates a forward (the instant RUN is On) pulse. Initial pulse, contact a. Produces a forward pulse the moment RUN begins; its width = scan cycle	RO
M1003	Initiates a reverse (the instant RUN is Off) pulse. Initial pulse, contact a. Produces a reverse pulse the moment RUN ends; the pulse width = scan cycle	RO
M1004	Reserved	RO
M1005	Driver malfunction instructions	RO
M1006	Converter has no output	RO
M1007	Driver direction FWD(0)/REV(1)	RO
M1008 ~ M1010		
M1011	10 ms clock pulse , 5ms On/5ms Off	RO
M1012	100 ms clock pulse 3 50ms On / 50ms Off	RO
M1013	1 sec. clock pulse , 0.5s On / 0.5s Off	RO
M1014	1 min. clock pulse 30s On / 30s Off	RO
M1015	Frequency attained (when used together with M1025)	RO

R/W items: RO: read only function; RW: read and write function

Special M	Description of Function	R/W *
	Parameter read/write error	RO
M1017	Parameter write successful	RO
M1018		
M1019		
M1020	Zero flag	RO
M1020	Borrow flag	RO
M1022	Carry flag	RO
M1022	Divisor is 0	RO
M1023		
M1024	Driver frequency = set frequency (ON) Driver frequency =0(OFF)	RW
M1026	Driver operating direction FWD(OFF)/REV(ON)	RW
M1020	Driver Reset	RW
M1027		
M1029		
M1030		
M1031	Compulsory setting of the current PID integral value equal to D1019 (0 change, 1 valid)	RW
M1032	Compulsory definition of FREQ command after PID control	RW
M1033		
M1034	Initiates CANopen real-time control	RW
M1035	Initiates internal communications control	RW
M1036	Ignore calendar error	RW
M1037		
M1038	MI8 count begins	RW
M1039	Reset MI8 count value	RW
M1040	Hardware power (Servo On)	RW
M1041		
M1042	Quick stop	RW
M1042		1100
M1043	Pause	RW
M1044 M1045		
M1045		
M1047	Move to new position	RW
M1048		1100
M1050	Absolute position/relative position (0: relative/1: absolute)	RW
M1051		
M1052	Lock frequency (lock, frequency locked at the current operating frequency)	RW
M1053		
M1054	Compulsory reset of absolute position	RW
M1055	Search Origin	RW
M1056	Hardware already has power (Servo On Ready)	RO
M1057		
M1058	On Quick Stopping	RO
M1059	CANopen Master setting complete	RO
M1060	CANopen Currently initializing slave station	RO
M1061	CANopen Slave station initialization failure	RO
M1062		
M1063	Torque attained	RO
M1064	Target reached	RO
M1065	Read/write CANOpen data time out	RO
M1065	Read/write CANopen data complete	RO
M1067	Read/write CANopen data successful	RO
	Calendar calculation error	
M1068		RO

Special M	Description of Function	R/W *
M1069		
M1070	Return home complete	RO
M1071	Homing error	RO
M1072		
~		
M1075		
M1076	Calendar time error or refresh time out	RO
M1077	485 Read/write complete	RO
M1078	485 Read-write error	RO
M1079	485 Communications time out	RO

16-5-3 Introduction to special register functions (special D)

Special D	Description of Function	R/W *
D1000		
D1001	Device system program version	RO
D1002	Program capacity	RO
D1003	Total program memory content	RO
D1004		
~		
D1009		
	Current scan time (units: 0.1 ms)	RO
D1011	Minimum scan time (units: 0.1 ms)	RO
	Maximum scan time (units: 0.1 ms)	RO
D1013		
D1017		
	Current integral value	RO
D1019	Compulsory setting of PID I integral	RW
	Output frequency (0.000~600.00Hz)	RO
D1021	Output current (####.#A)	RO
	AI AO DI DO Expansion card number	
	0 No expansion card	
D1022	4 : AC input card (6 in) (EMC-D611A)	RO
	5 : I/O Card (4 in 2 out) (EMC-D42A)	
	6 : Relay card(6 out) (EMC-R6AA)	
	Communication expansion card number	
	0 No expansion card	
	1 DeviceNet Slave	
D1023	2 : Profibus-DP Slave	RO
	3 : CANopen Slave	
	4 : Modbus-TCP Slave	
	5 : EtherNet/IP Slave	
D1024		
~		
D1026		
D1027	PID calculation frequency command (frequency command after PID calculation)	RO
D1028	AVI value (0.00~100.00%)	RO
D1029	ACI value (0.0~100.00%)	RO
D1030	AUI value (-100.0~100.00%)	RO
D1031		

Special D	Description of Function	R/W *
~		
D1035		
D1036	Servo error bit	RO
D1037	Driver output frequency	RO
D1038	DC BUS voltage	RO
D1039	Output voltage	RO
D1040	Analog output value AFM1(-100.00~100.00%)	RW
D1041		
~		
D1042	Can be user-defined (will be displayed on panel when parameter 00-04 is set as	RW
D1043	28; display method is C xxx)	
D1044	$\frac{1}{2}$	-
D1045 D1046	Analog output value AFM2(-100.00~100.00%)	RW
D1046 ~		
D1049		
01040	Actual Operation Mode	
	0 : Speed	
D1050	1 : Position	RO
01030	2 : Torque	no
	3 · Homing Origin	
D1051	Actual position (Low word)	RO
		RO
D1052	Actual torque	RO
D1053	MI8 current calculated count value (L Word)	RO
D1055	MI8 current calculated count value (H Word)	RO
	Rotational speed corresponding to MI8	RO
		RW
D1058	MI8 refresh rate (ms) corresponding to rotational speed	RW
D1059	Number of nibbles of rotational speed corresponding to MI8 (0-3)	RW
	Operation Mode setting	
	0 · Speed	
D1060	1 Position	RW
2.000	2 : Torque	
	3 · Homing Origin	
D1061	485 COM1 communications time out time (ms)	RW
D1062	Torque command (torque limit in speed mode)	RW
	Year (Western calendar) (display range 2000-2099) (must use	RO
D1063	KPC-CC01)	
D1064	Week (display range 1-7) (must use KPC-CC01)	RO
D1065	Month (display range 1-12) (must use KPC-CC01)	RO
D1066	Day (display range 1-31) (must use KPC-CC01)	RO
D1067	Hour (display range 0-23) (must use KPC-CC01)	RO
	Minute (display range 0-59) (must use KPC-CC01)	RO
D1069	Second (display range 0-59) (must use KPC-CC01)	RO
		RO
D1100	Target frequency	
D1100 D1101	Target frequency (must be operating)	RO
D1100 D1101 D1102	Target frequency (must be operating) Reference frequency	RO RO
D1100 D1101 D1102 D1103	Target frequency (must be operating) Reference frequency Target L	RO RO RO
D1100 D1101 D1102 D1103 D1104	Target frequency (must be operating) Reference frequency Target L Target H	RO RO RO RO
D1100 D1101 D1102 D1103 D1104 D1105	Target frequency (must be operating) Reference frequency Target L	RO RO RO RO
D1100 D1101 D1102 D1103 D1104	Target frequency (must be operating) Reference frequency Target L Target H	RO RO RO

Special D	Description of Function	R/W *
D1109	Random number	RO
D1110	Internal node communications number (set number of slave stations to be controlled)	RW
D1111	Encoder Pulses L	RO
D1112	Encoder Pulses H	RO
D1113		RO
D1114		
D1115	Internal node synchronizing cycle (ms)	RO
D1116	Internal node error (bit0 = Node 0, bit1 = Node 1,bit7 = Node 7)	RO
D1117	Internal node online correspondence (bit0 = Node 0, bit1 = Node 1,bit7 = Node 7)	RO
D1118		
D1119		
D1120	Internal node 0 control command	RW
D1121	Internal node 0 mode	RW
D1122	Internal node 0 reference command L	RW
D1123	Internal node 0 reference command H	RW
D1124		
D1125		
D1126	Internal node 0 status	RO
D1127	Internal node 0 reference status L	RO
D1128	Internal node 0 reference status H	RO
D1129		
D1130	Internal node 1 control command	RW
D1131	Internal node 1 mode	RW
D1132	Internal node 1 reference command L	RW
D1133	Internal node 1 reference command H	RW
D1134		
D1135		
D1136	Internal node 1 status	RO
	Internal node 1 reference status L	RO
D1138	Internal node 1 reference status H	RO
D1139		
D1140	Internal node 2 control command	RW
D1141	Internal node 2 mode	RW
D1142	Internal node 2 reference command L	RW
D1143	Internal node 2 reference command H	RW
D1144		
D1145		
D1146	Internal node 2 status	RO
D1147	Internal node 2 reference status L	RO
D1148	Internal node 2 reference status H	RO
D1149		
D1150	Internal node 3 control command	RW
D1151	Internal node 3 mode	RW
D1152	Internal node 3 reference command L	RW
D1153	Internal node 3 reference command H	RW
D1154	 	
D1155		
D1156	Internal node 3 status	RO
D1157	Internal node 3 reference status L	RO
D1158	Internal node 3 reference status H	RO
D1159	 Internal node 4 control command	 D\//
D1160	Internal node 4 control command	RW

Special D	Description of Function	R/W *
D1161	Internal node 4 mode	RW
D1162	Internal node 4 reference command L	RW
D1163	Internal node 4 reference command H	RW
D1164		
D1165		
D1166	Internal node 4 status	RO
D1167	Internal node 4 reference status L	RO
D1168	Internal node 4 reference status H	RO
D1169		
D1170	Internal node 5 control command	RW
D1171	Internal node 5 mode	RW
D1172	Internal node 5 reference command L	RW
D1173	Internal node 5 reference command H	RW
D1174		RW
D1175		
D1176	Internal node 5 status	
D1177	Internal node 5 reference status L	RO
D1178	Internal node 5 reference status H	RO
D1179		
D1180	Internal node 6 control command	RW
D1181	Internal node 6 mode	RW
D1182	Internal node 6 reference command L	RW
D1183	Internal node 6 reference command H	RW
D1184		
D1185		
D1186	Internal node 6 status	RO
D1187	Internal node 6 reference status L	RO
D1188	Internal node 6 reference status H	RO
D1189		
D1190	Internal node 7 control command	RW
D1191	Internal node 7 mode	RW
D1192	Internal node 7 reference command L	RW
D1193	Internal node 7 reference command H	RW
D1194		
D1195		
D1196	Internal node 7 status	RO
D1197	Internal node 7 reference status L	RO
D1198	Internal node 7 reference status H	RO
D1199		

The following is CANopen Master's special D (can be written in only

with PLC in Stop state)

n = 0 ~ 7

Special D	Description of Function	PDO Map	Power off Memory	Default:	R/W
D1070	Channel opened by CANopen initialization (bit0=Machine code0)	NO	NO	0	R
D1071	Error channel occurring in CANopen initialization process (bit0=Machine code0)	NO	NO	0	R
D1072	Reserved	-	-		-
D1073	CANopen break channel (bit0=Machine code0)	NO	NO		R

Special D	Description of Function	PDO Map	Power off Memory	Default:	R/W
D1074	Error code of master error 0: No error 1: Slave station setting error 2: Synchronizing cycle setting error (too small)	NO	NO	0	R
D1075	Reserved	-	-		-
D1076	SDO error message (main index value)	NO	NO		R
D1077	SDO error message (secondary index value)	NO	NO		R
D1078	SDO error message (error code)	NO	NO		R
D1079	SDO error message (error code)	NO	NO		R
D1080	Reserved	-	-		-
D1081					-
~	Reserved	-	-		
D1086					
D1087					
~	Reserved	-	-		-
D1089					
D1090	Synchronizing cycle setting	NO	YES	4	RW
D1091	Sets slave station On or Off (bit 0-bit 7 correspond to slave stations number 0-7)	NO	YES	FFFFH	RW
D1092	Delay before start of initialization	NO	YES	0	RW
D1093	Break time detection	NO	YES	1000ms	RW
D1094	Break number detection	NO	YES	3	RW
D1095 ~ D1096	Reserved	-	-		-
D1097	Corresponding real-time transmission type (PDO) Setting range: 1~240	NO	YES	1	RW
D1098	Corresponding real-time receiving type (PDO) Setting range: 1~240	NO	YES	1	RW
D1099	Initialization completion delay time Setting range: 1 to 60000 sec	NO	YES	15 sec.	RW
D2000+100*n	Station number n of slave station Setting range: 0~127 0: No CANopen function	NO	YES	0	RW

The CH2000 supports 8 slave stations under the CANopen protocol; each slave station

occupies 100 special D locations; stations are numbered 1-8, total of 8 stations. Slave station no. D2000 Node ID Explanation of D2001 Slave station no. 1 torque restrictions slave station 1 number and D2099 Address 4(H) corresponding to receiving channel 4 Slave station no. D2100 Node ID 2 D2101 Slave station no. 2 torque restrictions D2199 Address 4(H) corresponding to receiving channel 4 Slave station no. D2200 Node ID 3 D2201 Slave station no. 3 torque restrictions ~ D2299 Address 4(H) corresponding to receiving channel 4 Û Slave station no. D2700 Node ID Slave station no. 8 torque restrictions 8 D2701 D2799 Address 4(H) corresponding to receiving

channel 4

1. The range of n is 0-7

2. ●Indicates PDOTX, ▲Indicates PDORX; unmarked special D can be refreshed using the CANFLS command

Special D	Description of Function	Default:	R/W
D2000+100*n	Station number n of slave station Setting range: 0~127 0: No CANopen function	0	RW
D2002+100*n	Manufacturer code of slave station number n (L)	0	R
D2003+100*n	Manufacturer code of slave station number n (H)	0	R
D2004+100*n	Manufacturer's product code of slave station number n (L)	0	R
D2005+100*n	Manufacturer's product code of slave station number n (H)	0	R

Basic definitions

Special D	Description of Function	Default:	CAN Index	PD 1	2		ault: 4	R/W
D2006+100*n	Communications break handling method of slave station number n	0	6007H-0010H					RW
D2007+100*n	Error code of slave station number n error	0	603FH-0010H					R
D2008+100*n	Control word of slave station number n	0	6040H-0010H	•		•	•	RW
D2009+100*n	Status word of slave station number n	0	6041H-0010H					R
D2010+100*n	Control mode of slave station number n	2	6060H-0008H					RW
D2011+100*n	Actual mode of slave station number n	2	6061H-0008H					R

Velocity Control

Slave station number n=0-7

	Special D Description of Europian Default:		Special D	Description of Function	Description of Function Default:		Default: C	CAN	PD	00	R/W
	Special D	Description of Function	Delault.	Index	1	2	3	4			
	D2001+100*n	Torque restriction on slave station number n	0	6072H-0010H					RW		
	D2012+100*n	Target speed of slave station number n	0	6042H-0010H	•				RW		
	D2013+100*n	Actual speed of slave station number n	0	6043H-0010H					R		
	D2014+100*n	Error speed of slave station number n	0	6044H-0010H					R		
	D2015+100*n	Acceleration time of slave station number n	1000	604FH-0020H					R		
	D2016+100*n	Deceleration time of slave station number n	1000	6050H-0020H					RW		

Torque control

Slave station number n=0-7

Special D Description of Function Def		Default:	CAN	PD	00	Def	ault:	R/W
Special D	Description of Function	Delault.	Index	1	2	3	4	n/ VV
D2017+100*n	Target torque of slave station number n	0	6071H-0010H				•	RW
D2018+100*n	Actual torque of slave station number n	0	6077H-0010H					R
D2019+100*n	Actual current of slave station number n	0	6078H-0010H					R

Position control

Slave station number n=0-7

Special D	Description of Function	Default:	CAN	PD	0 O I	Def	ault:	R/W
Special D	Description of Function	Delault.	Index	1	2	3	4	
D2020+100*n	Target of slave station number n (L)	0				•		RW
D2021+100*n	Target of slave station number n (H)	0	0 607AH-0020H			•		RW
D2022+100*n	Actual position of slave station number n	0						R
D2022+100 11	(L)	0	6064H-0020H					
D2023+100*n	Actual position of slave station number n	0	000411-002011					R
	(H)							- 11
D2024+100*n	Speed chart of slave station number n (L)	10000	6081H-0020H					RW
D2025+100*n	Speed chart of slave station number n (H)	0	00011-002011					RW

20XXH correspondences: MI MO AI AO

Slave station number n=0-7

Special D	Description of Function	Default: CAN PDO Def	Def	ault:	R/W			
Special D	Description of Function	Delault.	Index	1	2	3	4	
D2026+100*n	MI status of slave station number n	0	2026H-0110H					RW
D2027+100*n	MO setting of slave station number n	0	2026H-4110H		•			RW
D2028+100*n	Al1 status of slave station number n	0	2026H-6110H					RW
D2029+100*n	AI2 status of slave station number n	0	2026H-6210H					RW
D2030+100*n	AI3 status of slave station number n	0	2026H-6310H					RW
D2031+100*n	AO1 status of slave station number n	0	2026H-A110H		•			RW
D2032+100*n	AO2 status of slave station number n	0	2026H-A210H		•			RW
D2033+100*n	AO3 status of slave station number n	0	2026H-A310H		•			RW

PDO reflection length setting:

Special D	Description of Function	Default:	R/W
D2034+100*n	Real-time transmission setting of slave station number n	000AH	RW
D2067+100*n	Real-time reception setting of slave station number n	0000H	RW

16-5-4 PLC Communication address

Device	Range	Туре	Address (Hex)
Х	00~37 (Octal)	bit	0400~041F
Y	00~37 (Octal)	bit	0500~051F
Т	00~159	bit/word	0600~069F
M	000~799	bit	0800~0B1F
M	1000~1079	bit	0BE8~0C37
С	0~79	bit/word	0E00~0E47
D	00~399	word	1000~118F
D	1000~1099	word	13E8~144B
D	2000~2799	word	17D0~1AEF

Command code that can be used

Function Code	Description of Function	Function target
01	Coil status read	Y,M,T,C
02	Input status read	X,Y,M,T,C
03	Read single unit of data	T,C,D
05	Compulsory single coil status change	Y,M,T,C
06	Write single unit of data	T,C,D
0F	Compulsory multiple coil status change	Y,M,T,C
10	Write multiple units of data	T,C,D

When PLC functions have been activated, the CH2000 can match PLC and driver parameters; this method employs different addresses, drivers (default station number is 1, PLC sets station number as 2)

16-6 Introduction to the Command Window

16-6-1 Overview of basic commands

Ordinary commands

Command code	Function	OPERAND	Execution speed (us)
LD	Load contact a	Χ、Υ、Μ、Τ、Ο	0.8
LDI	Load contact b	Χ、Υ、Μ、Τ、Ο	0.8
AND	Connect contact a in series	Χ、Υ、Μ、Τ、Ο	0.8
ANI	Connect contact b in series	Χ、Υ、Μ、Τ、Ο	0.8
OR	Connect contact a in parallel	Χ、Υ、Μ、Τ、Ο	0.8
ORI	Connect contact b in parallel	Χ、Υ、Μ、Τ、Ο	0.8
ANB	Series circuit block	N/A	0.3
ORB	Parallel circuit block	N/A	0.3
MPS	Save to stack	N/A	0.3
MRD	Stack read (pointer does not change)	N/A	0.3
MPP	Read stack	N/A	0.3

Output command

Command code	Function	OPERAND	Execution speed (us)
OUT	Drive coil	Y v M	1
SET	Action continues (ON)	Y v M	1
RST	Clear contact or register	Y、M、T、C、D	1.2

Timer, counter

Command	Function	OPERAND	Execution
code			speed (us)
TMR	16-bit timer	T-K or T-D commands	1.1
CNT	16-bit counter	C-K or C-D (16-bit)	0.5

Main control command

Command	Function	OPERAND	Execution
code			speed (us)
MC	Common series contact connection	N0~N7	0.4
MCR	Common series contact release	N0~N7	0.4

Contact rising edge/falling edge detection command

Command	Function	OPERAND	Execution
code			speed (us)
LDP	Start of forward edge detection action	$X \mathrel{\scriptstyle{\vee}} Y \mathrel{\scriptstyle{\vee}} M \mathrel{\scriptstyle{\vee}} T \mathrel{\scriptstyle{\vee}} C$	1.1
LDF	Start of reverse edge detection action	$X \mathrel{\scriptstyle{\vee}} Y \mathrel{\scriptstyle{\vee}} M \mathrel{\scriptstyle{\vee}} T \mathrel{\scriptstyle{\vee}} C$	1.1
ANDP	Forward edge detection series connection	Χ、Υ、Μ、Τ、Ο	1.1
ANDF	Reverse edge detection series connection	$X \mathrel{\scriptstyle{\vee}} Y \mathrel{\scriptstyle{\vee}} M \mathrel{\scriptstyle{\vee}} T \mathrel{\scriptstyle{\vee}} C$	1.1
ORP	Forward edge detection parallel connection	Χ、Υ、Μ、Τ、Ο	1.1
ORF	Reverse edge detection parallel connection	Χ、Υ、Μ、Τ、Ο	1.1

Upper/lower differential output commands

Command code	Function	OPERAND	Execution speed (us)
PLS	Upper differential output	Y ∘ M	1.2
PLF	Lower differential output	Y ۰ M	1.2

Stop command

Command	Function	OPERAND	Execution
code			speed (us)
END	Program conclusion	N/A	0.2

Other commands

Command	Function	OPERAND	Execution
code			speed (us)
NOP	No action	N/A	0.2
INV	Inverse of operation results	N/A	0.2
Р	Index	Р	0.3

16-6-2 Detailed explanation of basic commands

Command	Function							
LD	Load contact a	a						
Ore a ways of	X0~X17	Y0~Y17	M0~M799	T0~159	(C0~C79	D0~D399	
Operand	✓	\checkmark	✓	✓		\checkmark	_	
Explanation	at a contact ci contact status	rcuit block; its in the cumulat	function is to s	ave current	t conte	nt and save	·	
Example	Ladder diagra			Command	i coue.	Des	scription:	
			Ŷ1	LD	X0	Load Cor	ntact a of X0	
				AND	X1	Create connectic of X1	series on to contact a	
				OUT	Y1	Drive Y1	coil	

Command	Function							
LDI	Load contact b)						
Oracrand	X0~X17	Y0~Y17	M0~M799	T0~159	(C0~C79	D0~D399	
Operand	✓	\checkmark	✓	✓		✓	_	
Explanation The LDI command is used for contact b starting at the left busbar or contact b starting at a contact circuit block; its function is to save current content and save the acquired contact status in the cumulative register. Example Ladder diagram: Command code: Description:								
	X0 X	1	Ŷ1)	LDI	X0	Load Cor	ntact b of X0	
	VI			AND	X1	Create connectio of X1	series on to contact a	
				OUT	Y1	Drive Y1	coil	

Command	Function						
AND	Connect conta	nct a in series	T UII				
	X0~X17	Y0~Y17	M0~M799	T0~159	a	C0~C79	D0~D399
Operand	✓	√	√			<u> </u>	
Explanation	The AND con current status contact in orde	of the design	ated series co	ontact and	logica	l operation	results before
Example	Ladder diagra			Comman LDI	d code X1		scription: ntact b of X1
		(<u>Y1</u>)	AND	X0	Create connection of X0	series on to contact a
				OUT	Y1	Drive Y1	coil
Command			Fund	ction			
ANI	Connect contact b in series						
Operand	X0~X17 ✓	Y0~Y17 ✓	M0~M799 ✓	T0~159	9	C0~C79 ✓	D0~D399
Explanation	The ANI comm first read curre before contac register. Ladder diagra	ent status of th t in order to m:	e designated s perform "ANE Y1	series cont O" operatio Comman LD ANI OUT	tact an on; sav	d logical op ves results : Des Load Cor Create	eration results in cumulative scription: ntact a of X1 series on to contact b
Command				ction			
OR	Connect conta						
Operand	X0~X17	Y0~Y17	M0~M799	T0~159	9	C0~C79	D0~D399
CDEIAIIO	✓	\checkmark	✓ √			\checkmark	

oporana	\checkmark	\checkmark	\checkmark	✓		\checkmark	—
The OR command is used to establish a parallel connection to contact a; its function is							
Explanation to first read current status of the designated series contact and logical operation							
	results before contact in order to perform "OR" operation; saves results in cumulative						
	register.			0		5	
Example	Ladder diagra	m:		Comman	d code	: Des	cription:
		(Y1)	LD	X0	Load Con	tact a of X0
	X1					Create	series
				OR	X1		n to contact a
						of X1	
				OUT	Y1	Drive Y1	coil
			_				
Command				ction			
ORI	Connect conta	•			2	00 070	
Operand	X0~X17 ✓	Y0~Y17 ✓	M0∼M799 ✓	T0~159 ✓	9	C0~C79 ✓	D0~D399
	The ORI comr	mand is used t	o establish a p	parallel cor	nnectior	n to contact	a; its function
Explanation	is to first read						
Explanation		contact in orde	er to perform "	OR" opera	ation; sa	aves results	in cumulative
	register.					_	
Example	Ladder diagra	m:		Comman	d code	: Des	cription:
				LD	X0	Load Con	tact a of X0

Command				Func	tion				
ANB	Series circuit bl	ock							
Operand		N/A							
Explanation	ANB performs an "AND" operation on current cumulative register content. Ladder diagram:			on the	n the previously saved logic results and th				
Example					Comman	d code:	Description:		
Example	X0 ANE	NB X1 Y1 X3 Block B		LD	X0	Load Contact a of X0 Establish parallel			
	X2			ORI	X2	connection to contact b of X2			
	Block A			LDI	X1	Load Contact b of X1 Establish parallel			
					OR	X3	connection to contact a of X3		
					ANB		Series circuit block		
					OUT	Y1	Drive Y1 coil		

Command		Function						
ORB	Parallel circuit block							
Operand	N/A							
Explanation	ORB performs an "OR" operation on the previously saved logic results and the current cumulative register content.							
Example	Ladder diagram:	Comman	d code:	Description:				
Example	X0 X1 Block A	LD	X0	Load Contact a of X0				
	(Y1)			Establish parallel				
	X2 X3	ANI	X1	connection to contact b of X1				
	Block B	LDI	X2	Load Contact b of X2 Establish parallel				
		AND	Х3	connection to contact a of X3				
		ORB		Parallel circuit block				
		OUT	Y1	Drive Y1 coil				
Command		Function						

Command	Function	
MPS	Save to stack	
Operand	N/A	
		-

Explanation Save current content of cumulative register to the stack. (Add one to stack pointer)

Command	Function						
MRD	Read stack (pointer does not change)						
Operand	N/A						
	Reads stack content and saves to cumulative register. (Stack pointer does not change)						

Command	Function						
MPP	Read stack						
Operand			N	/Δ			
Explanation			ously-save logica	l operation	from	the stack,	and saves to
Example	Ladder diagram: Command code: Description: MPS LD X0 Load Contact a of X0						tact a of X0
	X0 🕺	<u> </u>	\frown	MPS		Save to st	
		— — X2	(Y1)	AND	X1	to contact	
			NA0	OUT	Y1	Drive Y1 c	
	MRD -		MO	MRD		Read stac not chang	ck (pointer does e)
			(Y2)	AND	X2	Create se to contact	ries connection a of X2
	MPP		END	OUT	MO	Drive M0	coil
			END	MPP		Read stac	
				OUT	Y2	Drive Y2 c	
				END		Program o	conclusion
Command			Fund	ction			
OUT	Drive coil						
Onemand	X0~X17	Y0~Y17	M0~M799	T0~159	(C0~C79	D0~D399
Operand	—	✓	✓	_		_	—
Explanation	Outputs result o Coil contact acti		ration before OUT of	command to	the des	ignated ele	ment.
			Out commar	nd			
	Result:		Access	s Point:			
		Coil	Contact a (NO)	Contact b	(NC)		
	FALSE	Off	Not conducting	Conduc	<u>`</u>		
	TRUE	On	Conducting	Not condu	ucting		
			<u> </u>				
Example	Example Ladder diagram: Command code: Descrip X0 X1 LD X0 Load Contact Y1 Y1 Establish para						
		'		AND	X1		on to contact a
				~			

Command	Function							
SET	Action continues (ON)							
Oracinad	X0~X17	Y0~Y17	M0~M799	T0~159	C0~C79	D0~D399		
Operand	—	✓	✓	_	_	_		
Explanation When the SET command is driven, the designated element will be set as On, and we be maintained in an On state, regardless of whether the SET command is still drive. The RST command can be used to set the element as Off. Example Ladder diagram: Command code: Description: X0 Y0 LD X0 Load Contact a of X0 Establish parallel SET Y1 Y1 Y1						d is still driven. scription: ntact a of X0		
				AN Y	0 connection of Y0	on to contact b		

OUT

SET

Y1

Action continues (ON)

Y1 Drive Y1 coil

Command	Function							
RST	Clear contact	Clear contact or register						
Operand	X0~X17	Y0~Y17	M0~M799	T0~159	C0~C79	D0~D399		
Operand	_	✓	✓	✓	✓	✓		

					Chapter	16 PLC Fi	unction Appli	cations
Explanation	When the RS follows:	ST command is driv	en, the a	ction of th	ne desigr	nated eler	ment will t	be as
	Element Mode							
		th coil and contact w	vill be set a	as Off.				
	I, C and	e current timing or co d contact ill be set a	as Off.		et as 0, a	nd both tl	he coil	
		e content value will b						
		mmand has not bee	n execute	d, the sta	tus of the	e designa	ted elemei	nt will
	remain uncha Ladder diagra			Comma	nd code:	De	escription:	
Example				LD	X0		ontact a of	XΟ
		RST Y5				Clear	contact	or
	1			RST	Y5	register		
Command			Fund	ction				
TMR	16-bit timer T-K	T0~T159 , K0~K32	0 767					
Operand	T-D	T0~T159 , R0~R32	-					
		IR command is exec		dosianato	d timer c	oil will bo	alactrified	and
Explanation		begin timing. The						
		s the designated set						
		ally Open) contact	Closed			·		
		ally Close) contact	Open					
		mmand has not bee	n execute	a, the sta	tus of the	e designa	tea elemei	nt Will
	remain unchanged. Ladder diagram: Command code: Description:							
Example	LD X0 Load Contact a of X0							0
		TMR T5 K10	00	TMR	T5 K1000	T5 timer	e as K1000	
	1					Set value	as K1000	
Command			Fund	ction				
CNT	16-bit counte							
Operand	C-K	C0~C79,K0~K3	2,767					
	C-D	C0~C79,D0~D3	99					
Explanation	When the CN	When the CNT command is executed from $Off \rightarrow On$, this indicates that the designated						
Explanation	counter coil goes from no power \rightarrow electrified, and 1 will be added to the counter's							
	count value;	when the count read	ches the c	designated	d value (o	count valu	ue = set va	alue),
	the contact w	ill have the following	action:					
	NO (Norma	ally Open) contact	Closed	ł				
	NC (Norma	ally Close) contact	Open					
	After the cour	nt value has been re	ached, th	e contact	and cour	nt value w	vill both rei	nain
	unchanged even if there is continued count pulse input. Please use the RST							
	command if you wish to restart or clear the count.							
	Ladder diagra	am:		Comma	nd code:	De	escription:	
Example	X0			LD	X0		ntact a of X	0
		CNT C2 K10	0	CNT	C2 K100	C2counte Set value	er e as K100	
	I					Servaiue		

Command	Function
MC/MCR	Connect/release a common series contact
Operand	N0~N7
Explanation	MC is the main control initiation command, and any commands between MC and MCR will be executed normally. When the MC command is Off, any commands

between MC and MCR will act as follows:						
Determination of commands	Description					
Ordinary timer	The timing value will revert to 0, the coil will lose power, and the contact will not operate					
Counter	The coil will lose power, and the count value and contact will stay in their current state					
Coil driven by OUT command	None receive power					
Elements driven by SET, RST commands	Will remain in their current state					
Applications commands	None are actuated					

MCR is the main control stop command, and is placed at the end of the main control program. There may not be any contact commands before the MCR command. The MC-MCR main control program commands support a nested program structure with a maximum only 8 levels; use in the order N0-N7, please refer to the following program:

	1		
Example	Ladder diagram:		
	X0	MC	N0
		Y0	
		MC	N1
		Y1	
	↓	MCR	N1
	×10	MCR	N0
		MC	N0
		Y10	
	+	MCR	N0

Comn coc		Description:
LD	X0	Load Contact a of X0
МС	N0	Connection of N0 common series contact
LD OUT :	X1 Y0	Load Contact a of X1 Drive Y0 coil
LD	X2	Load Contact a of X2
МС	N1	Connection of N1 common series contact
LD OUT :	X3 Y1	Load Contact a of X3 Drive Y1 coil
MCR	N1	Release N1 common series contact
:		
MCR	NO	Release N0 common series contact
: LD	X10	Load Contact a of X10
MC	N0	Connection of N0 common series contact
LD OUT :	X11 Y10	Load Contact a of X11 Drive Y10 coil
MCR	N0	Release N0 common series contact

Command	Function								
LDP	Start of forwar	tart of forward edge detection action							
Operand	X0~X17	Y0~Y17	M0~M	1799	T0^	159	C0~C79	D0 D0	~D399
Operand	✓	✓	~		•	/	✓		_
Explanation	to save curren	he LDP command has the same usage as LD, but its action is different; its function is o save current content, while also saving the detected state of the rising edge of the ontact to the cumulative register.							
Example	Ladder diagra	m:		Comm cod			Descri	iption:	
Example	Ladder diagra X0 X1	m: Y1				Start of action	Descri X0 forwar		detection
Example		m: Y1		cod	e:		X0 forwar series		
Example		m: Y1	ŀ	cod	e: X0	action Create	X0 forwar series a of X1	d edge d	

Remark

Please refer to the function specifications table for each device in series for the scope of usage of each operand.

A rising edge contact will be TRUE after power is turned on if the rising edge contact is On before power is turned on to the PLC.

Command	Function							
LDF	Start of revers	e edge detect	ion action					
Onerend	X0~X17	Y0~Y17	M0~M799	T0~159	0	C0~C79	D0	~D399
Operand	✓	\checkmark	✓	~		✓		_
Explanation	to save curren contact to the	it content whil cumulative reg	•		d state	of the falli		ge of the
Example	Ladder diagram	— Y1		LDF	X0	Start of edge det		reverse action
				AND	X1	Create connection of X1	on to d	series contact a
				OUT	Y1	Drive Y1	coil	

Command	Function						
ANDP	Forward edge	detection serie	es connection				
Operand	X0~X17	Y0~Y17	M0~M799	T0~15	9 0	C0~C79	D0~D399
Operand	✓	✓	✓	✓		✓	_
Explanation	The ANDP cor	nmand used f	or a contact ris	ing edge o	detectior	series co	nnection.
Evenue	Ladder diagra	m:		Commar	nd code:	Des	scription:
Example	X0 X1			LD	X0	Load Cor	ntact a of X0
	┝──┤╀┝	—(Y1)				X1 Forwa	ard edge
				ANDP	X1	detection	series

Command			Fund	ction			
ANDF	Reverse edge	detection seri	es connection				
Onerend	X0~X17	X0~X17 Y0~Y17 M0~M799 T0~159 C0~C79 D0~D399					
Operand	✓	V V V -					
Explanation	The ANDF cor	nmand is used	d for a contact	falling edge de	etection series	connection.	

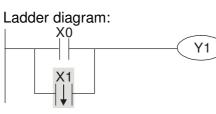
OUT

Y1

Example Ladder diagram:

Commai	nd code:	Description:
LD	X0	Load Contact a of X0
		X1 Reverse edge
ANDF	X1	detection series
		connection
OUT	Y1	Drive Y1 coil

connection


Drive Y1 coil

Example

Command		Function					
ORP	Forward edge	detection para	allel connectior	1			
Operand	X0~X17	Y0~Y17	M0~M799	T0~159	9 0	C0~C79	D0~D399
Operand	✓	✓	✓	✓		✓	_
Explanation	Ladder diagra		for a contact ri	sing edge Comman		•	connection.
Example		(Y1	LD	X0	Load Cor	ntact a of X0
	X1 ↑			ORP	X1	X1 Forward detection connection	parallel
				OUT	Y1	Drive Y1	coil

Command	Function					
ORF	Reverse edge	everse edge detection parallel connection				
Operand	X0~X17	X0~X17 Y0~Y17 M0~M799 T0~159 C0~C79 D0~D399				
Operand	✓	\checkmark	\checkmark	✓	✓	—

Explanation The ORF command is used for contact falling edge detection parallel connection.

3 3		
Commar	nd code:	Description:
LD	X0	Load Contact a of X0
ORF	X1	X1 Reverse edge detection parallel connection
OUT	Y1	Drive Y1 coil

Command	Function						
PLS	Upper differen	oper differential output					
Ora e ree re el	X0~X17	Y0~Y17	M0~M799	T0~15	69	C0~C79	D0~D399
Operand	_	✓	✓			_	_
Explanation		d will be exec	nmands. When cuted, and M0 period.				
Example	Ladder diagra			Comma	nd code:	Des	scription:
		PLS M0		LD	X0	Load Cor	ntact a of X0
	MO	SET Y0		PLS	MO	M0 Uppe output	r differential
	Time sequenc	e diagram:		LD	MO	Load Cor	ntact a of M0
	X0			SET	Y0	Y0 Action (ON)	o continues
	M0Time	for one scan cy	/cle			()	
	Y0						

Command		Function					
PLF	Lower differen	tial output					
Onerend	X0~X17	Y0~Y17	M0~M799	T0~159)	C0~C79	D0~D399
Operand		\checkmark	✓	_		_	_
Explanation	PLF comman consisting of c	d will be exe one scanning p	cuted, and M) will sen	d on	e pulse, w	ge-triggered), the ith pulse length
	Ladder diagra	m:		Comman	d co	de: L	Description:
Example	X0	PLF M0		LD	X) Load (Contact a of X0
	M0	SET Y0		PLF	M	o M0 Lo ^x output	wer differential
	Time sequenc	e diagram:		LD	M) Load (Contact a of M0
	X0			SET	Y) Y0 Act (ON)	ion continues
	M0Time	for one scan cy	cle			()	
	Y0						

Command	Function
END	Program conclusion
Operand	N/A
Explanation	An END command must be added to the end of a ladder diagram program or command program. The PLC will scan from address 0 to the END command, and will return to address 0 and begins scanning again after execution.

Command	Function							
NOP	No action							
Operand	N/A							
Explanation	The command NOP does not perform any operation in the program. Because execution of this command will retain the original logical operation results, it can be used in the following situation: the NOP command can be used instead of a command that is deleted without changing the program length.							
Example	Ladder diagram:	Commar	nd code:	Description:				
Lxample	NOP command will be simplified and not displayed when the ladder diagram is	LD	X0	Load Contact b of X0				
	displayed.	NOP		No action				
		OUT	Y1	Drive Y1 coil				

Command	Function					
INV	Inverse of operation results					
Operand	N	/A				
Explanation	Saves the result of the logic inversion o cumulative register.	peration p	orior to th	e INV command in the		
Example	Ladder diagram:	Description:				
		LD	X0	Load Contact a of X0		
		INV		Inverse of operation results		
		OUT	Y1	Drive Y1 coil		

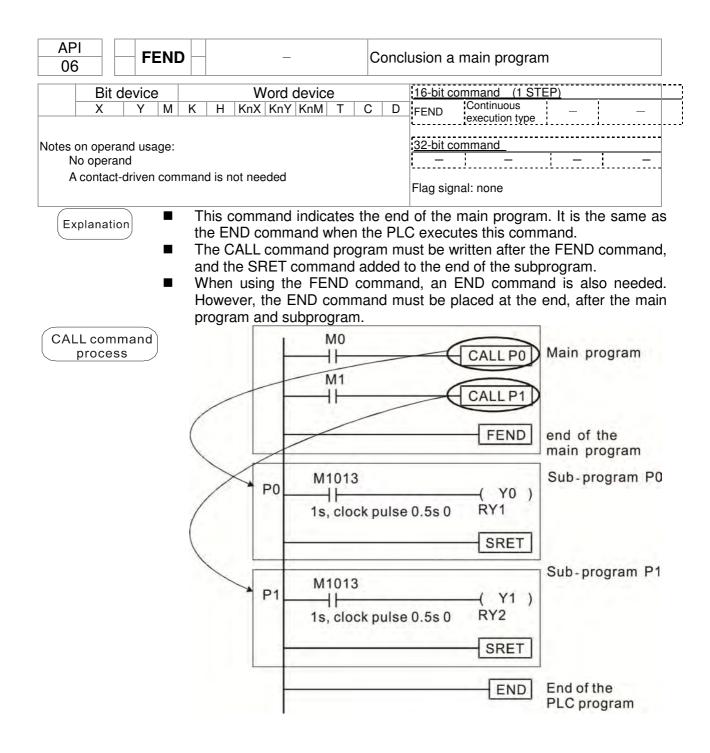
Command	Function							
Р	Index							
Operand	P0~P255							
Explanation	Pointer P is used to subprogram call command API 01 CALL. Use does not require starting from zero, but the number cannot be used repeatedly, otherwise an unpredictable error will occur.							
Example	Ladder diagram: X0 X1 P10	CALL	P10		Comma LD CALL :	nd code: X0 P10	Description: Load Contact a of X0 Call command CALL to P10	
	I	\smile			P10		Pointer P10	
					LD	X1	Load Contact a of X1	
					OUT	Y1	Drive Y1 coil	

16-6-3 Overview of application commands

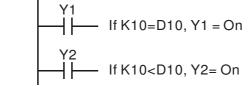
Classification	API	Command code		P.	Function	STE	
Classification		16 bit	32 bit	command		16bit	32bit
	01	CALL	-	✓	Call subprogram	3	-
Circuit control	2	SRET	-	-	Conclusion of subprogram	1	-
	06	FEND	-	-	Conclusion a main program	1	-
	10	CMP	DCMP	 ✓ 	Compares set output	7	13
Send	11	ZCP	DZCP	 ✓ 	Range comparison	9	17
comparison	12	MOV	DMOV	 ✓ 	Data movement	5	9
	15	BMOV	_	 ✓ 	Send all	7	_
	20	ADD	DADD	 ✓ 	BIN addition	7	13
	21	SUB	DSUB	 ✓ 	BIN subtraction	7	13
Four logical	22	MUL	DMUL	 ✓ 	BIN multiplication	7	13
operations	23	DIV	DDIV	 ✓ 	BIN division	7	13
_	24	INC	DINC	 ✓ 	BIN add one	3	5
	25	DEC	DDEC	 ✓ 	BIN subtract one	3	5
Rotational	30	ROR	DROR	 ✓ 	Right rotation	5	
displacement	31	ROL	DROL	✓	Left rotation	5	
Data Process	40	ZRST	_	✓	Clear range	5	-
	49	_	DFLT	✓	BIN whole number \rightarrow binary floating point number transformation	-	9
communication	150	MODRW	_	×	MODBUS read/write	7	_
	110	_	DECMP	✓	Comparison of binary floating point numbers	_	13
-	111	-	DEZCP	✓	Comparison of binary floating point number range	-	17
	116	_	DRAD	✓	Angle \rightarrow Diameter	_	9
	117	_	DDEG	✓	Diameter \rightarrow angle	_	9
	120	-	DEADD	×	Binary floating point number addition	-	13
	121	-	DESUB	✓	Binary floating point number subtraction	-	13
	122	-	DEMUL	~	Binary floating point number multiplication	-	13
Float	123	-	DEDIV	✓	Binary floating point number division	-	13
ing po	124	-	DEXP	√	Binary floating point number obtain exponent	-	9
Floating point operation	125	-	DLN	✓	Binary floating point number obtain logarithm	-	9
oerati	127	-	DESQR	✓	Binary floating point number find square root	-	9
on	129	_	DINT	✓ 	Binary floating point number \rightarrow BIN whole number transformation	_	9
	130	-	DSIN	✓	Binary floating point number SIN operation	_	9
	131	-	DCOS	~	Binary floating point number COS operation	_	9
-	132	-	DTAN	~	Binary floating point number TAN operation	-	9
	133	-	DASIN	~	Binary floating point number ASIN operation	_	9
	134	-	DACOS	✓	Binary floating point number ACOS operation	-	9

Classification API 16 bit 32 bit command Function 16 bit 32 g 135 - DATAN ✓ Binary floating point number ATAN operation -		Comma		and code P		–	STEPS	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Classification	API		,	command	Function		32bit
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		135	-	DATAN	✓		_	9
Calendar 138 DTANH Compare calendar data -	8 T	136	-	DSINH	√		_	9
Calendar 138 DTANH Compare calendar data -	loatin point peratic	137	-	DCOSH	✓	COSH operation	_	9
161 TZCP - ✓ Compare calendar data range 9 - 162 TADD - ✓ Calendar data addition 7 - 163 TSUB - ✓ Calendar data subtraction 7 - 166 TRD - ✓ Calendar data subtraction 7 - 170 GRY DGRY ✓ BIN-JGRY code -BIN transformation 5 5 5 171 GBIN DGBIN ✓ Contact form logical operation LD# transformation 5 5 5 216 LDI DLDA - Contact form logical operation LD# transformation 5 5 5 217 LDA DLDA - Contact form logical operation AND# 5	D G	138	_	DTANH	✓	TANH operation	_	9
Calendar 162 TADD - - Calendar data addition 7 - 163 TSUB - - Calendar data subtraction 7 - 166 TRD - - Calendar data read 3 - GRAY code 170 GRY DGRY - BIN-GRY code transformation 5 5 171 GBIN DGBIN - Contact form logical operation LD# 5 5 5 216 LD DLD - Contact form logical operation LD# 5 5 5 218 AND& DAND^ - Contact form logical operation LD# 5 5 5 219 AND DAND^ - Contact form logical operation AND# 5 5 5 220 AND DAND^ - Contact form logical operation AND# 5 5 5 221 OR& DOR - Contact form logical operation AND# 5 5 5	_			_				-
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			1	_				-
Infe TRD - - Calendar data read 3 - GRAY code 170 GRY DGRY BIN-GRY code transformation 5 5 IT1 GBIN DGBIN - GRY code -BIN transformation 5 5 IT1 GBIN DGBIN - Contact form logical operation LD# 5 5 IT1 LD& DLD - Contact form logical operation LD# 5 5 IT1 LD^ DLD - Contact form logical operation AND# 5 5 IT1 LD^ DAND - Contact form logical operation AND# 5 5 IT1 LD^ DAND - Contact form logical operation AND# 5 5 IT1 LD DAND DAND^ - Contact form logical operation AND# 5 5 IT1 LD DR DOR - Contact form logical operation OR# 5 5 5 IT1 DR DOR <td< td=""><td>Calendar</td><td></td><td>1</td><td></td><td></td><td>1</td><td></td><td>-</td></td<>	Calendar		1			1		-
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	-					1		-
GRAY code 171 GBIN DGBIN ✓ GRY code →BIN transformation 5 5 5 215 LD& DLD& - Contact form logical operation LD# 5 5 5 5 216 LDI DLD - Contact form logical operation LD# 5 5 5 217 LD^ DLD^ - Contact form logical operation LD# 5 5 5 218 AND& DAND& - Contact form logical operation AND# 5 5 5 219 ANDI DANDA - Contact form logical operation AND# 5 5 5 220 AND^ DAND^ - Contact form logical operation OR# 5 5 5 221 OR DOR - Contact form logical operation OR# 5 </td <td></td> <td></td> <td>1</td> <td></td> <td></td> <td>1</td> <td></td> <td>-</td>			1			1		-
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		170	GRY	DGRY			5	9
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	GRAY CODE	171	GBIN	DGBIN	•	transformation	5	9
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	-	215	LD&	DLD&	-	LD#	5	9
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	C .	216	LD	DLD	-	LD#	5	9
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	ontact	217	LD^	DLD^	-	LD#	5	9
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	form	218	AND&	DAND&	-	AND#	5	9
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	l logic	219	ANDI	DANDI	-	AND#	5	9
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		220	AND^	DAND^	-	AND#	5	9
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	eratic	221	OR&	DOR&	-	OR#	5	9
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	ă I	222	OR	DOR	-	OR#	5	9
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		223			-			9
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		224	LD=	DLD=	-	Contact form compare LD*	5	9
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		225	LD>	DLD>	-	Contact form compare LD*	5	9
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		226	LD<	DLD<	-	Contact form compare LD*	5	9
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		228	LD<>	DLD<>	-	Contact form compare LD*	5	9
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	òn	229	LD<=	DLD<=	-	Contact form compare LD*	5	9
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Itac				-	-		9
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	t fc							9
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	orm					1		9
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8					-		9
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	j m				_			9
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	oare co				_	-		9
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					_	· · ·		9
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	m				-			9
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	imand				_	-		9
244 OR<> DOR<> - Contact form compare OR* 5						-		9
								9
\Box			OR< > OR<=	DOR<>				
								9 9

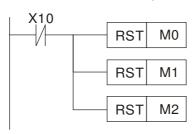
Classification		Command code		Р	Function	STEPS	
Classification	API	16 bit	32 bit	command	Function	16bit	32bit
Floating point contact form	275	-	FLD=	-	Floating point number contact form compare LD*	-	9
	276	-	FLD>	-	Floating point number contact form compare LD*	-	9
ig	277	-	FLD<	-	Floating point number contact form compare LD*	-	9
	278	-	FLD<>	-	Floating point number contact form compare LD*	-	9
	279	-	FLD<=	-	Floating point number contact form compare LD*	-	9
	280	-	FLD>=	-	Floating point number contact form compare LD*	-	9
	281	-	FAND=	-	Floating point number contact form compare AND*	-	9
	282	-	FAND>	-	Floating point number contact form compare AND*	-	9
Q	283	-	FAND<	-	Floating point number contact form compare AND*	-	9
Compare command	284	-	FAND<>	-	Floating point number contact form compare AND*	-	9
re cor	285	-	FAND<=	-	Floating point number contact form compare AND*	-	9
nmar	286	-	FAND>=	-	Floating point number contact form compare AND*	-	9
đ	287	-	FOR=	-	Floating point number contact form compare OR*	-	9
	288	-	FOR>	-	Floating point number contact form compare OR*	-	9
	289	-	FOR<	-	Floating point number contact form compare OR*	-	9
	290	-	FOR<>	-	Floating point number contact form compare OR*	-	9
	291	-	FOR<=	-	Floating point number contact form compare OR*	-	9
	292	-	FOR>=	-	Floating point number contact form compare OR*	-	9
	139	RPR		✓	Read servo parameter	5	_
	140	WPR		✓	Write servo parameter	5	_
	141	FPID	_	✓	Driver PID control mode	9	_
	142	FREQ	_	✓	Driver torque control mode	7	_
yr o	262	_	DPOS	✓	Set target	-	5
Driver special command	263	TORQ		✓	Set target torque	5	-
	261	CANRX	_	✓ ✓	Read CANopen slave station data	9	-
	264	CANTX	_	✓	Write CANopen slave station data	9	-
	265	CANFLS	_	✓	Refresh special D corresponding to CANopen	3	-
	320	ICOMR	DICOMR	✓	Internal communications read	9	17
	321	ICOMW	DICOMW	 ✓ 	Internal communications write	9	17


16-6-4 Detailed explanation of applications commands

API CALL	P	Call s	ubprogram
Bit device X Y M	Word device K H KnX KnY KnM T	C D	16-bit command (3 STEP) CALL Continuous CALLP Pulse execution type execution type execution type
Notes on operand usage The S operand can CH2000 series dev		<u>32-bit command</u> — — — — — — — — — — — — — — — — — — —	
Explanation	S : Call subprogram poin Write the subprogram after		ND command.


- The subprogram must end after the SRET command.
- Refer to the FEND command explanation and sample content for detailed command functions.

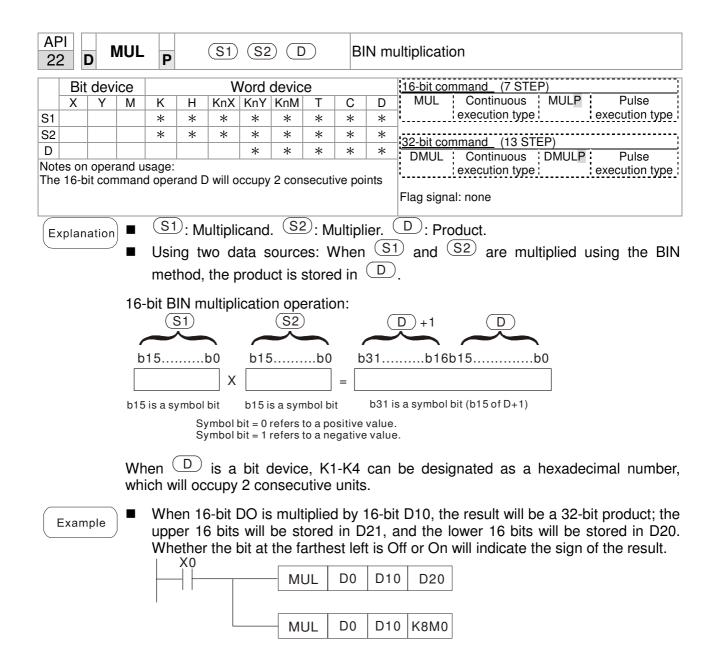
API 02 SRET	P – Conclusion of subprogram
Bit device X Y M Notes on operand usage No operand A contact-driven co	Word device 16-bit command (1 STEP) K H KnX KnY KnM T C D Continuous execution type
Explanation	A contact-driven command is not needed. Automatically returns next


- command after CALL command
- Indicates end of subprogram. After end of subprogram, SRET returns to main program, and executes next command after the original call subprogram CALL command.
- Refer to the FEND command explanation and sample content for detailed command functions.

AF 1(, c	MP	Ρ		(S1)	(S2		\mathcal{D}	С	ompa	ares set output	
	Bit	devi	ce			V	Vord	devic	e			16-bit command (7 STEP)	
	X	Y	M	К	Н			KnM	T	С	D	CMP Continuous CMPP Pulse	
S1				*	*	*	*	*	*	*	*	execution type execution type	
S2				*	*	*	*	*	*	*	*	32-bit command (13 STEP)	
D		*	*									DCMP Continuous DCMPP Pulse	
			and us) occu		hree (conse	cutive	points				Flag signal: none	
 (S1): Compare value 1. (S2): Compare value 2. (D): Results of comparison comparison are expressed in (D). Size comparison is performed algebraically. All data is compared in the for numerical binary values. Because this is a 16-bit command, when b15 is 1, indicates a negative number. 													
E	Exam	ple	•	Whe X10 rem If ≥	en X ⊨Off ain ii , ≤,	10=C , the n the	on, the CMP state ≠ res	e CM com prio sults	IP co man r to X	mma d wil (10=	and e I not Off.	automatically occupies Y0, Y1 and Y2. xecutes, and Y0, Y1 or Y2 will be On. When execute, and the state of Y0, Y1 and Y2 will they can be obtained via series/parallel	
					×10 ┨┠─		[Y0 ↓ Y1	CMF	_	10 D10	D1), Y0 =		

■ To clear results of comparison, use the RST or ZRST command.

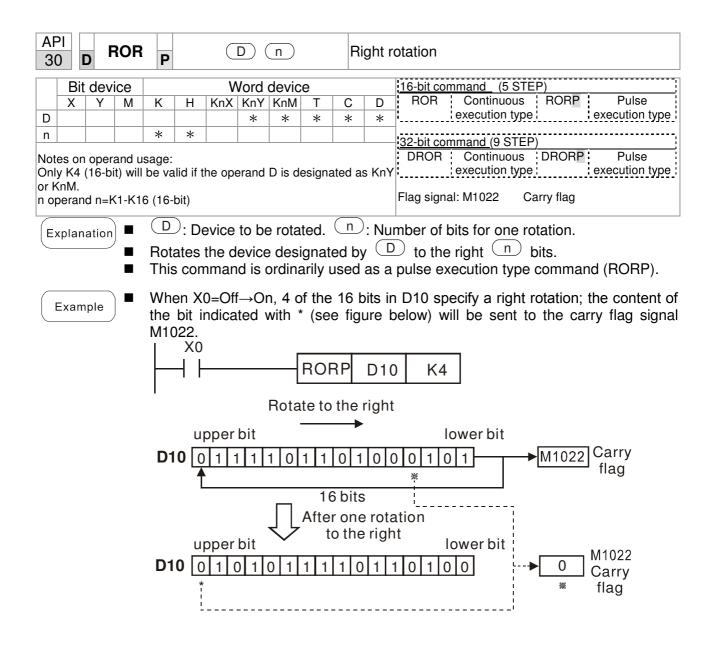
L X10			
/	ZRST	MO	M2

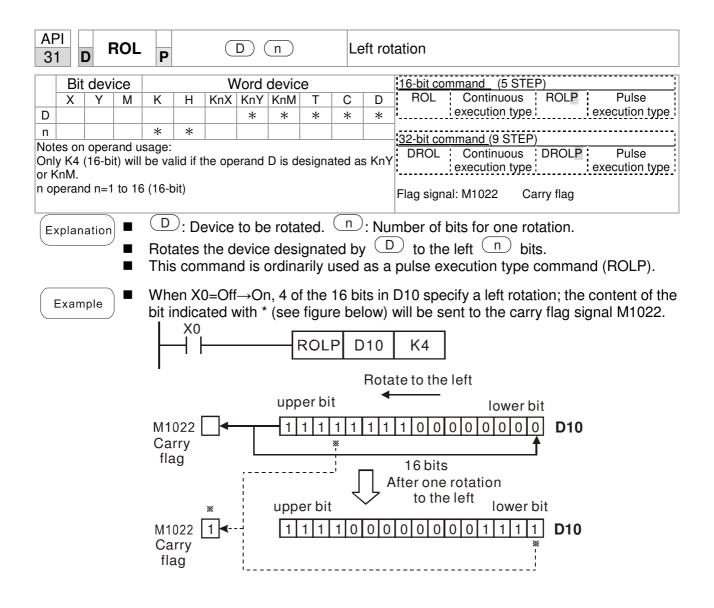

AP 11			ZCP	Ρ	S	1) (5	<u>52</u>) (S	D) R	ange	comparison
		dev	rice	-		V	Vord	devid	e			16-bit command (9 STEP)
	X	Y	M	K	Н	KnX	KnY	KnM	Т	С	D	ZCP Continuous ZCPP Pulse execution type execution type
1				*	*	*	*	*	*	*	*	-
2				*	*	*	*	*	*	*	*	32-bit command (17 STEP) DZCP Continuous DZCPP Pulse
)		*	* and u									execution type execution type
2 c ne	opera	nd and I		upies 1	three	consec	cutive	points	6			Flag signal: none
	·)						-			sults of comparison.
				Wh	en th	ne co	mpa	rative	e valı	le 🤇	S) i	s compared with the lower limit $\stackrel{(S1)}{=}$ ar
				upp	er lin	nit C	<u>52</u>), †	the re	esults	s of c	ompa	arison are expressed in \bigcirc .
				Wh						•		(S2), the command will use the lower lin
				(<u>S1</u>								upper and lower limit.
												raically. All data is compared in the form is is a 16-bit command, when b15 is 1, th
						s a ne	-					
) 🔳				•				∕∩ i+	automatically occupies M0, M1 and M2.
E	Exam	ple										ecutes, and M0, M1 or M2 will be On. Whe
												execute, and the state of M0, M1 or M2 w
				lf ≥	:, ≤,		é res	sults				they can be obtained via series/parall
				con	necti	ons c	of MU X0	-M2.				
						_	ΗĒ			ZC	P I	K10 K100 C10 M0
									MO			
									$\dashv \vdash$	— If	C10	< K10, M0 = On
									M1			
									$\neg \vdash$	— f	K10	≦ C10 ≦ K100, M1 = On
									M2			
									$\dashv \vdash$	— If	C10	> K100, M2 = On
						resul	ts of	com	oaris	on, u		e RST or ZRST command.
					X0 ⊥ ⁄∟			ST	M0	ı L	_X0 /⊥	ZRST M0 M2
					11				IVIO		1	
							— F	ST	M1			
										ו		
						L	- F	ST	M2			
				I								

AF 12) N	١OV	Ρ		\subset	S) (D		D	ata n	novement
	Bit	dev	ice			V	Vord	devic	e			16-bit command (5 STEP)
	Х	Y	М	K	Н	KnX			Т	С	D	MOV Continuous MOVP Pulse
S				*	*	*	*	*	*	*	*	execution type secution type
D	06.00	opor	and u	sage:	nono		*	*	*	*	*	32-bit command (9 STEP)
	65 011	open	anu u	saye.	none							DMOV Continuous DMOVP Pulse execution type execution type
									Flag signal:			
E	(plan	ation		Whe mov	en th	nis co	omma	and i	of data movement. The content of \bigcirc content will be directly is not executed, the content of \bigcirc will not			
E	Exam	ple		sen Whe	t to d en X	lata r 1=Of	egist f, the	er D1	0. ent o	of D1	0 wil	not change; if X0=On, the value K10 will be I not change; if X1=On, the current value of MOV_K10D0 MOV_T0D10

API 15 BMO	V P S D n Send all
Bit device	Word device 16-bit command (7 STEP)
X Y M	K H KnX KnY KnM T C D BMOV Continuous BMOVP Pulse
S D	* * * * * execution type execution type *<
n	* * * <u>* * 32-bit command</u>
Notes on operand u	
n operand scope n	Flag signal: none
Explanation	S: Initiate source device. D: Initiate destination device. C: Send block
	length.
-	The content of n registers starting from the initial number of the device designated
	by (S) will be sent to the n registers starting from the initial number of the
	device designated by (n) ; if the number of points referred to by n exceeds the range used by that device, only points within the valid range will be sent.
Example 1	When X10=On, the content of registers D0-D3 will be sent to the four registers D20 to D23.
	$X10 \qquad BMOV D0 D20 K4 D0 \rightarrow D20 $
	$\begin{array}{c c} D1 & D21 \\ \hline D2 & D22 \end{array} n=4$
	$D3 \rightarrow D23$
Example 2	If the designated bit devices KnX, KnY, and KnM are sent, (S) and (D) must have the same number of nibbles, which implies that n must be identical.
	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
	$\begin{array}{c} M_2 \\ M_3 \end{array} \longrightarrow \begin{array}{c} Y_2 \\ Y_3 \end{array}$
	M4
	$M5 \rightarrow Y5$ M6 $\rightarrow Y6$ $n=3$
	M7 Y7
	M8
	$\begin{array}{c} M9 \\ \hline M10 \\ \hline \end{array} \begin{array}{c} Y11 \\ \hline Y12 \end{array}$
	$\frac{M10}{M11} \longrightarrow \frac{112}{Y13}$
Example 3	In order to prevent overlap between the transmission addresses of two operands,
	which would cause confusion, make sure that the addresses designated by the two operands have different sizes, as shown below:
	When \bigcirc > \bigcirc , send in the order $\bigcirc \rightarrow \oslash \rightarrow \odot$.
	X10 \square \square \square \square \square \square \square \square \square \square
	$D21 \xrightarrow{(2)} D20$
	$\boxed{D22} \xrightarrow{\textcircled{3}} D21$ When $\boxed{S} < \boxed{D}$, send in the order $\boxed{3} \rightarrow \boxed{2} \rightarrow \boxed{1}$.
	X11
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
	$D12 \longrightarrow D13$

AF 20		b	٩DD	Ρ		(S1)	(S2		\mathcal{D}	BI	N ac	dition					
	Bit	dev	ice			٧	Vord	devic	e			16-bit comn	mand (7 s	STE	>)		
S1	Х	Y	M	K *	H *	KnX *			T *	C *	D *	ADD	Continuo	us	ADDP		Pulse ution type
S2				*	*	*	*	*	*	*	*	32-bit comn					
D Note	es on	oper	and u	sage:	none		*	*	*	*	*	DADD	Continuor execution t	us	DADDP		Pulse ution type
					~							Flag signal: N F		ero fla rrow rry fla er to	ag flag ag the follow	ring	
Ex	plan	ation)			•						Sum.					
								ource red ir			esult	of adding	g (<u>S1</u>) ;	and	(<u>S2</u>) เ	using	the BIN
			•	The (neg 3+(-	high gative 9)=-0	iest k e), e 6)	oit of nabli	any c ng tł	lata i ne u	s syr se o	of alg	zed as bit Jebraic ad		-		,	•
				Flag	g cha	nges	con	necte	d wit	h the	add	ition.					
				2.								e zero flag than –32,7				M102	21 will be
				3.		n cal	culat	ion re	esulte	s are	grea	ter than 32	2,767, th	e ca	rry flag	M102	22 will be
E	Exam	ple)									e result of t e content o		ent o	of adder	nd DC) plus the
								- A[DD	D0	D1	D D20					
	Rem	ark										l negative/					
				-2, •	-1,0	-3:	2,768	3 ◀──	_	1,	0	,1	→ 32,76	67	0 1 2	•	
					Borro	∾ ow fla	ıg	of th	e dat	est bi ta ttive)	(The highes of the data = 0 (positive		Ca	arry flag		
				32	2 bit:	Zero	flag			Ze	ero fla	ig		Zer	o flag		
				-2, ·	-1,0	-2,147 ノ	7,483,	648	<	1, K K	0		2,147,48	3,64	7 0 1	2	
				B	orrow	<i>ı</i> flag		of th	highe e dat nega			The highes of the data = 0 (positiv	L		Carry fl	ag	


AF 21		5	SUB	Ρ		<u>(S1</u>)	(S2		D	BI	IN su	btraction			
	Bit	dev	ice			V	Vord	devic	е			16-bit command (7 STEP)			
	X	Y	M	K	Н			KnM	T	С	D	SUB Continuous SUBP Pulse			
S1				*	*	*	*	*	*	*	*	execution type execution type			
S2				*	*	*	*	*	*	*	*	32-bit command (13 STEP)			
D							*	*	*	*	*				
Note	es on	oper	and u	sage:	none			DSUB Continuous DSUBP Pulse execution type							
Flag signal: M1020 Zero flag M1021 Borrow flag M1022 Carry flag Please refer to the following supplementary explanation															
Ex	 Explanation S1: Minuend. S2: Subtrahend. D: Difference. Using two data sources: The result of subtraction of S1 and S2 using the BIN method is stored in D. The highest bit of any data is symbolized as bit 0 indicating (positive) 1 indicating (negative), enabling the use of algebraic subtraction operations. Flag changes connected with subtraction. 														
				2. C 3.	Whe Dn. Whe	en cal	culat	ion re	esults	are	less	e zero flag M1020 will be On. than –32,768, the borrow flag M1021 will be ter than 32,767, the carry flag M1022 will be			
 3. When calculation results are greater than 32,767, the carry flag M1022 will be On. ■ 16-bit BIN subtraction: When X0=On, the content of D10 is subtracted from the content of D0, and the difference is stored in D20. X0 SUB D0 D10 D20 															



AF 23)	DIV	Ρ		<u>(S1</u>)	(S2		D	В	IN di	vision			
	Bit	dev	ice			V	Vord	devic	е			16-bit command (7 STEP)			
S1	Х	Y	М	K *	H *	KnX *	KnY *	KnM *	T *	C *	D *	DIV Continuous DIVP Pulse execution type execution type			
S2				*	*	*	*	*	*	32-bit command_ (13 STEP)					
D							*	*	DDIV Continuous DDIVP Pulse						
The	Iotes on operand usage: iotes operand usa														
Ex															
	Using two data sources: The quotient and remainder will be stored in D when														
	Using two data sources: The quotient and remainder will be stored in D when S1 and S2 are subjected to division using the BIN method. The sign bit for														
	(S1), $(S2)$ and (D) must be kept in mind when performing a 16-bit operation.														
	16-bit BIN division: Quotient Remainder														
				C	<u>S1</u>			I	S ₂)		D D +1			
			b1	5		b00	í / [o15		b		b15b00 b15b00			
				D								designated 16 bits, which will occupy 2 d remainder.			
E	xam	ple) ■	will	be p	laced	d in [D20, On w	and t vill inc	the r dicate	rema e the	rom division of dividend D0 by divisor D10 inder will be placed in D21. Whether the sign of the result.			
								- DIV	/ l	D0	D10	D20			
								DIV	/ [D0	D10	K4Y0			

AF 24		D	INC	Ρ			D)			BIN ad	dd one		
	Bi	t dev	ice			V	Vord	devic	е			16-bit command (3 STEP)		
	Х	Y	М	K	Н	KnX			Т	С	D	INC Continuous INCP Pulse execution type execution type		
D							*	*	*	*	*	execution type secution type secution type secution type secution type secution type security		
INOT	otes on operand usage: none											32-bit command (5 STEP)		
	DINC Continuous DINCP Pulse execution type execution type													
	Flag signal: none													
E	Explanation													
Ċ	.6									exe	ecutio	n type, when the command is executed, the		
				prod	oram	will a	dd 1	to the	e con	ntent	t of de	vice \bigcirc for each scanning cycle.		
					-							pulse execution type command (INCP).		
				Dur	ing 1	6-bit	opera	ation,	32,7	67 -	+1 will	change the value to -32,768. During 32 bit		
				ope	ratior	ו, 2,1	47,48	33,64	7 +1	will	chang	ge the value to -2,147,483,648.		
[Exan	nple												
\subseteq)		X0 -	[INCF	D0)					

AF 25)	DEC	Ρ			D)		BI	N su	btract one			
	Bit	devi	ice			V	Vord	devic	e			16-bit command (3 STEP)			
	Х	Y	М	K	Н	KnX	KnY	KnM	Т	С	D	DEC Continuous DECP Pulse			
D				*	*	*	*	*				execution type execution type			
Note	es on	opera	and us	sage:	none			32-bit command (5 STEP)							
	DDEC Continuous DDECP Pulse execution type execution type														
	Flag signal: none														
Ex	 Explanation D: Destination device. If a command is not the pulse execution type, when the command is executed, the program will add 1 to the content of device This command is ordinarily used as a pulse execution type command (DECP). 														
												ill change the value to 32,767. During 32 bit nge the value to -2,147,483,647.			
E	Exam	ple		Whe	en X(X0 	D=Off	→Or DEC	-	auto	omati	cally	subtracted from the content of D0.			

AP 40			ZRST	P			D1) (D2)			Cle	ear r	ange	9					
	Bit	t de	vice			V	Vord	devic	e				16-h	it comr	mand	(5 STEF			
	Х	Y	M	K	Н			KnM		0	2	D		ST		tinuous		:	Pulse
D1		*	*						*	>	*	*	<u> </u>			ition type			cution type
D2		*	*						*	>	*	*							
			erand u										32-0	it comr	mand	;			
			perand , D2 mι										·						
Plea	ise r	efer	to the	functi	on sp	ecifica	tions	table f	or ea	ce ch d	devi	ce in	Flag	signal:	none	Э			
serie	es fo	r the	scope	of de	vice u	sage													
Ex	plan	natio	n) 🗖	D ₁	: Clea	ar rar	ige's	initia	l dev	/ice). D	2: Cl	ear	range	's fir	nal devic	e.		
								er of will b					nur	nber (of o	perand	D ₂ , onl	y the	e operand
E	Exam	nple		Wh anc	en X [.] I chai	1 is C 1ges	n, 16 conta	6-bit d act ai	coun nd co	ters oil t	s C(:o C	0 - C 0ff).	;127	will a	ll be	cleared	. (Write	s 0, a	ed to Off. and clears
												7 wi	ll all	be c	leare	ed. (Writ	es 0, a	and c	lears and
					0			nd co			,								
				Wh	en X	3 is C)n, th		ta in	dat	ta re	egist	ters	D0 - D	D100) will be	cleared	l and	set as 0.
								X0			Г			<u> </u>		I	7		
								-1┣				ZF	RST	M3	00	M399			
								X1			ſ			·					
							-	┥┝──				ZF	RST	C	0	C127			
								X10											
											_	ZF	RST	Т	0	T127			
								X3 ┨┣──			[7F	RST	D	0	D100	7		
											L								
	Rem	ark						ende , C, I		use	e th	e cle	ear c	omma	and	(RST), s	uch as	bit de	evice Y, M
								X0					Г				l		
							-						_	RS1	Г	M0			
													_	RS1	Г	Т0			
													Г						
														RS1	Г	Y0			
							1												

AF 49		D	FLT	Ρ		C	<u>s</u>)(D)		BI tra		whole rmation	number	\rightarrow	binary	decimal
	Bit device Word device												<u>mmand</u>			
	Х	Y	М	K	Н	KnX	KnY	KnM	Т	С	D	<u> </u>	<u> </u>			
S		*	*						*	*	*					:
D													mmand (9ste	<u> </u>		Dulas
tabl	Notes on operand usage: Please refer to the function specifications able for each device in series for the scope of device usage The operand D will occupy 2 consecutive points S: Transformation source device. D: Device storing transformation results															
E;	 Explanation S: Transformation source device. D: Device storing transformation results. Transforms BIN whole number into a binary decimal value. 															
	 When X11 is On, converts the whole number of values corresponding to D0 and D1 into floating point numbers, which are placed in D20 and D21. DFLT D0 D20 														to D0 and	

AP 15		MC	DDR	W P	(<u>S1</u>	ি ত	2 (<u>S</u> 3 (S	n	M	ODBUS data read/write
	Bit	dev	ice			V	Vord	16-bit command (5 STEP)				
	Х	Υ	М	K	Н	KnX	KnY	KnM	Т	С	D	MODRW Continuous MODRW Pulse
S1				*	*						*	execution type P execution type
S2				*	*],
S3				*	*						*	<u>32-bit command</u>
S											*	;
n				*	*						*	- Flag signal: M1077 M1078 M1079
			1		1	1	1			1		

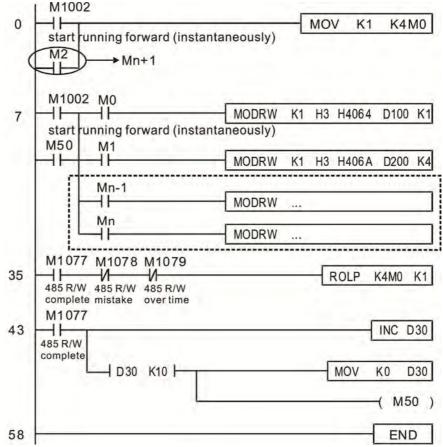
Explanation

- S1: online device address. S2: communications function code. S3: address of data to read/write. S: register for data to be read/written is stored. N: length of data to be read/written.
- COM1 must be defined as controlled by the PLC (set P9-31 = -12) before using this command, and the corresponding communications speed and format must also be set (set P09-01 and P09-04). S2: communications function code. Currently only supports the following function code; the remaining function code cannot be executed.

Function	Description
H 02	Input read
H 03	Read word
H 06	Write single word
H 0F	Write multiple coils
H10	Write single word

- After executing this command, M1077, M1078 and M1079 will be immediately changed to 0.
- As an example, when CH2000 must control another converter and PLC, if the converter has a station number of 10 and the PLC has a station number of 20, see the following example:

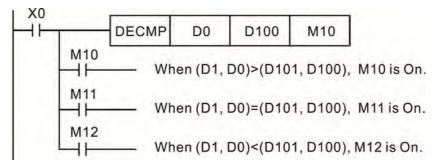
Control slave device converter


		MODRW command								
Seria	Example	S1	S2	S3	S4	n				
l No.	- -	Node ID	Function code	Addres s	Register	Leng th:				
1	Reads 4 sets of data comprising the converter slave device parameters P01-00 to P01-03, and saves the read data in D0 to D3	K10	H3	H100	D0	K4				
2	Reads 3 sets of data comprising the converter slave device addresses H2100 to H2102, and saves the read data in D5 to D7	K10	H3	H2100	D5	K3				
3	Reads 3 sets of data comprising the converter slave device parameters P05-00 to P05-03, and writes the values as D10 to D12	K10	H10	H500	D10	K3				
4	Writes 2 sets of data comprising the converter slave device addresses H2000 to H2001, and writes the values as D15 to D16	K10	H10	H2000	D15	K2				

PLC controlling	slave device
-----------------	--------------

0 0			MOD	RW com	mand	
Serial	Example	S1	S2	S3	S4	n
No.		Node	Functio	Addres	Registe	
_		ID	n code	S	r	Length:
1	Reads 4 sets of data comprising the PLC slave device's X0 to X3 state, and saves the read data in bits 0 to 3 of D0	K20	H2	H400	D0	K4
2	Reads 4 sets of data comprising the PLC slave device's Y0 to Y3 state, and saves the read data in bits 0 to 3 of D1	K20	H2	H500	D1	K4
3	Reads 4 sets of data comprising the PLC slave device's M0 to M3 state, and saves the read data in bits 0 to 3 of D2	K20	H2	H800	D2	K4
4	Reads 4 sets of data comprising the PLC slave device's T0 to T3 state, and saves the read data in bits 0 to 3 of D3	K20	H2	H600	D3	K4
5	Reads 4 sets of data comprising the PLC slave device's C0 to C3 state, and saves the read data in bits 0 to 3 of D4	K20	H2	HE00	D4	K4
6	Reads 4 sets of data comprising the PLC slave device's T0 to T3 count value, and saves the read data of D10 to D13	K20	H3	H600	D10	K4
7	Reads 4 sets of data comprising the PLC slave device's C0 to C3 count value, and saves the read data of D20 to D23	K20	H3	HE00	D20	K4
8	Reads 4 sets of data comprising the PLC slave device's D0 to D3 count value, and saves the read data of D30 to D33	K20	H3	H1000	D30	K4
9	Writes 4 sets of the PLC slave device's Y0 to Y3 state, and writes the values as bits 0 to 3 of D1	K20	HF	H500	D1	K4
10	Writes 4 sets of the PLC slave device's M0 to M3 state, and writes the values as bits 0 to 3 of D2	K20	HF	H800	D2	K4
11	Writes 4 sets of the PLC slave device's T0 to T3 state, and writes the values as bits 0 to 3 of D3	K20	HF	H600	D3	K4
12	Writes 4 sets of the PLC slave device's C0 to C3 state, and writes the values as bits 0 to 3 of D4	K20	HF	HE00	D4	K4
13	Writes 4 sets of the PLC slave device's T0 to T3 state, and writes the values of D10 to D13	K20	H10	H600	D10	K4
14	Writes 4 sets of the PLC slave device's C0 to C3 state, and writes the values of D20 to D23	K20	H10	HE00	D20	K4
15	Writes 4 sets of the PLC slave device's D0 to D3 state, and writes the values of D30 to D33	K20	H10	H1000	D30	K4

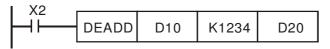
Example


- Will trigger M0 On when the PLC begins to operate, and sends instruction to execute one MODRW command.
- After receiving the slave device's response, if the command is correct, it will execute one ROL command, which will cause M1 to be On.
- After receiving the slave device's response, will trigger M50 = 1 after a delay of 10 PLC scanning cycles, and then execute one MODRW command.
- After again receiving the slave device's response, if the command is correct, it will execute one ROL command, and M2 will change to On at this time (and M2 can be defined as a repeat of M); K4M0 will change to K1, and only M0 will remain 1. Transmission can proceed in a continuous cycle. If you wish to add a command, merely add the desired command in the empty frame, and change repeat M to Mn+1.

API 110 D ECMP				•	P							Comparison of binary floating point numbers					
	Bit	devi	ice			V	Vord	devic	e			16-bit command					
	Х	Y	М	Κ	Н	KnX	KnY	KnM	Т	С	D						
S1				*	*						*	··					
S2				*	*						*	<u>32-bit command (</u> 13 STEP)					
D				*	*						*	DECMP Continuous DECMPP Pulse					
The Plea seri	oper ase re es for	and E efer to	occu the cope	function of dev S ₁ : bin cor	on spe <u>vice u</u> Cor ary f nsecu	ecifica sage npari floatir utive	tions f son ng po point	of bii pint r s.	or eac nary numb	float ers	ing p value	Flag signal: none oint numbers value 1. S ₂ : Comparison of 2. D: Results of comparison, occupies 3					
			•	floa	ating	point	num	ber 2	2, the	resu	ult of	1 is compared with comparative binary comparison (>, =, <) will be expressed in \mathbf{D} .					
				trai	nsfor				gnates a constant K or H, the command will floating-point number for the purpose of								

Example

- When the designated device is M10, it will automatically occupy M10-M12.
- When X0=On, the DECMP command executes, and one of M10-M12 will be On. When X0=Off, the DECMP command will not execute, and M10-M12 will remain in the X0=Off state.
- If results in the form of ≥, ≤, or ≠ are needed, they can be obtained by series and parallel connection of M10-M12.
- Please use the RST or ZRST command to clear the result.



		devi	ce					devic							
ŀ	Х	Y	М	K	<u>H</u>	KnX	KnY	KnM	Т	С	D	<u>16-bit command</u>			
-				*	*						*	<u>-</u>			
				*	*						*	<u>32-bit command (17 STEP)</u>			
t		*	*		•							DEZCP Continuous DEZCPP Pulse execution type execution type			
	es on c														
а	opera Ise ref	er to	the t	functio	on spe	ecifica				ch dev	rice in	Flag signal: none			
ie	es for t	the s	cope				••								
x	plana	tion	-	lim bin	it of ary 1	bina	ry flo ng po	oating pint r	j poi	nt nı	imbe	int number in range comparison. S_2 : Upper in range comparison. S: Comparison les. D: Results of comparison, occupies			
				nur	nber	lowe	er limi	t valu	le S₁	and	bina	numerical value S with binary floating port ry floating point number upper limit value s sed in D .			
				lf t	he s							gnates a constant K or H, the command			
				trai		m th ison.	e co	nstar	11 10	a bi	inary	floating-point number for the purpose			
			•	trai cor Wh limi cor	npar Ien t it bir npar	ison. he lo nary	wer floati with t	limit I ng p he up	oinar oint	y floa numl	ating per	point number \mathbf{S}_1 is greater than the upp \mathbf{S}_2 , a command will be issued to perfo			
Ē	xampl	le	•	trai cor Wh limi cor low	npar ien t it bir npar ver lir	ison. he lo nary ison v nit va	wer floati with t alue S	limit I ng p he up 5 1.	oinar oint oper a	y floa numl and le	ating ber \$ ower	point number \mathbf{S}_1 is greater than the upp \mathbf{S}_2 , a command will be issued to perfo			
=	xampl	le	_	trai cor limi cor low Wh Wh On	npar ien t it bir npar ver lir ver lir nen t nen X . Wh	ison. he lo hary ison mit va he de (0=0	wer floati with t alue \$ signa n, the D=Off	limit I ng p he up 3 1. ated o e DE2 f, the	oinar oint oper a devic ZCP	y floa numl and l e is l comr	ating ber S ower M0, i manc	point number S_1 is greater than the upp S_2 , a command will be issued to performinits using the binary floating point number twill automatically occupy M0- M2.			
=	xampl	le	_	trai cor limi cor low Wh Wh On in t	npar ien t it bir npar ver lir nen t nen X he X	ison. he lo hary ison mit va ne de (0=0 en Xi 0=Of	wer floati with t alue s signa n, the D=Off f stat	limit I ng p he up \mathbf{S}_1 . ated o e DE2 f, the e.	oinar oint oper a devic ZCP EZC	y floa numl and le e is f comr P cor	ating ber (ower M0, i nanc mma	point number S_1 is greater than the upp S_2 , a command will be issued to performing the binary floating point number twill automatically occupy M0- M2.			
Ξ	xampl	le	_	trai cor limi cor low Wh On in t Ple	npar it bir npar ver lir nen th nen X . Wh he X sase	ison. he lo hary ison mit va ne de (0=0 en Xi 0=Of	wer floati with t alue s signa n, the D=Off f stat	limit I ng p he up \mathbf{S}_1 . ated o e DE2 f, the e.	oinar oint oper a devic ZCP EZC	y floa numl and le e is f comr P cor	ating ber (ower M0, i nanc mma	point number S_1 is greater than the upp S_2 , a command will be issued to perform limits using the binary floating point number t will automatically occupy M0- M2. It will be executed, and one of M0-M2 will and will not execute, and M0-M2 will continue			
E	xampl	le	_	trai cor limi cor low Wh Wh On in t	npar it bir npar ver lir nen th nen X . Wh he X sase	ison. he lo hary ison mit va ne de (0=0 en Xi 0=Of	wer floati with t alue s signa n, the D=Off f stat he R	limit I ng p he up S_1 . ated o e DE2 f, the e. ST or	oinar oint oper a devic ZCP EZC	y floa numl and l e is f comr P cor ST co	ating per s ower M0, i manc mma	point number S_1 is greater than the upp S_2 , a command will be issued to perform limits using the binary floating point number t will automatically occupy M0- M2. It will be executed, and one of M0-M2 will and will not execute, and M0-M2 will continuant and to clear the result.			
Ē	xampl	le	_	trai cor limi cor low Wh On in t Ple	npar it bir npar ver lir nen th nen X . Wh he X sase	ison. he lo hary ison mit va he de (0=O en Xi 0=Of use t	wer floati with t alue s signa n, the D=Off f stat he R	limit I ng p he up \mathbf{S}_1 . ated o e DE2 f, the e.	oinar oint oper a devic ZCP EZC	y floa numl and le e is f comr P cor	ating per s ower M0, i manc mma	point number S_1 is greater than the upp S_2 , a command will be issued to perform limits using the binary floating point number t will automatically occupy M0- M2. It will be executed, and one of M0-M2 will and will not execute, and M0-M2 will contin			
E	xampl	le	_	trai cor limi cor low Wh On in t Ple	npar it bir npar ver lir nen th nen X . Wh he X sase	ison. he lo hary ison mit va ne de (0=0 en Xi 0=Of	wer floati with t alue s signa n, the D=Off f stat he R	limit I ng p he up 5 1. ated o e DE2 f, the e. ST or EZCF	oinar oint oper a devic ZCP (EZC ZRS	y floa numl and l e is f comr P cor ST co	ating oer s ower M0, i manc mma	d will be executed, and one of M0-M2 will and will not execute, and M0-M2 will contin and to clear the result.			
Ē	xampl	le	_	trai cor limi cor low Wh On in t Ple	npar it bir npar ver lir nen th nen X . Wh he X sase	ison. he lo hary ison mit va he de (0=O en Xi 0=Of use t	wer floati with t alue s signa n, the D=Off f stat he R	limit I ng p he up 5 1. ated o e DE2 f, the e. ST or EZCF	oinar oint oper a devic ZCP (EZC ZRS	y floa numl and l e is f comr P cor ST co	ating oer s ower M0, i manc mma	point number S_1 is greater than the upp S_2 , a command will be issued to performing using the binary floating point number t will automatically occupy M0- M2. It will be executed, and one of M0-M2 will and will not execute, and M0-M2 will continuant and to clear the result.			
E	xampl	le	_	trai cor limi cor low Wh On in t Ple	npar it bir npar ver lir nen th nen X . Wh he X sase	ison. he lo hary ison mit va he de (0=O en Xi 0=Of use t	wer floati with t alue s signa n, the D=Off f stat he R	imit I ng p he up ated o e DE2 f, the e. ST or EZCF	oinar oint oper a devic ZCP EZC ZRS	y floa numi and le e is f comr P cor ST co D0 (D1,	ating per s ower vI0, i nanc mma mma mma	point number S_1 is greater than the upp S_2 , a command will be issued to performing using the binary floating point number t will automatically occupy M0- M2. It will be executed, and one of M0-M2 will and will not execute, and M0-M2 will continuant and to clear the result.			
E	xampl	le	_	trai cor limi cor low Wh On in t Ple	npar it bir npar ver lir nen th nen X . Wh he X sase	ison. he lo hary ison mit va he de (0=O en Xi 0=Of use t	wer floati with t alue s signa n, the D=Off f stat he R	imit I ng p he up ated o e DE2 f, the e. ST or EZCF	oinar oint oper a devic ZCP EZC ZRS	y floa numi and le e is f comr P cor ST co D0 (D1,	ating per s ower vI0, i nanc mma mma mma	point number S_1 is greater than the upp S_2 , a command will be issued to perform imits using the binary floating point number t will automatically occupy M0- M2. d will be executed, and one of M0-M2 will and will not execute, and M0-M2 will contine and to clear the result. D10 D20 M0 > (D21, D20), M0 is On.			

AP) F	RAD	Ρ		C	S) (D		Ar	ngle ·	→ Diameter				
	Bit	devi	ce			V	Vord	devic	e			16-bit command				
	Х	Υ	М	Κ	Н	KnX	KnY	KnM	Т	С	D					
S				*	*						*					
D											* <u>32-bit command (9 STEP)</u> DRAD Continuous DRADP 脈波執行型					
Please refer to the function specifications table for each device in series for the scope of device usage																
serie	es for	the s	cope	of dev	/ice u	sage						Flag signal: none				
F	Explanation S: data source (angle). D: result of transformation (diameter).															
	plane		_		41-	- 6-11						e se al se de la se d'al se a				
				US	es th	e toli	owing	g torr	nula	to co	nver	angles to radians.				
				Dia	imete	er =	Angle	e ×	(π/18	30)						
E	xamp	ole	•	will	be c	onve	erted	to ra		and	store	nated binary floating point number (D1, D0) ed in (D11, D10), with the content consisting				
				Ĥ	<0 ┣──	-[[DRAD		D0		D10]				
				S		D 1	Ţ	D(e vali decin	ue nal places				
						D 11	Ť	D 1				e (angle value xπ/180) nal places				

API 117	API 117 D DEG P S D									Di	Diameter \rightarrow angle					
	Bit	devi	ice			V	Vord	devic	e			16-bit command				
	Х	Υ	М	Κ	Н	KnX	KnY	KnM	Т	С	D					
S				*	*						*	32-bit command (9 STEP)				
Pleas	se re	fer to	the the	sage: functio of dev		ecifica sage	tions 1	able f	or ead	ch dev		DDEG Continuous DDEGP Pulse				
Exc	olana	ation		S :	data	sour	ce (d	iame	ter). I	D: re	sults	of transformation (angle).				
(Us	es th	e foll	owing	g forr	nula	to co	nver	t radians to an angle.				
				An	gle =	=Dia	mete	er × (1	I 80/т	г)						
Ex	kamp	ble	•	rad	lians	will k	be co	nver	ted to	o an	angle	ed binary floating point number (D1, D0) in a and stored in (D11, D10), with the content umber.				
					<0 	-[[DEC	à	D0		D10]				
		1 <u>-</u>														
						D 11	Ť	D 1		角度(2進/	•	≤度值 × 180/π) 站				

AP 12		D	E	٩DD	P						Ac	dding	binary floating point numbers	
	Bi	t d	evi	ce			V	Vord	devic	e			16-bit command	
	Х	`	Y	М	K	Н	KnX	KnY	KnM	Т	С	D		
S1					*	*						*	122 bit command (0 CTED)	
S2					*	*						*	<u>32-bit command</u> (9 STEP) DEADD Continuous DEADDP Pulse	
D												*	execution type execution type	
Please refer to the function specifications table for each device in Flag signal: none														
F	S.: addend S.: augend D: sum													
	 S₁: addend. S₂: augend. D: sum. When the content of the register designated by S₂ is added to the content of the register designated by S₁, and the result is stored in the register designated by D. Addition is performed entirely using binary floating-point numbers. If the source operand S₁ or S₂ designates a constant K or H, the command will transform that constant into a binary floating point number for use in addition. 													
				•	"co the cor	ntinu regi nma	ious ister nds (exec will p DEA	ution perfor DDP)	" com m ad are ç	nmar ditio gene	nd is n one rally	designate identical register numbers, if a employed, when conditional contact is On, ce during each scan. Pulse execution type used under ordinary circumstances. number (D1, D0) will be added to a binary	
E	xan	nple)	-	floa	ating							ne results stored in (D11, D10).	
						≺0 ┣──	D	EADI	D	D0		D2	D10	
				•	(wł	nich I	nas b	een	autor		ally c	onve	number (D11, D10) will be added to K1234 rted to a binary floating-point number), and	

AF 12) E	SUB	Ρ		S 1	<u>(S2</u>		D	Sı	Subtraction of binary floating point numbers						
	Bit	dev	ice			V	Vord	devic	e			16-bit command					
	Х	Υ	M	Κ	Н			KnM		С	D						
S1				*	*						*						
S2				*	*						*	<u>32-bit command</u> (13 STEP)					
D	D otes on operand usage:										*	DESUB Continuous DESUBP Pulse execution type execution type					
Plea	ase re	fer to	and us the f cope	unction of dev	vice u	sage											
F	plana	ation		S ₁:	minı	uend	. S 2: :	subtra	diffe	rence.							
			•	of des nur	the r signa nber he s e	regist ited s. ourc	ter de by D e ope	esign ; sub erand	ated otracti d S 1 c	by S on is	S 1, th s pei desi	gnated by S_2 is subtracted from the content the difference will be stored in the register formed entirely using binary floating-point gnates a constant K or H, the command will floating point number for use in subtraction.					
			•	"co the	ntinu regi	ious ister	exec will p	ution perfor	" con m ad	nmar Iditio	nd is n one	designate identical register numbers, if a employed, when conditional contact is On, ce during each scan. Pulse execution type used under ordinary circumstances.					
	Exam	ple) ■									nt number (D1, D0) will be subtracted to a , and the results stored in (D11, D10).					
					≺0 ┣──	D	ESU	В	D0		D2	D10					
	When X2 =On, the binary floating point number (D1, D0) will be subtracted from K1234 (which has been automatically converted to a binary floating-point number), and the results stored in (D11, D10).																

AP 122		E	MUL	Ρ		<u>S1</u>	<u>S2</u>		D	N	/lultip	lication of binary floating point numbers		
	Bit o	ivah	re			v	Vord	devic	<u>م</u>			16-bit command		
	X	Y	M	K	Н		KnY			С	D			
S1				*	*						*			
S2				*	*						*	<u>32-bit command (13 STEP)</u>		
D	D										DEMUL Continuous DEMULP Pulse			
								execution type execution type						
			o the f cope (ecifica sage	tions t	ⁿ Flag signal: none						
Exp	$ = S_1: multiplicand. S_2: multiplier. D: product. $													
	 Explanation S₁: multiplicand. S₂: multiplier. D: product. When the content of the register designated by S₁ is multiplied by the conte the register designated by S₂, the product will be stored in the register designated by D; multiplication is performed entirely using binary floating-products. 													
			•	tra	nsfor		nat o					ignates a constant K or H, the command will binary floating point number for use in		
			•	"cc the	ontinu e regi	ious ster	exec will p	ution erfor	" con m m	nma ultip	and i olicat	designate identical register numbers, if a s employed, when conditional contact is On, on once during each scan. Pulse execution erally used under ordinary circumstances.		
E	zamp	ole)	bin	ary f	loatir	ng po	oint n		er (l	D11,	bint number (D1, D0) will be multiplied by the D10), and the product will be stored in the		
					X1 	D	EMU	L	D0		D10	D20		
			•	K1	234	(whio	ch h	as b	een	aut	oma	point number (D1, D0) will be multiplied from ically converted to a binary floating-point D11, D10).		

|--|

API 123 D EDIV P S1 S2 D D												Division of binary floating point numbers					
											16-bit con	nmand					
	X Y M K H KnX KnY KnM T C D																
S1																	
S2 * * * <u>32-bit command (13 STEP)</u>																	
D * DEDIV Continuous DEDIVP Nation on operand upage: * DEDIV execution type e																	
	Notes on operation usage.																
	Please refer to the function specifications table for each device in Flag signal: none																
seri	eries for the scope of device usage																
E	\mathbf{S}_1 : dividend. \mathbf{S}_2 : divisor. D : quotient and remainder.																
	 ♦ When the content of the register designated by S₁ is divided by the content of the register designated by S₂, the quotient will be stored in the register designated by D; division is performed entirely using binary floating-point numbers. 																
	If the source operand S ₁ or S ₂ designates a constant K or H, the command will transform that constant into a binary floating point number for use in division.																
	 Example When X1=On, the binary floating point number (D1, D0) we be divided by the binary floating point number (D11, D10 and the quotient stored in the register designated by (D21 D20). 																

DEDIV D0 D10 D20

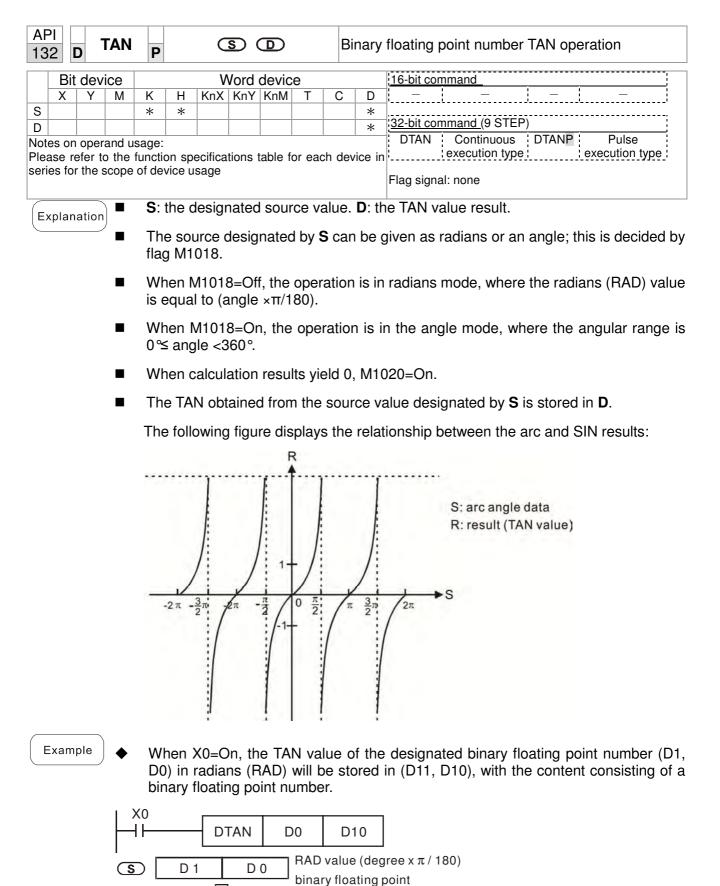
When X2 =On, the binary floating point number (D1, D0) will be divided by K1,234 (which has been automatically converted to a binary floating-point number), and the results stored in (D11, D10).

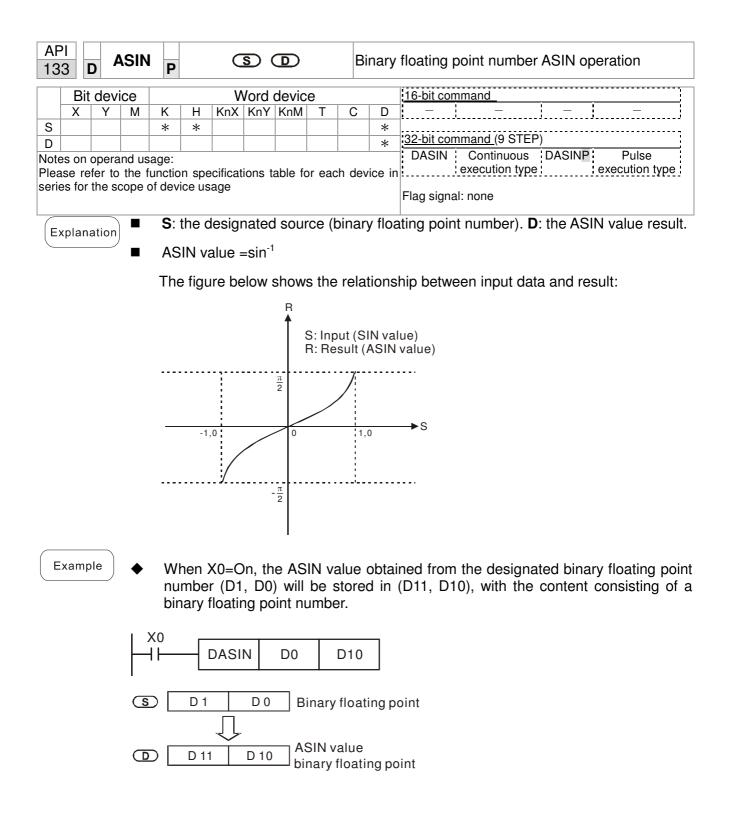
|--|

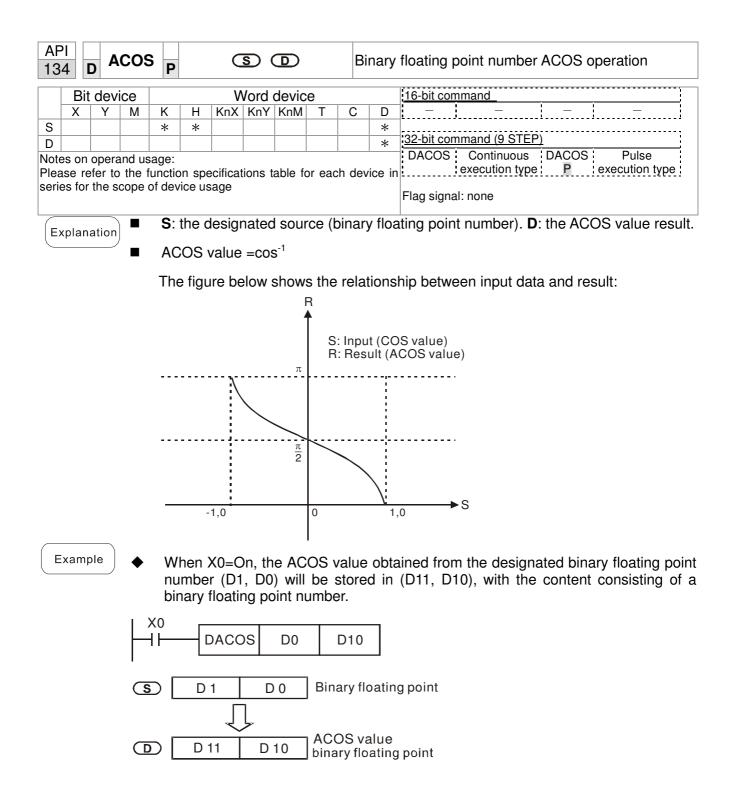
END

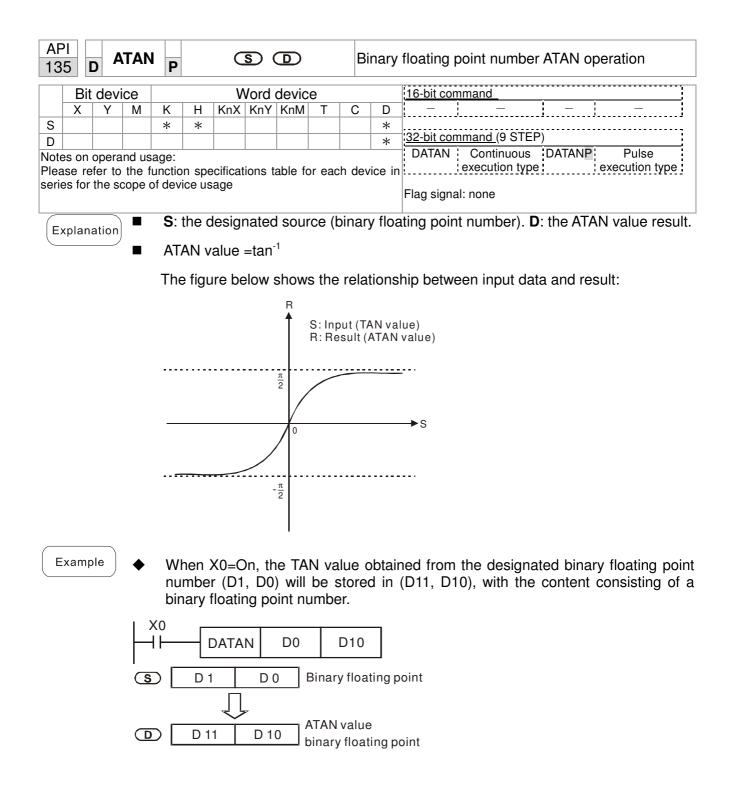
API 124 D E	XP P		C	S (D		Bi	nary	floating point number obtain exponent						
Bit devic	e		V	Vord	devic	e			16-bit command						
XY	M K	Н			KnM		С	D							
S	*	*						*							
D								*	<u>32-bit command (9 STEP)</u>						
Notes on opera									DEXP Continuous DEXPP Pulse execution type execution type						
		of device usage													
		Flag signal: none													
	pperation results device.														
Explanation		0.	·												
		■ Taking e =2.71828 as a base, S is the exponent in the EXP operation.													
	_	r r) +1,	וח											
	e content of S has a positive or negative D must have a 32-bit data format. This pating-point numbers, and S must therefore number.														
	•	Сс	onten	t of o	pera	nd D	=e ^s	; e=2	2.71828, S is the designated source data						
Example	•	When M0 is On, the value of (D1, D0) will be converted to a binary floating point number, which will be stored in register (D11, D10).													
	•		0); it:						ation is performed on the exponent of (D11, ting point number stored in register (D21,						
		02	с). Т	Μ	0										
			 	—					DFLT D0 D10						
			1	N /	4										
			1	М	1				DEXP D10 D20						
				1					DEAF DIV DZV						

AP	5 D LN P (S) (D) Binary					D		nary	floating point number obtain logarithm								
	Bit o	dev	ice			V	Vord	devic	e			16-bit command					
	Х	Υ	М	K	Н	KnX	KnY	KnM	Т	С	D						
S				*	*						*	32-bit command (9 STEP)					
D	es on c		and u								*	DLN Continuous DLNP Pulse					
					on spe	ecifica	tions	table f	or eac	h dev	vice in	execution type execution type					
	es for t											Flag signal: none					
Explanation S: operation source device. D: operation results device.																	
■ Taking e =2.71828 as a base, S is the exponent in the EXP operation																	
$\blacksquare [\mathbf{D} + 1, \mathbf{D}] = EXP^{I} \mathbf{S} + 1 \cdot \mathbf{S}^{I}$																	
Valid regardless of whether the content of S has a positive or neg value. The designated register D must have a 32-bit data format. operation is performed using floating-point numbers, and S must there be converted to a floating point number.																	
					Сс	onten	t of o	pera	nd D :	=e ^s	; e=2	.71828 , S is the designated source data					
Example When M0 is On, the value of (D1, D0) will be converted to a binary point number, which will be stored in register (D11, D10).											, , ,						
					D1 D2	0); it: 0).						ation is performed on the exponent of (D11, ting point number stored in register (D21,					
					יו	ЛО ——						DFLT D0 D10					
						1					L						
						//1 					[DLN D10 D20					
												END					


AP) ES	SQR	Ρ		C	<u>s</u> (D		Bi	Binary floating point number find square root					
	Bit	dev	ice			V	/ord	devic	e			16-bit command				
	Х	Y	M	K	Н	KnX	KnY	KnM	Т	С	D					
S				*	*						*	: <u>32-bit command (</u> 9 STEP)				
Plea	se re	fer to		unctio												
Ex	plan	ation)		S: roe		ce de	evice	re root is desired D : result of finding square							
 When the square root is taken of the content of the register des S, the result is temporarily stored in the register designated by square roots is performed entirely using binary floating-point numbers 																
If the source operand S refers to a constant K or H, the operation that constant into a binary floating point number operation.																
E	Example When X0=On, the square root is taken of the D0), and the result is stored in the register det															
				X0 DESQR D0 D10												
						(D1, Sinary flo oint	'	I	(D11 , Binary f point		,					
			•		nvert			en of K1,234 (which has been automatically number), and the results stored in (D11,								


AF 12							<u>s</u> (Ð	Binary floating point number \rightarrow BIN whole number transformation					
	Bi	t dev	rice			N	/ord	devic	e			16-bit command		
	Х	Y	М	K	Н			KnM		С	D			
S											*			
D											*	<u>32-bit command</u> (9 STEP)		
Note	tes on operand usage:										DINT Continuous DINTP Pulse			
Please refer to the function specifications table for each device in execution type execution type														
serie	series for the scope of device usage Flag signal: none													
	S : the source device to be transformed. D : results of transformation.													
	floating point number format into a BIN whole number, and is temporarily													
	stored in D . The BIN whole number floating point number will be discarded													
							ion o	of this	s con	nmar	nd is	the opposite of that of command API 49		
					(FL	.1).								
E	xamp	le		Wh	en X	′0=Or	n the	hin:	arv fl	oatin	a no	int number (D1, D0) is transformed into a		
\subseteq			_						•		• •	s stored in (D10); the BIN whole number		
						point								
				nua	ung	point	num			, uisc	aiue	υ.		
							X0							
												DINT D0 D10		
												END		


AP 130		D	SIN	Ρ		C	<u>s</u> (D		Bi	nary	floating point number SIN operation		
	В	Bit devi	се			V	/ord	devic	e			16-bit command		
	Х	Y	M	K	Н	KnX	KnY	KnM	Т	С	D			
S				*	*						*	: <u>32-bit command (</u> 9 STEP)		
D	on or	perand ι	16300.								*	DSIN Continuous DSINP Pulse		
Please	e refe	r to the	function		cificat	ions ta								
Evol	 S: the designated source value. D: the SIN value result. S is the designated source in radians. The value in radians (RAD) is equal to (angle ×π/180). The SIN obtained from the source value designated by S is stored in D. 													
Expl														
	The following figure displays the relationship between the arc and SIN results:													
	R S: Radian													
	Example 4 When X0=On, the SIN value of the designated binary floating point number (D1, D0) in radians (RAD) will be stored in (D11, D10), with the content consisting of a binary floating point number.													
Exa														
			≺0 		DS	SIN	D	0	D	0				
		S		D 1	Ţ	D)	RAD binai						
	D 11 D 10 SIN value binary floating point													


AP 13		D	cos	Ρ		C	s (D		Bi	nary	floating	point number	COS ope	ration
		t day	<i>.</i>			١٨	lard	dovia				16 bit oo	mmond		<u>!</u>
-		t de Y	M	K	H			devic KnM		С	D	<u>16-bit co</u>	mmano	<u> </u>	
S	<u></u>	- ·		*	*			TYTIV	-		*	!		JJ	
D											*	s	<u>mmand (</u> 9 STEP)	
Note	s on	oper	and usa	age:								DCOS	Continuous	DCOSP	Pulse
							ions t	able fo	or ead	ch dev	rice in		execution type	; ; e	xecution type
sene	5 101	the	scope o	luev	ice us	age						Flag sign	al: none		
Ex	plar	atio	ח 🗖	S:	the c	lesigr	nated	l sou	rce v	alue.	D: th	ne COS v	value result.		
	·					ource d by		-		by S	can	be give	en as radian	is or an a	ingle; this is
			•			M101 s equa						in radia	ins mode, wł	nere the r	adians (RAD)
			•			/101 gle <3		n, the	ope	ratio	n is ir	n the ang	gle mode, wh	ere the an	gular range is
				Wł	nen c	alcul	ation	resu	lts yi	eld 0	, M10)20=On.			
	The COS obtained from the source value designated by S is stored in												n D .		
				The	e follo	owing	, figu	re dis	splay	's the	relat	ionship	between the	arc and SI	N results:
									F	1		S: Radia	an		
									1	•		R: Resu	ılt (COS valu	e)	
					1	<u></u>				$\overline{\ }$		 /			
					1	<u> </u>	I		<u></u>				− − →s		
					-2 π	-3	-2π	$\int \frac{\pi}{2}$		$0 \frac{\pi}{2}$		$\pi \frac{3}{2}\pi$	2π		
							\searrow	<u> </u>				<u> </u>			
									-1						
_									I						
E,	kamı	ple													t number (D1,
					,				store	ed in	(D11,	D10), v	vith the conte	nt consisti	ng of a binary
				TIO	ating	point	t nun	iber.							
			i >	(0											
			Ĺ	 ⊢			cos		00	D	10				
				•							10				
			_			<u> </u>		1	RAD) valu	e(x)	τ/180)			
			S	ך ר	D 1	1	D	0				point			
						Ţ	¥								
			<u> </u>	、 L					COS	svalı	Je				
				ノト	D	<u>ا</u>	D 1	U	bina	rv flo	ating	point			

	API 136 D SINH P SD Binary										inary floating point number SINH operation					
	Bit	devi	ce			V	lord	devic	e			16-bit command				
	Х	Y	М	Κ	Н	KnX	KnY	KnM	Т	С	D					
S				*	*						*					
D											*	32-bit command (9 STEP)				
			nd us									DSINH Continuous DSINHP Pulse				
							ions t	able fo	or eac	h dev	vice in	execution type : : execution type :				
serie	Flag signal: none S: the designated source (binary floating point number). D: the SINH value result.															
E	 SINH value =(e^s-e^{-s})/2 When X0=On, the SINH value obtained from the designated binary floating point number (D1, D0) will be stored in (D11, D10), with the content consisting of a binary floating point number. 															
	X0 DSINH D0 D10															
	S D1 D0 binary floating point															
				ЪΓ	<u>- П</u>	11	П	10	ן SINF	lvalı	le					

binary floating point

D 11

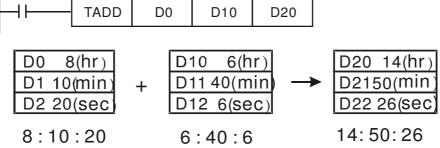
D 10

AP 13		c	OSł	l P		C	<u>s</u> (D		Bi	nary fl	oating point number COSH operation			
	Bit	dev	ice			V	Vord	devic	e			6-bit command			
	Х	Y	М	К	Н	KnX	KnY	KnM	Т	С	D <u>:</u>				
S				*	*						*	32-bit command (9 STEP)			
D			<u> </u>							- 10 JC	DCOSH Continuous DCOSHP Pulse				
	ase refer to the function specifications table for each device in execution type execution type execution type														
	ries for the scope of device usage														
	Flag signal: none														
_	 S: the designated source (binary floating point number). D: the COSH value result. COSH value =(e^s+e^{-s})/2 When X0=On, the COSH value obtained from the designated binary floating point number (D1, D0) will be stored in (D11, D10), with the content consisting of a binary floating point number. 														
				×0 ↓	— [C	COS	н	D0		D10					
			S	D [D	1	D	0	bina	ry floa	ting po	int			
				D [D 1	1	D	10		SH val ry floa	ue ting po	int			

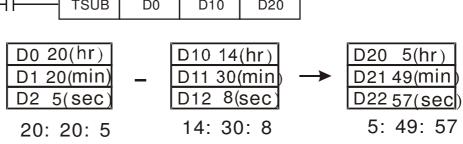
AF 13		D T	ANH	H P S D Word device							Binary floating point number TANH operation			
	Bit	t dev	ice			V	/ord	devic	е		16-bit command			
	Х	Y	М	K	Н	KnX	KnY	KnM	Т	С	D			
S				*	*						*			
D											TANH Continuous DTANHP Pulse			
		n oper			n en	ocifica	tione t	ahla fi	or ear	h da	evice in execution type execution type			
		r the s							or eac	in ue	57100 ml			
			•			U					Flag signal: none			
E:	 S: the designated source (binary floating point number). D: the TANH value result. tanh value =(e^s-e^{-s})/(e^s+e^{-s}) 													
E	■ When X0=On, the TANH value obtained from the designated binary floating point number (D1, D0) will be stored in (D11, D10), with the content consisting of a binary floating point number.													
				<0 I	C)TAN	Н	D0		D10	'			
			S		D		D	0	bina	ry flo	pating point			
					D 1	1	D	10		H valı ry floa	lue pating point			

AP 16(– T	СМР	Ρ	S			<u>S</u> 3	S	Ð	C	omparison o	of calenda	ır data	
	Bit	devi	ice			v	lord	devic	e						
-	X	Y	M	К	Н		KnY		T	С	D	16-bit comma			
S1				*	*	*	*	*	*	*	*		Continuous	TCMPP	Pulse
52				*	*	*	*	*	*	*	*	ex	ecution type	; ;	execution type
3				*	*	*	*	*	*	*	*	32-bit comma	and_		
S D		*	*						*	*	*		_	<u> </u>	
ote lea	se re	opera efer to	and us the fiscope of	unction of dev	vice us	sage						Flag signal: n			
Ex	plan	ation) -	mir the	nutes con	of th	ie co son	mpar	ison t setti	time,	setti	ng range is	"K0-K59.	" S ₃: Sets '	3." S ₂ : Sets the the seconds of endar time. D:
	 Compares the time in hours, minutes, and seconds set in S₁ - S₃ with the curren calendar time in hours, minutes, and seconds, with the results of compariso expressed in D. S The hour content of the current calendar time is "K0-K23." S +1 comprises the current calendar time is "K0-K23." S														
			•	mir	nutes	of th	e cu	rrent	caler	ıdar t	ime,		ts of "K0-ł	<59." S +2	comprises the comprises the
			•	cor cor	nmai ntent	nd af valu	ter u e of	sing S ex	the T ceeds	RD c s the	omn rang	hand to rea	d the curi	rent calend	sing the TCMP dar time. If the ating error, the
E	xamı	ole	•	D2 dis	0-D2 playe	2 wil ed in	l be M10-	com M12	bared . Whe	with en X1	the 0 Or	preset valu	ue of 12:2 command	20:45; the	lendar time in results will be executed, but
				par					f ≥, ≤ M10-l		⁴ are	needed, th	iey can be	e obtained	by series and
				(10 		тс	MP	к	12	К	20	K45	D20	M10	
			1		м [.]	10	– ON	when	12: 2	0: 45	>	D20 (hr) D21(min) D22(sec)			
$M11 = D20 (hr) \\ D21(min) \\ D22 (sec)$															
					M [.]	12	- ON	when	12: 20): 45	<	D20 (hr) D21 (min) D22(sec)			

AF 16		— т	ZCF	P		<u>S1</u>	<u>S2</u>) (<u>s</u>	D	D		Comparison of calendar data		
	Bit x	t dev	ice M	K	Н	1		devic KnM	e T	С	D	<u>16-bit command</u> (9 STEP)		
S1	<u> </u>						D TZCP Continuous TZCPP Pulse * execution type execution type							
S2									*	*	*	*		
S									*	*	*	* 32-bit command		
D		*	*											
Plea														
Ex	plan	ation										comparison time. S ₂ : Sets the upper limit of the udar time. D : Results of comparison.		


- Performs range comparison by comparing the hours, minutes, and seconds of the current calendar time designated by S with the lower limit of the comparison time set as S₁ and the upper limit of the comparison time set as S₂, and expresses the results of comparison in D.
- **S**₁ × **S**₁ +1 × **S**₁ +2: Sets the hours, minutes, and seconds of the lower limit of the comparison time.
- **S**₂ \cdot **S**₂ +1 \cdot **S**₂ +2: Sets the hours, minutes, and seconds of the upper limit of the comparison time.
- S · S +1 · S +2: The hours, minutes, and seconds of the current calendar time
- The D0 designated by the **S** listed in this program is usually obtained by comparison using the TZCP command after using the TRD command in advance to read the current calendar time. If the value of S_1 , S_2 , or **S** exceeds the range, this is considered an operating error, the command will not execute, and M1068=On.
- When the current time **S** is less than the lower limit value **S**₁ and **S** is less than the upper limit value **S**₂, **D** will be On. When the current time **S** is greater than the lower limit value **S**₁ and **S** is greater than the upper limit value **S**₂, **D** +2 will be On; **D** +1 will be On under other conditions.

Example


■ When X10=On, the TZCP command executes, and one of M10-M12 will be On. When X10=Off, the TZCP command will not execute, and M10-M12 will remain in the X10=Off state.

X10								
		TZCP	D0	D2(C	D10		VI10
I	М ⁻	10 N when	D0 (hr) D1 (min D2 (sec		D	10 (hr) 11 (min) 12 (sec)		
		11 Nwhen	D0 (hr) D1 (min D2 (sec	4 –	D	10 (hr) 11 (min) 12 (sec)	<=	D20 (hr) D21 (min) D22 (sec)
		12 Nwhen			D	10 (hr) 11 (min) 12 (sec)	>	D20 (hr) D21(min) D22 (sec)

API 162		TADD	Ρ		3	5D (<u>S2</u>	D		C	Calendar data addition			
B	Bit de	vice			V	Vord	devic	e			<u>16-bit command</u> (7 STEP)			
X		M	K	Н			KnM	T	С	D	TADD Continuous TADDP Pulse			
S1								*	*	*	execution type execution type			
S2								*	*	*	32-bit command			
D								*	*	*				
Please	e refer	erand us to the f scope	unctio			tions	table f	or ead	• Flag signal: M1020 Zero flag M1022 Carry flag M1068 Calendar error					
Expla	anatio	n	Th	e cal	enda	r data	a in h	ours,	utes	time sum. , and seconds designated by S_2 is added to the designated by S_1 , and the result is				
	 calendar data in hours, minutes, and seconds designated by S₁, and the stored as hours, minutes, and seconds in the register designated by D. If the value of S₁ or S₂ exceeds the range, this is considered an operating e command will not execute, M1067, M1068=On, and D1067 will record t code 0E1A(HEX). 													
		•									ater than or equal to 24 hours, carry flag esults of addition minus 24 hours.			
		•		he re 020=		of a	dditic	on ar	e equ	ual to	o 0 (0 hours, 0 minutes, 0 seconds), zero flag			
 When X10=On, the TADD command will be executed, and the calendar data in hours, minutes, and seconds designated by D0 to D2 will be added to the calendar data in hours, minutes, and seconds designated by D10 to D12, and the results are stored as a total number of hours, minutes, and seconds in the registers designated by D20 to D22. 														
			X	(10	Г									

hours, minutes, and seconds designated by D10 to D12 will be subtracted fro the calendar data in hours, minutes, and seconds designated by D0 to D2, a	API 63	- T	SUB	Ρ		3	50 (<u>S2</u> (D		(Calenda	r data su	btraction	
1 1	Bit	dev	ice			V	Vord	devic	е			<u>16-bit c</u>	command	(7 STEP)	
2 1	Х	Y	Μ	Κ	Н	KnX	KnY	KnM	Т	С	D	TSUE	1		
a * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *	1								*	*	*	·	executi	on type	execution type
 betes on operand usage: lease refer to the function specifications table for each device in pries for the scope of device usage Flag signal: M1020 Zero flag M1022 Carry flag M1068 Calendar error S₁: time minuend. S₂: time augend. D: time sum. Subtracts the calendar data in hours, minutes, and seconds designated by S₂ from the calendar data in hours, minutes, and seconds designated by S₁, and the response is temporarily stored as hours, minutes, and seconds designated by S₁, and the response is temporarily stored as hours, minutes, and seconds designated by S₁. If the value of S₁ or S₂ exceeds the range, this is considered an operating error, the command will not execute, M1067, M1068=On, and D1067 will record the error code 0E1A(HEX). If subtraction results in a negative number, borrow flag M1021=On, and the result that negative number plus 24 hours will be displayed in the register designated D. If the results of subtraction are equal to 0 (0 hours, 0 minutes, 0 seconds), zero flag M1020=On. When X10=On, the TADD command will be executed, and the calendar data hours, minutes, and seconds designated by D10 to D12 will be subtracted from the calendar data in hours, minutes, and seconds designated by D0 to D2, a the results are stored as a total number of hours, minutes, and seconds in the registers designated by D20 to D22. 	2								*	*	*	32-bit (command		
 Flag signal: M1020 Zero flag M1022 Carry flag M1028 Calendar error Subtracts the calendar data in hours, minutes, and seconds designated by S₂ from the calendar data in hours, minutes, and seconds designated by S₁, and the results is temporarily stored as hours, minutes, and seconds in the register designated D. If the value of S₁ or S₂ exceeds the range, this is considered an operating error, that negative number plus 24 hours will be displayed in the register designated D. If subtraction results in a negative number, borrow flag M1021=On, and the result that negative number plus 24 hours will be displayed in the register designated D. If the results of subtraction are equal to 0 (0 hours, 0 minutes, 0 seconds), zero flag M1020=On. When X10=On, the TADD command will be executed, and the calendar data hours, minutes, and seconds designated by D10 to D12 will be subtracted from the calendar data in hours, minutes, and seconds designated by D0 to D2, a the results are stored as a total number of hours, minutes, and seconds in the register designated by D20 to D22. 									*	*	*			_ _	
 Subtracts the calendar data in hours, minutes, and seconds designated by S₂ from the calendar data in hours, minutes, and seconds designated by S₁, and the ress is temporarily stored as hours, minutes, and seconds in the register designated D. If the value of S₁ or S₂ exceeds the range, this is considered an operating error, the command will not execute, M1067, M1068=On, and D1067 will record the error code 0E1A(HEX). If subtraction results in a negative number, borrow flag M1021=On, and the result that negative number plus 24 hours will be displayed in the register designated D. If the results of subtraction are equal to 0 (0 hours, 0 minutes, 0 seconds), zero fl M1020=On. When X10=On, the TADD command will be executed, and the calendar data hours, minutes, and seconds designated by D10 to D12 will be subtracted from the calendar data in hours, minutes, and seconds designated by D0 to D2, and the results are stored as a total number of hours, minutes, and seconds in the registers designated by D20 to D22. 				of de	vice u	sage						• Fla	M1 M1	1022 Carry flag	or
 Subtracts the calendar data in hours, minutes, and seconds designated by S₂ from the calendar data in hours, minutes, and seconds designated by S₁, and the resist is temporarily stored as hours, minutes, and seconds in the register designated D. If the value of S₁ or S₂ exceeds the range, this is considered an operating error, the command will not execute, M1067, M1068=On, and D1067 will record the error code 0E1A(HEX). If subtraction results in a negative number, borrow flag M1021=On, and the result that negative number plus 24 hours will be displayed in the register designated D. If the results of subtraction are equal to 0 (0 hours, 0 minutes, 0 seconds), zero fl M1020=On. When X10=On, the TADD command will be executed, and the calendar data hours, minutes, and seconds designated by D10 to D12 will be subtracted from the calendar data in hours, minutes, and seconds designated by D0 to D2, and the results are stored as a total number of hours, minutes, and seconds in the registers designated by D20 to D22. 	Explan	ation		S ₁:	time	min	uend	. S 2: t	ime	auge	nd.	D: time	sum.		
 If subtraction results in a negative number, borrow flag M1021=On, and the result that negative number plus 24 hours will be displayed in the register designated D. If the results of subtraction are equal to 0 (0 hours, 0 minutes, 0 seconds), zero fl M1020=On. When X10=On, the TADD command will be executed, and the calendar data hours, minutes, and seconds designated by D10 to D12 will be subtracted from the calendar data in hours, minutes, and seconds designated by D10 to D2, a the results are stored as a total number of hours, minutes, and seconds in the registers designated by D20 to D22. 			•	is t D. If ti cor	emp he va mma	oraril alue c nd w	y sto of S₁ ill no	red a or S₂ ot exe	s ho exce	urs, r eeds	ninı the	utes, and range, t	d second his is cor	s in the regis	ter designated perating error, t
 M1020=On. When X10=On, the TADD command will be executed, and the calendar data hours, minutes, and seconds designated by D10 to D12 will be subtracted from the calendar data in hours, minutes, and seconds designated by D0 to D2, a the results are stored as a total number of hours, minutes, and seconds in the registers designated by D20 to D22. 			•	lf s tha	ubtra	actior	ı resi	ults in							
hours, minutes, and seconds designated by D10 to D12 will be subtracted from the calendar data in hours, minutes, and seconds designated by D0 to D2, a the results are stored as a total number of hours, minutes, and seconds in t registers designated by D20 to D22.			•				of su	ubtrac	tion	are e	qua	al to 0 (0	hours, 0	minutes, 0 se	econds), zero fl
X10	the calendar data in hours, minutes, and seconds designated by D10 to D12 will be subtracted from the results are stored as a total number of hours, minutes, and seconds in the														
					ΙX	10								1	

AF 16			ſRD	P							C	alendar data read	
	Bit	dev	ice			V	Vord	devic	е			16-bit command (3 STEP)	
	Х	Y	Μ	K	Н	KnX	KnY	KnM	Т	С	D	TRD Continuous 120 Pulse	
D									*	*	*	execution type execution type	
Not Ple	es on ase re	oper efer to	and u o the	sage: functio	on spe	ecifica	tions t	able fo	or ead	h dev	ice in	<u>32-bit command</u>	
seri	es fo	r the s	scope	of dev	/ice u	sage							
												Flag signal: none	

- **S**₁: time minuend. **S**₂: time augend. **D**: time sum.
 - D: device used to store the current calendar time after reading.
- The EH/EH2/SV/EH3/SV2/SA/SX/SC main units have a built-in calendar clock, and the clock provides seven sets of data comprising year, week, month, day, hour, minute, and second stored in D1063 to D1069. The TRD command function allows program designers to directly read the current calendar time into the designated seven registers.
- D1063 only reads the two right digits of the Western calendar year.
 - When X0=On, the current calendar time is read into the designated registers D0 to D6.
 - In D1064, 1 indicates Monday, 2 indicates Tuesday, and so on, with and 7 indicating Sunday.

Special D	Item	Content		General D	Item
D1063	Year (Western)	00~99	-	D0	Year (Western)
D1064	Weeks	1~7	+	D1	Weeks
D1065	Month	1~12	+	D2	Month
D1066	Day	1~31	+	D3	Day
D1067	Hour	0~23	→	D4	Hour
D1068	Minute	0~59	+	D5	Minute
D1069	Second	0~59	→	D6	Second

Example

Explanation

AF 17)	GRY	Ρ			S		C		I	BIN→GRAY code transformation
	Bit	dev	ice			V	Vord	devic	e			16-bit command (5 STEP)
S	Х	Y	M	K *	H *	KnX *	KnY *	KnM *	T *	C *	D *	
D							*	*	*	*	*	<u>32-bit command (9 STEP)</u>
Plea	ase re	efer to	and us o the f scope	unction of dev	vice u	sage		table f		in DGRY Continuous DGRYP Pulse execution type execution type • Flag signal: none		
E	plan	ation		S : :	sour	ce de	vice.	D : d	evice	GRAY code.		
)						value) of the device designated by S to GRAY designated by D .			
			•				•			n below; if this range is exceeded, it will be and will not execute.		
				16-	bit co	omma	and:	0~32	,767			
				32-	bit c	omm	and:	0~2, ⁻	147,4	183,6	47	
E	Exam	ple)	٠		hen) bred i			ie co	onsta	nt k	(6513 will be transformed to GRAY code and
					\vdash	(0 	_	GRY	k	6513	3	DO
						K65	13=H	1971	b15 00	0 1	1 0	
					GR.	AY C	ODE	6513	b15 00	0 1	0 1	ьо 0 1 1 1 0 0 1 0 0 1 D0

AF 17		, G	BIN	Ρ			S		C		C	GRAY code →BIN transformation			
-	Bit X	dev Y	ice M	K	Н			devic KnM	e T	C	D	16-bit command (5 STEP) GBIN Continuous GBINP Pulse Continuous			
S D				*	*	*	*	*	*	*	*	execution type secution type security secution type secution type security			
Plea	ase re	efer to	and us the f cope	unctio		ecifica sage	tions	table f	DODINI Continuous DODINID Dulas						
Ex	plan	ation)	trai	nsfor	matio	on.		Y code. D : device used to store BIN value after						
	 The GRAY code corresponding to the value of the device designated by stransformed into a BIN value, which is stored in the device designated by D. 														
	This command will transform the value of the absolute position encoder connect with the PLC's input and (this encoder usually has an output value in the form GRAY code) into a BIN value, which is stored in the designated register.														
			•									n below; if this range is exceeded, it will be and will not execute.			
				16-	bit co	omma	and:	0~32	,767						
				32-	bit c	omm	and:	0~2,	147,4	483,6	647				
E	Exam	ple)	•		th inp						de of the absolute position encoder connected Il be transformed into BIN value and stored in			
						20 	-	GBIN		K4X0)	D10			
									X17			K4X0 x0			
					GR	AY C	ODE	6513	00	01	01				
									h15			b0			
						H197	71=K	6513	b15	0 1	1 0				

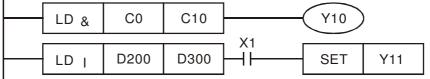
215 21	5~ I	D	LD#				S1) (<u>S2</u>)		C	Conta	ct form logical operation LD#
	Bit	dev	ice			V	Vord	devic	е			16-bit command (5 STEP)
	Х	Y	Μ	K	Н	KnX	KnY	KnM	Т	С	D	LD# Continuous – –
S1				*	*	*	*	*	*	*	*	execution type
S2				*	*	*	*	*	*	*	*	32-bit command (9 STEP)
Not	es on	n oper	and u	sage:	# :	& \ \	٨					DLD# Continuous – –
							tions	table f	or ead	ch de	vice in	execution type
seri	es fo	r the i	range	of dev	vice u	sage						Flag signal: none

```
Explanation
```

S₁: data source device 1. **S**₂: data source device 2.

- This command performs comparison of the content of S_1 and S_2 ; when the result of comparison is not 0, this command will be activated, but this command will not be activated when the result of comparison is 0.
- The LD#This command can be used while directly connected with the busbar

API No.	16-bit commands	32-bit commands			tions fo vation	or	Conditio	ons f	or inacti	vation
215	LD&	DLD&	S ₁	&	S ₂	≠0	S ₁	&	S ₂	=0
216	LD	D LD	S ₁		S ₂	≠0	S ₁		S ₂	=0
217	LD^	DLD^	S ₁	۸	S ₂	≠0	S ₁	^	S ₂	=0


&: logical AND operation.

: logical OR operation.

^: logical XOR operation.

Example

- When the content of C0 and C10 is subjected to the logical AND operation, and the result is not equal to 0, Y10=On.
- When the content of D200 and D300 is subjected to the logical OR operation, and the result is not equal to 0, and X1=On, Y11=On and remains in that state.

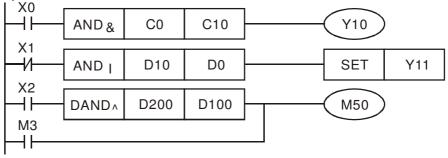
218	API 218~ 220 AND# S1 S2									С	ontac	ct form logical operation AND#
	Bit device Word device											16-bit command (5 STEP)
	Х	Y	М	K	Н	KnX	KnY	KnM	Т	С	D	AND# Continuous – –
S1	X Y M K H KnX KnY KnM T C 51 *<									*	*	execution type
S2										*	*	-
Plea	2 $ $										vice in	DAND# Continuous – –

Explanation S₁: da

S₁: data source device 1. **S**₂: data source device 2.

- This command performs comparison of the content of S_1 and S_2 ; when the result of comparison is not 0, this command will be activated, but this command will not be activated when the result of comparison is 0.
- The AND# command is an operation command in series with the contact.

A	API No.	16-bit commands	32-bit commands			tions fo vation	or	Conditio	ons f	or inactiv	vation
	218	AND&	DAND&	S ₁	&	S ₂	≠0	S ₁	&	S ₂	=0
	219	AND	D AND	S ₁		S ₂	≠0	S ₁		S ₂	=0
	220	AND^	DAND^	S ₁	^	S ₂	≠0	S ₁	۸	S ₂	=0


&: logical AND operation.

|: logical OR operation.

^: logical XOR operation.

Example

- When X0=On and the content of C0 and C10 is subjected to the logical AND operation, and the result is not equal to 0, Y10=On.
- When X1=Off and D10 and D0 is subjected to the logical OR operation, and the result is not equal to 0, Y11=On and remains in that state.
- When X2 =On and the content of the 32-bit register D200(D201) and 32-bit register D100(D101) is subjected to the logical XOR operation, and the result is not equal to 0 or M3=On, M50=On.

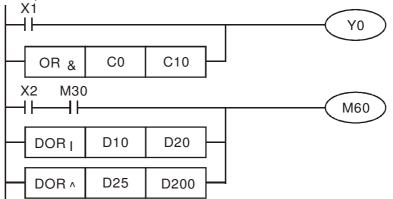
AF 221 22	~	b	OR#			(S1) (S2)						act form logical operation OR#	
	Bit	dev	ice			٧	Vord	devic	е			16-bit command (5 STEP)]
	Х	Y	M	Κ	Н	KnX	KnY	KnM	Т	С	D		1
S1				*	*	*	*	*	*	*	*	execution type	_!
S2				*	*	*	*	*	*	*	*	32-bit command (9 STEP)	-:
Not	es on	oper	and u	sage:	7	‡ : & `	` ^					DOR# Continuous – – –	÷
	ease refer to the function specifications table for each device in											in execution type	
seri	ries for the scope of device usage												-
												l lag signal. none	

Explanation

S₁: data source device 1. **S**₂: data source device 2.

- This command performs comparison of the content of S₁ and S₂; when the result of comparison is not 0, this command will be activated, but this command will not be activated when the result of comparison is 0.
- The OR# command is an operation command in series with the contact.

API No.	16-bit commands	32-bit commands			tions fo vation	or	Conditions for inactivation					
221	OR&	DOR&	S ₁	&	S ₂	≠0	S ₁	&	S ₂	=0		
222	OR	D OR	S ₁		S ₂	≠0	S ₁		S ₂	=0		
223	OR^	DOR^	S ₁	^	S ₂	≠0	S ₁	^	S ₂	=0		


&: logical AND operation.

|: logical OR operation.

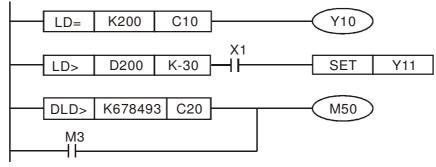
^: logical XOR operation.

Example

- When X1=On or the content of C0 and C10 is subjected to the logical AND operation, and the result is not equal to 0, Y0=On.
- When X2 and M30 are both equal to On, or the content of 32-bit register D10 (D11) and 32-bit register D20 (D21) is subjected to the logical OR operation, and the result is not equal to 0, or the content of the 32-bit counter C235 and the 32-bit register D200 (D201) is subjected to the logical XOR operation, and the result is not equal to 0, M60=On.

224	API 224~ 230 D LDX (S1) (S2)									С	ontac	t form compare LD*
	Bit	dev	ice			V	Vord	devic	e			<u>16-bit command</u> (5 STEP)
	Х	Y	Μ	K	Н	KnX	KnY	KnM	Т	С	D	LD※ Continuous – –
S1				*	*	*	*	*	*	*	*	execution type
S2	δ2 * * * * * * * * * *									*	32-bit command (9 STEP)	
Plea	tes on operand usage: $\%$:= $\cdot > \cdot < \cdot < > \cdot \leq \cdot \geq$ ease refer to the function specifications table for each device ries for the scope of device usage											DLD ※ Continuous – – execution type
												Flag signal: none

 S_1 : data source device 1. S_2 : data source device 2.


- This command compares the content of **S**₁ and **S**₂. Taking API 224 (LD=) as an example, this command will be activated when the result of comparison is "equal," and will not be activated when the result is "unequal."
- The LD* can be used while directly connected with the busbar

API No.	16-bit commands	32-bit commands	Conditions for activation	Conditions for inactivation
224	LD=	D LD=	$S_1 = S_2$	$S_1 \neq S_2$
225	LD>	D LD>	$\mathbf{S_1} > \ \mathbf{S_2}$	$S_1 \leq S_2$
226	LD<	D LD<	$S_1 < S_2$	$S_1 \ge S_2$
228	LD<>	D LD<>	$S_1 \neq S_2$	$\mathbf{S_1}=~\mathbf{S_2}$
229	LD < =	DLD < =	$S_1 \leq S_2$	$\mathbf{S_1} > \mathbf{S_2}$
230	LD > =	DLD>=	$S_1 \ge S_2$	$S_1 < S_2$

Example

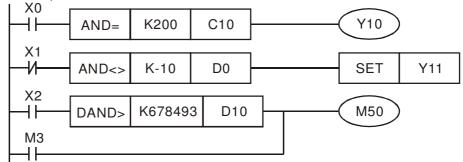
When the content of C10 is equal to K200, Y10=On.

When the content of D200 is greater than K-30, and X1=On, Y11=On and remains in that state.

AF 232 233	·~ r) AI	NDX	× –			<u>S1</u>) (<u>S2</u>)		С	ontac	t form compare AND*
	Bit	dev	ice			٧	Vord	devic	е			16-bit command (5 STEP)
	Х	Y	М	K	Н	KnX	KnY	KnM	Т	С	D	AND Continuous – –
S1				*	*	*	*	*	*	*	*	execution type
S2	X Y M K H KnX KnY KnM T C 1 * * * * * * * * *										*	32-bit command (9 STEP)
Plea	ase re	efer to	b the	functio	on spe	ecifica					vice in	DAND * Continuous – –

```
Explanation
```

 S_1 : data source device 1. S_2 : data source device 2.


- This command compares the content of **S**₁ and **S**₂. Taking API 232 (AND=) as an example, when the result of comparison is equal, this command will be activated; when the result of comparison is unequal, this command will not be activated.
- The AND* command is a comparison command in series with a contact.

API No.	16-bit commands	32-bit commands	Conditions for activation	Conditions for inactivation
232	AND=	D AND=	$S_1 = S_2$	$S_1 \neq S_2$
233	AND>	D AND>	$\mathbf{S_1} > \ \mathbf{S_2}$	$S_1 \leq S_2$
234	AND<	D AND<	$S_1 < S_2$	$S_1 \ge S_2$
236	AND <>	DAND <>	$S_1 \neq S_2$	$S_1 = S_2$
237	AND < =	\mathbf{D} AND $<=$	$S_1 \leq S_2$	$\mathbf{S_1} > \mathbf{S_2}$
238	AND > =	DAND>=	$S_1 \ge S_2$	$S_1 < S_2$

Example

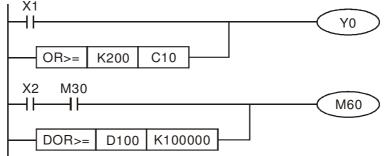
When X0=On and the current value of C10 is also equal to K200, Y10=On.

- When X1=Off and the content of register D0 is not equal to K-10, Y11=On and remains in that state.
- When X2 =On and the content of the 32-bit register D0(D11) is less than 678,493, or M3=On, M50=On.

240	API ^{240~} ²⁴⁶ D ORX S1 S2									С	ontac	t form compare OR*
	Bit device Word device											16-bit command (5 STEP)
	Х	Y	М	K	Н	KnX	KnY	KnM	Т	С	D	OR X Continuous – – –
S1				*	*	*	*	*	*	*	*	execution type
S2											*	<u>32-bit command</u> (9 STEP)
Plea	otes on operand usage: $3 = 2 > 2 < 2 > 2 \le 2 \ge 2$ ease refer to the function specifications table for each devires for the scope of device usage											DORX Continuous – – execution type
												Flag signal: none

```
Explanation
```

 S_1 : data source device 1. S_2 : data source device 2.


- This command compares the content of S_1 and S_2 . Taking API 240 (OR=) as an example, when the result of comparison is equal, this command will be activated; when the result of comparison is unequal, this command will not be activated.
- The OR* command is a compare command in parallel with a contact.

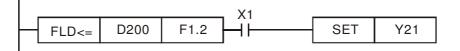
API No.	16-bit commands	32-bit commands	Conditions for activation	Conditions for inactivation
240	OR=	D OR=	$S_1 = S_2$	$S_1 \neq S_2$
241	OR>	DOR>	$S_1 > S_2$	$S_1 \leq S_2$
242	OR<	DOR<	$S_1 < S_2$	$S_1 \ge S_2$
244	OR<>	DOR<>	$S_1 \neq S_2$	$S_1 = S_2$
245	OR<=	$\mathbf{D}OR < =$	$S_1 \leq S_2$	$S_1 > S_2$
246	OR>=	DOR>=	$S_1 \ge S_2$	$S_1 < S_2$

Example

When X0=On and the current value of C10 is also equal to K200, Y10=On. When X1=Off and the content of register D0 is not equal to K-10, Y11=On and remains in that state.

When X2 =On and the content of the 32-bit register D0(D11) is less than 678,493, or M3=On, M50=On.

275 28	j~	F	'LD}	*	_	(<u>S1</u>)	(S2)		FI	oatin	g point number contact form compare LD*	
	Bit device Word device								е			16-bit command	7
	Х	Y	Μ	K	Н	KnX	KnY	KnM	Т	С	D		j
S1									*	*	*		-,
S2									*	*	*	32-bit command (9 STEP)	÷
	Iotes on operand usage: #:&\ \^ Please refer to the function specifications table for each device in											FLD Continuous – – –	
				function of dev			tions	table f	or eac	h dev	/ice in	Flag signal: none	


- S₁: data source device 1. S₂: data source device 2.
- This command compares the content of S₁ and S₂. Taking "FLD=" as an example, if the result of comparison is "equal," this command will be activated; but it will not be activated when the result is "unequal."
- The FLD* command can directly input floating point numerical values (for instance: F1.2) to the S₁, S₂ operands, or store floating-point numbers in register D for use in operations.
- This command can be used while directly connected with the busbar

API No.	32-bit commands	Conditions for activation	Conditions for inactivation
275	FLD=	$S_1 = S_2$	$S_1 \neq S_2$
276	FLD>	$\mathbf{S_1} > \mathbf{S_2}$	$S_1 \leq S_2$
277	FLD<	$S_1 < S_2$	$S_1 \ge S_2$
278	FLD<>	$S_1 \neq S_2$	$S_1 = S_2$
279	FLD<=	$S_1 \leq S_2$	$S_1 > S_2$
280	FLD>=	$S_1 \ge S_2$	$S_1 < S_2$

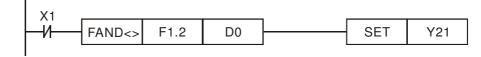
Example

Explanation

When the floating point number of register D200 (D201) is less than or equal to F1.2, and X1 activated, contact Y21 will be activated and remain in that state.

Explanation

AP 281 286	~	F	AND	*		(S1)	(S2)		FI	oatin	g point number contact form compare AND*
	Bit	dev	ice			V	Vord	devic	е			16-bit command
	Х	Y	Μ	Κ	Н	KnX	KnY	KnM	Т	С	D	
S1									*	*	*	
S2									*	*	*	32-bit command (9 STEP)
Note Plea	se re	efer to		functio	on sp	≠ & ecifica sage	•	table f	or ead	ch dev	vice in	FAND X Continuous — — — execution type Flag signal: none


S₁: data source device 1. **S**₂: data source device 2.

- This command compares the content of S₁ and S₂. Taking "FAND=" as an example, if the result of comparison is "equal," this command will be activated; but it will not be activated when the result is "unequal."
- ◆ The FAND* command can directly input floating point numerical values (for instance: F1.2) to the S₁, S₂ operands, or store floating-point numbers in register D for use in operations.
- This command can be used while directly connected with the busbar

API No.	32-bit commands	Conditions for activation	Conditions for inactivation
281	FAND	$S_1 = S_2$	$S_1 \neq S_2$
282	FAND>	$S_1 > S_2$	$S_1 \leq S_2$
283	FAND <	$S_1 < S_2$	$S_1 \ge S_2$
284	FAND<>	$S_1 \neq S_2$	$S_1 = S_2$
285	FAND <=	$S_1 \leq S_2$	$\mathbf{S_1} > \mathbf{S_2}$
286	FAND>=	$S_1 \ge S_2$	$S_1 < S_2$

Example

When X1=Off, and the floating point number in register D100 (D101) is not equal to F1.2, Y21=On and remains in that state.

287 29	7~	F	OR	*	_	(S1) (S2)				FI	oating point number contact form compare OR'						
	Bit	dev	ice	e Word device								16-bit command					
	Х	Y	M	K	Н	KnX	KnY	KnM	Т	С	D						
S1									*	*	*						
S2									*	*	*	32-bit command (9 STEP)					
Plea	ase re	efer to	o the	•	on sp	⊭ ∶ & ∖ ecifica Isage	•	table f	or eac	h dev	vice in	FOR X Continuous — — — execution type Flag signal: none					

S₁: data source device 1. S₂: data source device 2.

- This command compares the content of S₁ and S₂. Taking "FOR=" as an example, if the result of comparison is "equal," this command will be activated; but it will not be activated when the result is "unequal."
- The FOR* command can directly input floating point numerical values (for instance: F1.2) to the S₁, S₂ operands, or store floating-point numbers in register D for use in operations.
- This command can be used while directly connected with the busbar

API No.	32-bit commands	Conditions for activation	Conditions for inactivation
287	FOR=	$S_1 = S_2$	$S_1 \neq S_2$
288	FOR>	$\mathbf{S_1} > \mathbf{S_2}$	$S_1 \leq S_2$
289	FOR<	$S_1 < S_2$	$S_1 \ge S_2$
290	FOR<>	$S_1 \neq S_2$	$S_1 = S_2$
291	$FOR\!<\!=$	$S_1 \leq S_2$	$S_1 > S_2$
292	FOR>=	$S_1 \ge S_2$	$S_1 < S_2$

Example

Explanation

When X2 and M30 are both equal to "On," or the floating point number in register D100 (D101) is greater than or equal to F1.234, M60=On.

X2 M30					- M60
			_		
FOR>=	D100	F1.234	Ц		

16-6-5 Detailed explanation of driver special applications commands

API 139	RPR	Ρ		(S1) (<u>S2</u>)		R	ead	serv	o parameter
X S1 S2	device Y M operand u	<u>(S1</u>): Pa	KnX		KnM	T	C Df da	D *	1 <u>32</u> Fla	bit command(5 STEP) RPR Continuous RPRP Pulse execution type execution type bit command
API 140		read /PR	d is s	tored		51) (<u>S2</u>)		W	/rite :	servo parameter
S1 S2	Bit devic Y operand u	M	K * * none	H * *		ord o KnY	devic KnM	e T	С	D *	16-bit command (5 STEP) WPR Continuous WPRP Pulse execution type 32-bit command - - Flag signal: none
	anation	•	writ Wh D0, Wh para Wh The	ten. en th data en 1 ame en th e CH	ne da a from M0=C ter 04 ne pa 2000 RPR	ta in n H0 ⁻ 0n, tl .00 (rame 's W1 comr 1000 mally (ration	the C 1.01 v ne co first s ter h PR co	CH20 will b onter spee as b omm I sup	00 c e re d of een and port	driver ad a of D1 mult writte doe	e. S2: Parameter address of data to be 's parameter H01.00 is read and written to nd written to D1. 0 will be written to the CH2000 drive iple speed levels). en successfully, M1017=On. s not support writing to the 20XX address ding of 21XX, 22XX. RPR H100 D0 RPR H101 D1
Recom	nendatio	n Tal		are v		usin	a the	• WF	PRO	comn	END End. When writing parameters, because

commendation Take care when using the WPR command. When writing parameters, because most parameters are recorded as they are written, these parameters may only be revised 109 times; a memory write error may occur if parameters are written more than 10⁹ times.

Because the following commonly-used parameters have special processing, there are **no** restrictions on the number of times they may be written.

- P00-10: Control method
- P00-11: Speed mode selection
- P00-12: P2P position mode
- P00-13: Torque mode select
- P00-27: User-defined value

- P01-12: Acceleration time 1
- P01-13: Deceleration time 1
- P01-14: Acceleration time 2
- P01-15: Deceleration time 2
- P01-16: Acceleration time 3
- P01-17: Deceleration time 3
- P01-18: Acceleration time 4
- P01-19: Deceleration time 4

P02-12: Select MI Conversion Time mode:

P02-18: Select MO Conversion Time mode:

P04-50 ~ P04-69: PLC register parameter 0 - 19

P08-04: Upper limit of integral

- P08-05: PID output upper limit
- P10-17: Electronic gear A
- P10-18: Electronic gear B
- P11-34: Torque command
- P11-43: P2P highest frequency
- P11-44: Position control acceleration time
- P11-45: Position control deceleration time

Calculation of the number of times written is based on whether the written value is modified. For instance, writing the same value 100 times at the same time counts as writing only once.

When writing a PLC program, if unsure of usage of the WPR command, we recommend that you use the WPRP command.

AF 14		F	PID	Ρ	S	1) (5	<u>52</u>) (<u>S3</u>	S 4	Dri	ver F	PID co	ntrol mode	Э		
	Bit	dev	ice			V	Vord o	devic	e			16-bit c	ommand (9 STEP)		
	X	Y	M	Κ	Н		KnY		T	С	D	FPID	Continu	Jous FPI		ulse
S1				*	*						*	i	executio	n type	execu	tion type
S2 S3				*	*						*	<u>32-bit c</u>	ommand			
S4				*	*						*		i		-	i
Note	es on	oper	and u	sage:	none							Flag sig	nal: none			
	Notes on operand usage: none Explanation S1: PID reference target value proportional gain P. S3: PID differential time D. The FPID command can direct PID parameter 08-00 PID referent proposal gain P, 08-02 integral time When M0=On, the set PID referent PID function), the PID function protection integral time I is 1 (units: 0.01 sec.), and 0.01 sec.). When M1=On, the set PID referent PID function, the PID function protection integral time I is 0, and 0.01 sec.). When M2=On, the set PID referent PID function integral time I is 0, and 0.01 sec.). When M2=On, the set PID referent PID function integral time I is 0, and 0.01 sec.). When M2=On, the set PID referent PID function integral time I is 0, and 0.01 sec.). Image: PID function integral time I is 0, and 0.01 sec.). Image: PID function integral time I is 0, and 0.01 sec.). Image: PID function integral time I is 0, and 0.01 sec.).										fund titly nee t ie I, nee t opor the nee t pro- nd th ence led 11), t D.	ction i contro arget v and 08 arget v tional PID fu arget v portio le PID e targe from t	ntegral ti the driv value inpu 3-03 differe value inpu gain P is unction dif value inpu nal gain function d t value in he digital o function	me I. S ver's feed at terminal ential time t terminal 0, the PIE ferential t t terminal P is 1 lifferential put termi keypad),	dback co I selection D. selection function ime D is selection (units: 0.0 time D is nal select the PID	function ntrol of n, 08-01 is 0 (no integral 1 (units: is 0 (no 01), the 0. ion is 1 function
					/0				F	-PID		H0	H0	H1	H1	
				Ν	И1 				F	-PID		H0	H1	H0	H0]
			M2							-PID		H1	H1	H0	H0]
	M				M1000					VOV	D	1027	D1			
								-	END							

PI	FI	REQ			(S1)	(S2	.) (S	3)	Dr	iver	speed control mode
42			Ρ								
	devi	ce					devic				16-bit command (7 STEP)
X 1	Y	M	K *	H *	KnX	KnY	KnM	T	С	D *	FREQ Continuous FREQP Pulse execution type execution typ
2			*	*						*	<u>32-bit command</u>
3			*	*						*	<u> </u>
otes on	opera	and us	sage:	none							
											Flag signal: M1015
Explana	ation	Whe The and ■	S2,S dete mple on 01 setti the S The dece M10 ctive) M10 M10 M10	3: In rmine -45= ng of 33 (d FRE elerat 25: 0 26: 0 40: 0 40: 0 42: T 44: F	0: unii 50 fo eceler Q co ion tir Contro Contro contro rigger Pause	ts of (r S2 (ration mma ne; it of drive d drive sen r quic (On),	tion/d efinition (accel time) nd ca also u rer RU er ope vo On k stop rreleas	eceler ons of eec. eratio settir an cor uses s JN(Or erating /Serv(o (ON) se pat	ration Pr01 n tim ng of ntrol pecia)/STO) dire o Off. /does use (0	e) in 60 im drive al reg OP(C ction s not Off)	leration time. (S3): Deceleration time e settings, the number of decimal places the ladder diagram below implies 0.5 sec, uplies 0.6 sec r frequency commands, and acceleration a ister control actions, such as: off) (RUN requires Servo On (M1040 On) to FWD(Off)/REV(On) trigger quick stop (Off). frequency (Off)
Exam		•	Whe acce Whe acce Whe	en M elerat en M elerat en M1	110=0 ion/de 11=Or tion tir	On, seten n, seten me of	sets ation s the 50 (0	the time o driver 0.5 sec	drive of 0. frequ c.) an	r fre iency d dec	quency reached. equency command K300(3.00Hz), with command K3000 (30.00Hz), with an celeration time of 60 (0.6 sec.). (When 01-45= mand will now change to 0
			H	000 				\geq	025)	
			H	000 				-M1	040)	
			H					\geq	042)	
			M	14				\geq	044)	
			N	110	М11 —И			\geq	052 EQP	, K:	300 K0 K0
			N	111 	М1(—И)			EQ		000 K50 K60
									ND]	
			Pa	rame	eter 0	9-33	are	define	d on	the	basis of whether reference commands ha

been cleared before PLC operation

Bit 0 : Prior to PLC scanning procedures, whether the target frequency has been cleared is 0. (This will be written to the FREQ command when the PLC is On)

- Bit 1: Prior to PLC scanning procedures, whether the target torque has been cleared is 0. (This will be written to the TORQ command when the PLC is On)
- Bit 2: Prior to PLC scanning procedures, whether speed limits in the torque mode have been cleared is 0. (This will be written to the TORQ command when the PLC is On)

Example: When using r to write a program,

M0 	FREQ	K2000	K1000	K1000
				END

if we force M0 to be 1, the frequency command will be 20.00 Hz; but when M0 is set as 0, there will be a different situation.

Case 1: When the 09-33 bit 0 is 0, and M0 is set as 0, the frequency command will remain at 20.00Hz.

Case 2: When the 09-33 bit 0 is 1, and M0 is set as 0, the frequency command will change to 0.00Hz

The reason for this is that when the 09-33 bit 0 is 1 prior to PLC scanning procedures, the frequency will first revert to 0.

When the 09-33 bit 0 is 0, the frequency will not revert to 0.

AF 26										Dr	Driver torque control mode					
Bit device Word device											16-bit command (5 STEP)					
	Х	Y							Т	С	D	TORQ Continuous TORQ P Pulse				
S1				*	*						*	execution type execution type				
S2				*	*						*	32-bit command				
Not	Notes on operand usage: none															
	Flag signal: M1063															
E	Explanation S 1: Torque command (numbered, no more than one digit). S 2: Speed limit.															

The TORQ command can control the driver torque command and speed limits; it also uses special register control actions, such as:

M1040: Controls Servo On/Servo Off. When Servo is ON, if a TORQ command is executed, the torque will output the torque defined by the TORQ command, and the frequency restrictions will similarly be controlled by the TORQ command.

Example

- M1040: Control Servo On/Servo Off. M1063: set torque attained. D1060 is the mode controls. D1053 is the actual torque.
- When M0=Off, set the driver torque command K+500 (+50.0%), rotational speed restrictions is 3000 (30Hz).
- When M0=On, sets the driver torque command K-300 (-30.0%), rotational speed restrictions is 3000 (30Hz).
- When M10=On, driver began output torque command.
- When set torque is attained, M1063 will go On; this flag usually jumps continuously, however.

M1000	MOV K2 D1060
normally open contact	control mode setup (2: torque mode)
of operation monitoring (a)	MOV D1053 D0
MO	actual torque force (-100.0% ~ +100%)
	TORQ K-300 K3000
MO 	TORQ K500 K3000
M10 	(M1040)
M1063	Servo On
reach the defined torque force	(Y0)
	END

Parameter 09-33 are defined on the basis of whether reference commands have been cleared before PLC operation

Bit 0 : Prior to PLC scanning procedures, whether the target frequency has been cleared is 0. (This will be written to the FREQ command when the PLC is On)

Bit 1 : Prior to PLC scanning procedures, whether the target torque has been cleared is 0. (This will be written to the TORQ command when the PLC is On)

Bit 2 : Prior to PLC scanning procedures, whether speed limits in the torque mode have been cleared is 0. (This will be written to the TORQ command when the PLC is On)

Example:

If we now force M1 to be 1, the torque command will be K+300 (+30%), and the speed limit will be 400 (40Hz). But when M1 is set as 0, there will be a different situation

Case 1: When bit 1 and bit 2 of 09-33 are both set as 0, and M1 is set as 0, the torque command will remain at +30%, and the speed limit will be set as 40Hz.

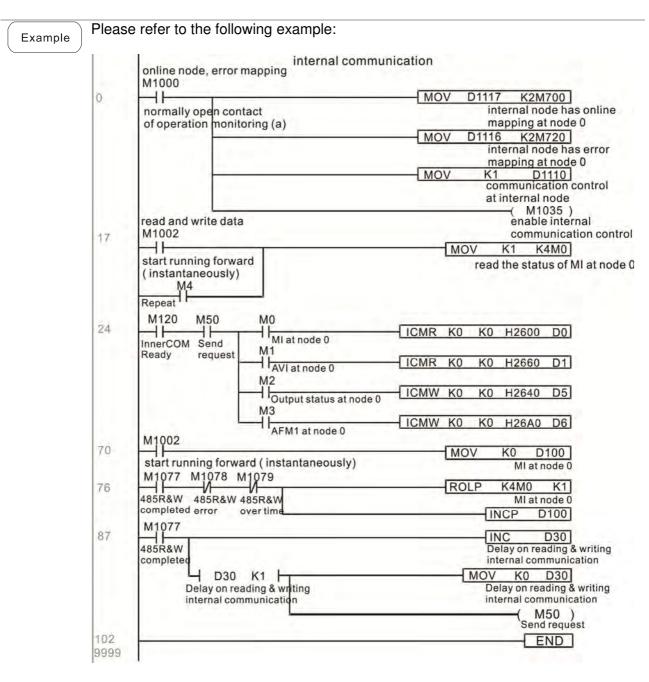
Case 2: When bit 1 and bit 2 of 09-33 are both 1, and M1 is set as 0, the torque command will revert 0%, and the speed limit will be set as 0Hz.

AF 26			DPO	S P			(S1)			Driver	point-to-point control
	Bit	t d	evice			V	Vord	devic	e			16-bit command
	Х	`	/ M	К	Н	KnX	KnY	KnM	Т	С	D	
Note	es on		perand u	* Isage	* none						*	<u>32-bit command (5 STEP)</u> DPOS Continuous DPOSP Pulse execution type execution type
												Flag signal: M1064, M1070
E>	(plan	nati	on	The spe M1 nev is i	e DP(cial r 040: w pos n the	DS c egist Cont ition Ser ill mo	omm er co trol S . If th vo O ove te	and o ntrol Servo e cor N sta	can c actio On/S ntrol r ate (N	con ns, Ser noc M10	such vo Of de is p 040 =	e driver's position commands, and employs as: f. M1055 search for origin. M1048 move to osition mode (D1060 = 1), and the converter 1), if the DPOS command is executed, the n conjunction with activation of M1048 once
E	Example		mo Wh Wh (mo has	de co en Xi en X ove to chai go C	ntrol. D=On 1=Or n new nged n, ar 1100 1	D10 , M1 , set v pos at th d Y0 2	051(L 040 v ts DF ition) nis tin) and vill be OS after ne; a outpu	l D1 e O pos a c ifter	1052(l n (Se sition delay r the s	M1064: set position attained. D1060 is the d) are the actual position points. vo On). as +300000, and M1048 will change to On of 1 sec. Check whether the value of D1051 set position point has been reached, M1064 MOV K2 D1060 control mode setup	
				6		M100		eousiy	0			(1: position mode)
				0	H	+				_	_	DMOV D1051 D0
				16	0			pen c on mo			(a)	actual position (Low word)
					H	$\neg \vdash$				-		(M1040)
						WD						Servo On
				18			-					DPOS K300000
					1	REV	F 11					
							-		2			TMR T0 K10
								Ţ	0			(111010)
							-	-	-			(M1048) move to a new p
				12		M10	64					
				30		react	n the	defin	ed po	osit	ion	(Y0) RY1
				32	Ę	-						END

AP 26		C	ANR	X P	S	1) (§	52) (S 3	D)	Re	ead C	ANopen	slave	station	data	
	Rit	t dev	ice			v	Vord	devic	<u>م</u>				16-bit com	mand	(9 STEP)	
-	X		M	ĸ	Н			KnM		(2	D	CANRX				Pulse
S1	Λ	-		*	*	T(II)				`	<i>,</i>				ion type		execution type
S2				*	*					-	_						
S3				*	*						_		32-bit com	mand			
D				<u> </u>					*	<u> </u>	*	*	. – .		<u> </u>	<u></u>	—
	es on	n oper	and u	sage	: none				<u>~</u>		r	<u>^</u>	Flag signal				
Ex	plan	ation		S	1): s	lave	stati	on n	umb	er.		S2):	Main inc	dex	<u>(S3)</u> : 9	Subinde	x+bit length.
\subseteq	-)	D): Pr	eset	addr	ess									
			-	The Wh M1 rea pre M1	e CAI en it 066 a ding. set re	NRX is ex and M If the egiste	com (ecute (1106) e slav er, ar	mano ed, it 7 will re sta nd se	will both tion (t M1	se 1 b giv 06	nd e (es 7 a	the 0 at t the c as 1.	SDO mes that time, correct res If the sla	ssage and spons ave s	e format M1066 e, it will tation ha	to the s will be s write the as a res	lave station lave station et as 1 after value to the ponse error to D1076 to
E	Exam	nple)	K4	M400) = K rds, e M10	1 each 1 02		M106	66			mmand w			messag	and will set e. (4M400)
						the second second		neous									
						M10											
				6	13	11	00								TMR	T10	K5
						CAN	d & wi lopei iplete			r1(0					K4M400	
					- 1	1.191											
				1.0	7	M40	0					E	CANDYD	1/4	110044	1140	DADO
				1	(CANRXP	K1	H6041	H10	D120
						M40	1										
				2	7	-IF	-			-	_	-0	CANRXP	K2	H6041	H10	D121
				1.27	10.0	M40	2					1.1			-		
				3	7	H						_	CANTXP	K1	D120	H6040	H10
					- 1		~					-					
				1.	7	M40	3					E					
				4	(-			_			CANTXP	K2	D120	H6040	H10
						M40	4										
				5	7	H	· ·								CA	NFLS	D2025
				10		1.1									UN		diagram
																	ation 1 (H)
					11	M40	5									300-518	
				6	1	HH	01		_	_					CA	NFLS	D2125
																	diagram
																	ation 1 (H)
					2	·										F	
				6	C												END

AF 26		C	ANT	X P	S	1) (S	2) (<u>S3</u>)	(S4)	W	/rite (CANopen slave station data			
	Bit	dev	ice			W	ord o	devic	е			16-bit command (9 STEP)			
	X	Y	M	K	Н	KnX	KnY	KnM	T	С	D	CANTX Continuous CANTXP Pulse			
S1				*	*							execution type execution type			
S2				*	*				*	*	*	32-bit command			
S3				*	*										
S4				*	*							··			
Not	es on	opera	and us	age: r	none							Flag signal			
 (S1): Slave station number. (S2): Address to be written. (S3): Main index. (S4): Subindex+bit length. The CANTX command can write a value to the index of the corresponding slave station. When it is executed, it will send the SDO message format to the slave station. M1066 and M1067 will both be 0 at that time, and M1066 will be set as 1 after reading. If the slave station gives the correct response, it will write the value to the preset register, and set M1067 as 1. If the slave station has a response error, M1067 will be set as 0, and an error message will be recorded to D1076 to D1079. 															
AF		CA	NFL	SP			D)		R	efres	h special D corresponding to CANopen			
26					Bit device Word device (16-bit command (3 STEP)										
26	Bit	dev	ice			W	ord d	devic	е			16-bit command (3 STEP)			
26	Bit X	dev Y	ice M	K	Н	W KnX			e T	С	D	CANFLS Continuous CANFLSP Pulse			
26 D				K *	H *				e T	С	D				
D	Х	Y	М		*				e T	С	D	CANFLS Continuous CANFLSP Pulse execution type execution type			
D	Х	Y	М	*	*				e T	С	D	CANFLS Continuous CANFLSP Pulse			
D	Х	Y	М	*	*				e T	С	D	CANFLS Continuous CANFLSP Pulse execution type execution type			

Explanation


D: Special D to be refreshed.

- The CANFLS command can refresh special D commands. When is a read only attribute, executing this command will send a message equivalent to that of CANRX to the slave station, and the number of the slave station will be transmitted back and refreshed to this special D. When there is a read/write attribute, executing this command will send a message equivalent to that of CANTX to the slave station, and the value of this special D will be written to the corresponding slave station.
- When M1066 and M1067 are both 0, and M1066 is set as 1 after reading, if the slave station gives a correct response, the value will be written to the designated register, and M1067 will be set as 1. If the slave station's response contains an error, then M1067 will be set as 0, and an error message will be recorded to D1076-D1079.

AF 32			OMI	R P	(<u>S1)(</u>	<u>52</u>)(al communications read						
	Bit	t dev	ice			W	/ord	16-bit command (9 STEP)						
	Х	Y	Μ	K	Н	KnX	KnY	KnM	Т	С	D	ICOMR Continuous ICOMRP Pulse		
S1				*	*						*	execution type execution type		
S2				*	*						*	32-bit command (17 STEP)		
S3				*	*						*	DICOMR Continuous DICOMRP Pulse		
D				*	*						*	execution type execution		
Note	es on	opera	and us	sage: r	ione							type		
	Flag signal: M1077 M1078 M1079													
E	kplan	ation		-						<u>(S2</u>): De	evice selection (0: converter, 1: internal		
\subseteq			́ PI ((S3).	Read	h add	Iress	(D). S	avino	n target		

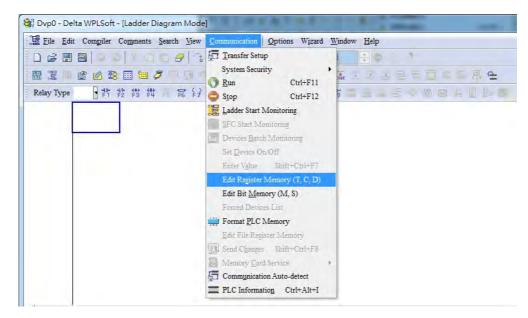
PLC). S3: Read address. D: Saving target.
 The ICOMR command can obtain the slave station's converter and the internal PLC's register value.

	API ICOMW Internal communications write 321 ICOMW Internal communications write												
										16-bit command (9 STEP)			
	Х	Y	Μ	K	Н	KnX	KnY	KnM	Т	С	D	ICOMW Continuous ICOMWP Pulse	
S1				*	*						*	execution type execution type	
S2 * * * 32-bit command (17 STEP)													
S3												DICOMW: Continuous DICOMWP: Pulse	
D * * O execution execution													
Note	es on	opera	and us	sage: r	one							type type	
	Notes on operand usage: none type type Flag signal: M1077 M1078 M1079												
E	Explanation S1: Selection of slave device. S2: Device selection (0: converter, 1: internal PLC). PLC). S3: Read address. D: Saving target. The ICOMW command write a value to the slave station's converter and the internal PLC's register.												

16-7 Error display and handling

Code	ID	Descript	Recommended handling approach
PLrA	47	RTC time check	Turn power on and off when resetting the
			keypad time
PLrt	49	(incorrect RTC mode)	Turn power on and off after making sure that the keypad is securely connected
PLod	50	Data writing memory error	Check whether the program has an error and download the program again
	F 4		· · · ·
PLSv	51	Data write memory error during program execution	Restart power and download the program again
PLdA	52	Program transmission error	Try uploading again; if the error persists,
			sent to the manufacturer for service
PLFn	53	Command error while downloading	Check whether the program has an error
		program	and download the program again
PLor	54	Program exceeds memory capacity	Restart power and download the program
		or no program	again
PLFF	55	Command error during program	Check whether the program has an error
		execution	and download the program again
PLSn	56	Check code error	Check whether the program has an error
			and download the program again
PLEd	57	Program has no END stop	Check whether the program has an error
		command	and download the program again
PLCr	58	MC command has been used	Check whether the program has an error
		continuously more than nine times	and download the program again
PLdF	59	Download program error	Check whether the program has an error
	-		and download again
PLSF	60	PLC scan time excessively long	Check whether the program code has a
		, , , , , , , , , , , , , , , , , , , ,	writing error and download again

16-8 CANopen Master control applications


Control of a simple multi-axis application is required in certain situations. If the device supports the CANopen protocol, a CH2000 can serve as the master in implementing simple control (position, speed, homing, and torque control). The setting method comprises the following seven steps:

Step 1: Activating CANopen Master functions

- 1. Parameter 09-45=1 (initiates Master functions); restart power after completing setting, the status bar on the KPC-CC01 digital keypad will display "CAN Master".
- 2. Parameter 00-02=6 reset PLC (please note that this action will reset the program and PLC registers to the default values)
- 3. Turn power off and on again.
- 4. Use the KPC-CC01 digital keypad to set the PLC control mode as "PLC Stop" (if the KPC-CE01 digital keypad is used, set as "PLC 2"; if a newly-introduced driver is used, the blank internal PLC program will cause a PLFF warning code to be issued).

Step 2: Master memory settings

- 1. After connecting the 485 communications cable, use WPL Soft to set the PLC **status** as Stop (if the PLC mode has been switched to the **"PLC Stop"** mode, the PLC **status** should already be Stop)
- 2. Set the address and corresponding station number of the slave station to be controlled. For instance, if it is wished to control two slave stations (a maximum of 8 stations can be controlled simultaneously), and the station numbers are 21 and 22, it is only necessary to set D2000 and D2100 as 20 and 21, and then set D2200, D2300, D2400, D2500, D2600, and D2700 as 0. The setting method involves use of the PLC's WPL editing software WPL as follows:

Open WPL and implement communications > register edit (T C D) function

		and a first	w Register]			Levi			_		
	and the second s			h <u>V</u> iew <u>C</u>			-				_ E ×
		000	(00	3 3 4	259	0	201	- Internal			
B 32	● ●	2 29 🖽	1321	I EN		0 0 5	12 4	he - alti	言語す		泉合
D Regis Data Ty © 16 b © 32 b	vpe 1 its	gister C Display Moo Ocimal Hexadeci Binary Float		bits) T Re Transı Clear A		Hint					
	+0	+1	+2	+3	+4	+5	+6	+7	+8	+9	
D0	Q	0	0	0	0	0	0	0	0	0	
D10	0	0	0	0	0	0	0	0	0	0	
D20	0	0	0	0	0	0	0	0	0	0	
D30	0	0	0	0	0	0	0	0	0	0	
D40	0	0	0	0	0	0	0	0	0	0	
D50	0	0	0	0	0	0	0	0	0	0	
D60	0	0	0	0	0	0	0	0	0	0	
D70	0	0	0	0	0	0	0	0	0	0	
D80	0	0	0	0	0	0	0	0	0	0	
D90	0	0	0	0	0	0	0	0	0	0	
D100	0	0	0	0	0	0	0	0	0	0	
D110	0	0	0	0	0	0	0	0	0	0	_
D120	0	0	0	0	0	0	0	0	0	0	
D130	0	0	0	0	0	0	0	0	0	0	
D140	0	0	0	0	0	0	0	0	0	0	
D150	0	0	0	0	0	0	0	0	0	0	
D160	0	0	0	0	0	0	0	0	0	0	-

After leaving the PLC register window, the register setting screen will appear, as shown below:

If there is a new PLC program and no settings have yet been made, you can read default data from the converter, and merely edit it to suit the current application. If settings have already been made, however, the special D in the CANopen area will display the saved status (the CANopen D area is located at D1090 to D1099 and D2000 to D2799). Assuming it is a new program, we will first read the default data from the converter; check the communications format if there is no communications link (the default PLC station number is 2, 9600, 7N2, ASCII). Perform the following steps: 1. Switch the PLC to Stop status; 2. Press the transmit button; 3. click on read memory after exiting the window; 4. Ignore D0-D399; and 5. click on the confirm button.)

Si Eile	Edit C	ompiler Com	ments Searc	th View C	ommunical	tion Options	Wizard W	indow Help			_ 8 :
		001	00	3 31	294	017	3 0	1 🗘 🔘	23		
8 1	● ●	2 3 🖽	951			30099	24		문 문		Q 2
D Regis Data Ty • 16 b • 32 b	vpe hits	Register C Display Mo © Decimal © Hexadeci © Binary © Float	de	bits) TR 2 Trans Clear	mit	Hint	_				
	+0	+1	+2	+3	+4	+5	+6	+7	+8	+9	
D0	0	0	0	0	0	0	0	0	0	0	
D10	0	0	0	0	0	Transmission	Setup			1	×
D20	0	0	0	0	0	Free	3			5	
D30	0	0	0	0	0	· Read f	rom PLC D	evice Register		OK	
D40	0	0	0	0	0	C Write	to PLC Dev	ice Register	_	Cancel	
D50	0	0	0	0	0	Bank Area					
D60	0	0	0	0	0	4 V Bank	-	Star	t 0	End 3	00
D70	0	0	0	0	0	4 M Bank	0	Sta	. 10	Line -	
D80	0	0	0	0	0	1		Range:D0 ~	D399		
D90	0	0	0	0	0			-			
D100	0	0	0	0	0	I Bank	1	Star	t 1000	End 1	1099
D110	0	0	0	0	0	1		Range:D100	0~D1099	i.	
D120	0	0	0	0	0						
D130	0	0	0	0	0	F Bank	2	Star	t 2000	End 2	2799
D140	0	0	0	0	0			Range:D200	0 - 102700		
D150	0	0	0	0	0			Range.1/200	0 - 02199		
D160	0	0	0	0	0	L					

After reading the data, it is necessary to perform some special D settings. Before proceeding, we will first introduce the special D implications and setting range. The CANopen Master's special D range is currently D1070 to D1099 and D2000 to D2799; this range is divided into 3 blocks:

The first block is used to display CANopen's current status, and has a range of D1070 to D1089;

the second block is used for CANopen's basic settings, and has a range of D1090 to D1099; the third block is the slave station mapping and control area, and has a range of D2000 to D2799; These areas are therefore introduced as follows:

The first contains the current CANopen status display:

When the master initializes a slave station, we can from find out from D1070 whether configuration of the slave device has been completed; we can find out whether an error occurred in the configuration process from D1071 and whether the configuration is inappropriate from D1074.

After entering normal control, we can find out whether the slave device is offline from D1073. In addition, we can check the slave device's read/write information using the CANRX, CANTX, and CANFLS commands; error information can be obtained from D1076 to D1079 if there has been a read/write failure.

Special D	Description of Function	R/W
D1070	Channel opened by CANopen initialization (bit0=Machine code0)	R
D1071	Error channel occurring in CANopen initialization process (bit0=Machine code0)	R
D1072	Reserved	-
D1073	CANopen break channel (bit0=Machine code0)	R

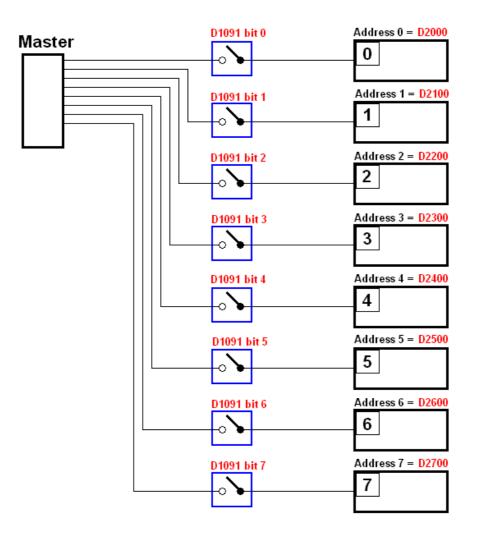
Special D	Description of Function	R/W
	Error code of master error	
D1074	0: No error	R
01074	1: Slave station setting error	- 11
	2: Synchronizing cycle setting error (too small)	
D1075	Reserved	-
D1076	SDO error message (main index value)	R
D1077	SDO error message (secondary index value)	R
D1078	SDO error message (error code L)	R
D1079	SDO error message (error code H)	R

The second area is for basic CANopen settings: (the PLC must have **Stopped** when this area is used to make settings)

We must set the information exchange time for the master and slave station,

Special D	Description of Function	Default:	R/W
D1090	Synchronizing cycle setting	4	RW

Use D1090 to perform settings; setting time relationships include:


N: TXPDO + RXPDO

For instance, when communications speed is 500K, TXPDO + RXPDO have 8 sets, and synchronizing time will require more than 4 ms

We must also define how many slave stations will be open. D1091 is the channel for defining station opening, and D2000+100*n is the station number defining this channel. See the detailed explanation below.

Slave station number **n**=0-7

Special D	Description of Function	R/W
	Sets slave station On or Off (bit 0-bit 7 correspond to slave stations number 0-7)	RW
D2000+100* n	Slave station number	RW

If slave devices have a slow start-up, the master can delay for a short time before performing slave station configuration; this time delay can be set via D1092.

Special D	Description of Function	Default:	R/W
D1092	Delay before start of initialization	0	RW

With regard to slave device initialization, a delay time can be set to judge whether failure has occurred. If the communications speed is relatively slow, the delay time can be adjusted to judge whether initialization has been completed, which will ensure that there is time to perform slave device initialization.

Special D	Description of Function	Default:	R/W
	Initialization completion delay time Setting range: 1 to 60000 sec	15 sec.	RW

After communication is successful, the system must detect whether there is a break in communications with the slave station. D1093 is used to set detection time, and D1094 sets the number of consecutive errors that will trigger a break error.

Special D	Description of Function	Default:	R/W
D1093	Break time detection	1000ms	RW
D1094	Break number detection	3	RW

The packet type transmitted by PDO is set before establishing normal communications and generally does not require adjustment.

Special D	Description of Function	Default:	R/W
D1097	Corresponding real-time transmission type (PDO) Setting range: 1~240	1	RW
	Corresponding real-time receiving type (PDO) Setting range: 1~240	1	RW

The third block is the slave station mapping and control area.

CANopen provides a PDO method to perform mapping of the master and slave station memory, and enables the master to directly access read/write data in a certain memory area. The master will automatically perform data exchange with the corresponding slave device, and the read/write values can be seen directly from the special D area after real-time exchange (M1034 = 1 time) has been established. The CH2000 currently supports real-time mapping of four PDOs, and there are two types of PDO RXPDO (reads slave device information) and TXPDO (writes to slave device). In addition, in order to facilitate control, the CH2000 cannot perform mapping of commonly-used registers; the following is an overview of the current PDO mapping situation:

TX PDO											
PDO4 (1	forque)	ue) PDO3 (Position) PDO2 (Remote I/O) PDO1 (Speed				Speed)					
Descriptio	Special D	Descriptio	Special D		Description	Special D		Descriptio	Special D		
n		n						n			
Controller	D2008+1	Controller	D2008+1		Slave	D2027+1		Controller	D2008+1		
Word	00*n	Word	00*n		device DO	00*n		Word	00*n		
Target	D2017+1	Target	D2020+1		Slave	D2031+1		Target	D2012+1		
torque	00*n	•	00*n		device AO1	00*n		speed	00*n		
			D2021+1								
			00*n								
Control	D2010+1	Control	D2010+1		Slave	D2032+1					
method	00*n	method	00*n		device AO2	00*n					
					Slave device	D2033+100					
				ĺ	AO3	*n					

	RXPDO										
PDO4 (Torque)	PDO3 (F	Position)	PDO2 (Remote I/O)		PDO1 (Speed)					
Description	Special D	Description	Special D	Description	Special D	Description	Special D				
Mode word	D2009+100* n	Mode word	D2009+100* n	Slave device DI	D2026+100* n	Mode word	D2009+100* n				
Actual torque	D2018+100* n	Actual position	D2022+100* n D2023+100* n	Slave device Al1	D2028+100* n	Actual frequency	D2013+100* n				
Actual mode	D2011+100* n	Actual mode	D2011+100* n	Slave device Al2	D2029+100* n						
				Slave device Al3	D2030+100* n						

Because usage requires only simple to open the corresponding PDO, where TXPDO employs D2034+100*n settings and RXPDO employs D2067+100*n settings.

These two special D areas are defined as follows:

		PDO4	PDO3		PDO2		PDO1		
Default definition	Torque		Position			Remote I/O	Speed		
bit	15	14 ~ 12	11	10 ~ 8	7	6 ~ 4	3	2 ~ 0	
Definition	En	Length:	En	Length:	En	Length:	En	Length:	

En: indicates whether PDO is used

Length: indicates mapping of several variables

In a simple example, if we wish to control a CH2000 slave device and cause it to operate in speed mode,

we only have to make the following settings:

	TX PDO											
Lengt	P	DO4	PDO3				PDO2			PDO1		
h:	Descriptio	Special D	Desc	criptio	Special D		Descriptio	Special D		Descriptio	Special D	
	n			n			n			n		
1	Controller	D2008+100*	Cont	troller	D2008+100*		Slave	D2027+10		Controller	D2008+100*	
	Word	n	W	ord	n		device DO	0*n		Word	n	
2	Target	D2017+100*	Ta	rget	D2020+100*		Slave	D2031+10		Target	D2012+100*	
	torque	n		•	n		device	0*n		speed	n	
					D2021+100*		AO1			·		
					n							
3	Control	D2010+100*	Coi	ntrol	D2010+100*		Slave	D2032+10				
	method	n	me	thod	n		device	0*n				
							AO2					
4							Slave device	D2033+100*				
							AO3	n				

D2034+100*n =000Ah

	Р	DO4	PDO3 PDO2			PDO1			
Definition	To	orque	P	osition	Re	mote I/O	Speed		
bit	15	14 ~ 12	11	10 ~ 8	7	6 ~ 4	3	2 ~ 0	
Definition	0	0	0	0	0	0	1	2	

D2067+100*n =000Ah

Longet		TX PDO											
Lengt h:	PD	D4		PD	03		PDO2			PDO1			
	Description	Special D		Description	Special D		Description	Special D		Description	Special D		
1	Controller Word	D2009+100 *n		Controller Word	D2009+100 *n		Slave device Dl	D2026+100 *n		Controller Word	D2009+100 *n		
2	Actual torque	D2018+100 *n		Actual position	D2022+100 *n D2023+100 *n		Slave device Al1	D2028+100 *n		Actual frequency	D2013+100 *n		
3	Actual mode	D2011+100 *n		Actual mode	D2011+100 *n		Slave device Al2	D2029+100 *n					
4							Slave device Al3	D2030+100*n					

	P	DO4		PDO3	ŀ	PDO2	PDO1		
Definition	To	orque	Р	osition	Rei	mote I/O	Speed		
bit	15	14 ~ 12	11	10 ~ 8	7	6 ~ 4	3	2 ~ 0	
Definition	0	0	0	0	0	0	1	2	

Switch the PLC to Run after completing settings. Now wait for successful initialization of CANopen (M1059 = 1 and M1061 = 0), and then initiate CANopen memory mapping (M1034 = 1). The control word and frequency command will now automatically refresh to the corresponding slave device (D2008+n*100 and D2012+n*100), and the slave device's status word and currently frequency will also be automatically sent back to the master station (D2009+n*100 and D2013+n*100). This also illustrates how the master can handle these tasks through read/write operations in the special D area.

Furthermore, it should be noted that the remote I/O of PDO2 can obtain the slave device's current DI and AI status, and can also control the slave device's DO and AO status. Nevertheless, after introducing a fully automatic mapping special D, the CH2000 CANopen master also provides additional information refreshes. For instance, while in speed mode, acceleration/deceleration settings may have been refreshed. The special D therefore also stores some seldom-used real-time information, and these commands can be refreshed using the CANFLS command. The following is the CH2000's current CANopen master data conversion area, which has a range of D2001+100*n - D2033+100*n, as shown below:

1. The range of n is 0-7

2. ●Indicates PDOTX, ▲Indicates PDORX; unmarked special D can be refreshed using the CANFLS command

Special D	Departmention of Euroption	Default		PDO D	Default	•	R/W
Special D	Description of Function	:	1	2	3	4	
D2000+100*n	Station number n of slave station Setting range: 0~127 0: No CANopen function	0					RW
D2002+100*n	Manufacturer code of slave station number n (L)	0					R
D2003+100*n	Manufacturer code of slave station number n (H)	0					R
D2004+100*n	Manufacturer's product code of slave station number n (L)	0					R
D2005+100*n	Manufacturer's product code of slave station number n (H)	0					R

Basic definitions

Special D	Description of Function	Dofault		PDO D)efault:		R/W
Special D	Description of Function	Iling 0 \bullet r n 0 nber 0 ntion 0 0 \bullet tion 0 \bullet \bullet	4				
D2006+100*n	Communications break handling method of slave station number n	0					RW
D2007+100*n	Error code of slave station number n error	0					R
D2008+100*n	Control word of slave station number n	0	•		•	•	RW
D2009+100*n	Status word of slave station number n	0					R
D2010+100*n	Control mode of slave station number n	2					RW
D2011+100*n	Actual mode of slave station number n	2					R

Velocity Control

Special D	Description of Function	Default		PDO D)efault:		R/W
Special D	Description of Function	:	1	2	3	4	
D2001+100*n	Torque restriction on slave station number n	0					RW
D2012+100*n	Target speed of slave station number n (rpm)	0	•				RW
D2013+100*n	Actual speed of slave station number n (rpm)	0					R
D2014+100*n	Error speed of slave station number n (rpm)	0					R
D2015+100*n	Acceleration time of slave station number n (ms)	1000					RW
D2016+100*n	Deceleration time of slave station number n (ms)	1000					RW

Torque control

Special D	Description of Function	Default:		R/W			
Special D	Description of Function	Delault.	1	2	3	4	
D2017+100*n	Target torque of slave station number n(-100.0%~+100.0%)	0				•	RW
D2018+100*n	Actual torque of slave station number n(XX.X%)	0					R
D2019+100*n	Actual current of slave station number n(XX.XA)	0					R

Position control

Special D	Description of Function	Default:	PDO Default:				R/W
Special D	Description of Function	Delault.	1	2	3	4	
D2020+100*n	Target of slave station number n (L)	0					RW
D2021+100*n	Target of slave station number n (H)	0			•		RW
D2022+100*n	Actual position of slave station number n (L)	0					R

D2023+100*n	Actual position of slave sta number n (H)	ion 0		R
D2024+100*n	Speed chart of slave sta number n (L)	^{ion} 10000		RW
D2025+100*n	Speed chart of slave sta number n (H)	ion 0		RW

Remote I/O

Special D	Description of Eurotion	Default:		DO D	Default		R/W
Special D	Description of Function	Delault.	1	2	3	4	ח/ ۷۷
D2026+100*n	MI status of slave station number n	0					R
D2027+100*n	MO setting of slave station number n	0		•			RW
D2028+100*n	Al1 status of slave station number	0					R
D2029+100*n	Al2 status of slave station number	0					R
D2030+100*n	Al3 status of slave station number n	0					R
D2031+100*n	AO1 setting of slave station number n	0		•			RW
D2032+100*n	AO2 setting of slave station number n	0		•			RW
D2033+100*n	AO3 setting of slave station number n	0		•			RW

After gaining an understanding of special D definitions, we return to setting steps. After entering the values corresponding to D1090 to D1099, D2000+100*n, D2034+100*n and D2067+100*n, we cannot begin to perform downloading, which is performed in accordance with the following steps: (1. D2000 and D2100 are set as 20 and 21, and D2200, D2300, D2400, D2500, D2600, and D2700 are set as 0; if a setting of 0 causes problems, D1091 can be set as 3, and slave stations 2 to 7 can be closed. 2. Switch PLC to Stop status. 3. Press the transmit button. 4. click on write memory after exiting the window. 5. Ignore D0-D399. 6. Change the second range to D1090-D1099. 7. Click on Confirm.)

Dvp0	- Delta	WPLSoft - [Vie	w Register]	-		-					
S File	Edit (Compiler Com	ments Search	h View C	ommunication	Options	Wizard W	indow <u>H</u> elp			
0 6		000	00	0 30	2991	2	1 3 0	-	2 4		
	2 壘	2 2 1	981	0 12 1			95.		린리	🖾 Q Q 👧	d
D Regist Data Ty 16 bi C 32 bi	pe its	Register C Display Mod © Decimal © Hexadeci © Binary © Float		Dits) T R 3 Trans Clear	_	Hint					
-	+0	+1	+2	+3	+4	+5	+6	+7	+8	+9	
D1990	0	0	0	0	0	0	0	0	0	0	
D2000	20	0	0	0	Transmiss	ion Setup				×	
D2010	0	0	0	0							
D2020	0	0	0	0		Contraction of the local division of the loc	Device Reg	_	OK		
D2030	0	0	0	0	C Writ	te to PLC D	Device Regis	iter	Cancel		
D2040	0	0	0	0	P. I.I.						
D2050	0	0	0	0	Bank Are			Start 0	End	399	
D2060	0	0	0	0	_5 □ Bar	nk 0	-	Start IV	Lind	393	
D2070	0	0	0	0			Range	:D0~D399			
D2080	0	0	0	0	1			6	_		
D2090	0	0	0	0	I I Bar	nk 1		Start 1090	End	1099	
D2100	21	0	0	0			Range	:D1000 ~ D109	9		
D2110	0	0	0	0							
D2120	0	0	0	0	I Bat	nk 2		Start 2000	End	2799	
D2130	0	0	0	0			-	-			
D2140	0	0	0	0			Range	e:D2000 ~ D279	19		
D2150	0	0	0	0			-		-		
	-					~			~	-	
	_	Overwrite				0/10	0000 Steps		-		

Another method can be used to set D1091: Determine which of slave stations 0 to 7 will not be needed, and set the corresponding bits to 0. For instance, if it is not necessary to control slave stations 2, 6 and 7, merely set D1091 = 003B, and the setting method is the same as described above: Use WPL to initiate communications > use register edit (T C D) function to perform settings.

Step 3: Set the master's communications station number and communications speed

- ☑ When setting the master's station number (parameter 09-46, default is set as 100), make sure not to use the same number as a slave station.
- Set the CANopen communications speed (parameter 09-37); regardless of whether the driver is defined as a master or slave station, the communications speed is set via this parameter.

Step 4: Write program code

Real-time access: Can directly read/write to or from the corresponding D area.

Non real-time access:

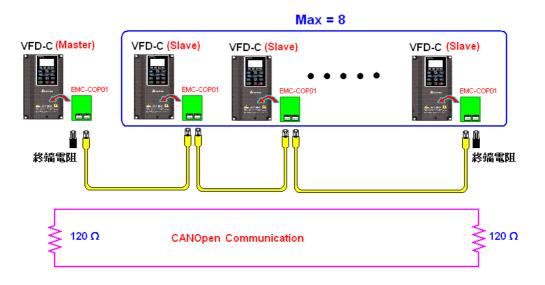
- Read command: Use the CANRX command for reading. M1066 will be 1 when reading is complete; M1067 will be 1 if reading is successful, and M1067 will be 0 if an error has occurred.
- Write command: Use the CANTX command for writing. M1066 will be 1 when writing is complete; M1067 will be 1 if writing is successful, and M1067 will be 0 if an error has occurred.
- **Refresh command:** Use CANFLS command to refresh (if there are RW attributes, the master will write to the slave station; if there are RO attributes, the slave station will return the read values to the master); M1066 will be 1 if refresh has been completed; M1067 will be 1 if refresh is successful, and M1067 will be 0 if an error has occurred.

When using CANRX, CANTX or CANFLS, internal implementation commands will wait until M1066 is completed before executing the next CANRX, CANTX or CANFLS.

Afterwards, download program to the driver (Please note that the PLC's default communications format is ASCII 7N2 9600, and the station number is 2. The WPL must therefore be modified, and the WPL setting pathway is **settings > communications settings**)

Step 5: Set the slave stations' station numbers, communications speed, control source, and command source

Delta's CH2000 and EC series devices currently support the CANopen communications interface driver, and the corresponding slave station numbers and communications speed parameters are as follows:


	Corresponding device parameters		Value	Definition
	CH2000	E-C		
Slave station	09-36	09-20	0	Disable CANopen hardware interface
address	09-30	09-20	1~127	CANopen Communication address
			0	1M
		09-21	1	500K
Communication	09-37		2	250K
speed	09-37		3	125K
			4	100K
			5	50K
Control source	00-21	-	3	
Control source	-	02-01	5	
Eroqueney equiree	00-20	-	6	
Frequency source	-	02-00	5	
Torquo oquroo	11-33	-	3	
Torque source	-	-	-	
Position source	11-40	-	3	
r usilion source	-	-	-	

Delta's A2 Servo currently supports the CANopen communications interface, and the corresponding slave station numbers and communications speed parameters are as follows:

	Corresponding device parameters A2	Value	Definition
Slave station address	03-00	1~127	CANopen Communication address
	03-01 bit 8-11 XRXX	R= 0	125K
Communication		R= 1	250K
Communication		R= 2	500K
speed		R= 3	750K
		R= 4	1M
Control/command source	01-01	В	

Step 6: Connect hardware wiring

When performing wiring, note the head and tail terminal resistance; connection methods are as follows:

Step 7: Initiate control

After a program has been written and downloaded, switch the PLC mode to Run. Merely turn power to master and slave stations off and then on again.

Refer to CANMasterTest 1 vs. 2 driver.dvp

Example

CH2000 driver one-to-two control

Step 1: Activating CANopen Master functions

- Parameter 09-45=1 (initiates Master functions); restart power after completing setting, the status bar on the KPC-CC01 digital keypad will display "CAN Master".
- Parameter 00-02=6 reset PLC (please note that this action will reset the program and PLC registers to the default values)
- \square Turn power off and on again.

☑ Use the KPC-CC01 digital keypad to set the PLC control mode as "PLC Stop" (if the KPC-CE01 digital keypad is used, set as "PLC 2"; if a newly-introduced driver is used, the blank internal PLC program will cause a PLFF warning code to be issued).

Step 2: Master memory correspondences

- ☑ Enable WPL
- ☑ Use keypad set PLC mode as Stop (PLC 2)
- ☑ WPL read D1070 to D1099 D2000 to D2799
- ☑ Set D2000=10 D2100=11
- ☑ Set D2100 2200 2300 2400 2500 2600 2700=0
- ☑ Download D2000 to D2799 settings

Step 3: Set the master's communications station number and communications speed

- ☑ When setting the master's station number (parameter 09-46, default is set as 100), make sure not to use the same number as a slave station.
- Set the CANopen communications speed as 1M (parameter 09-37=0); regardless of whether the driver is defined as a master or slave station, the communications speed is set via this parameter.

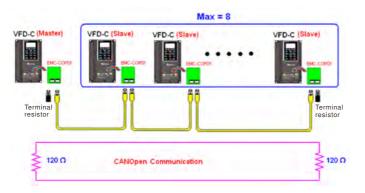
Step 4: Write program code

Real-time access: Can directly read/write to or from the corresponding D area.

Non real-time access:

- **Read command**: Use the CANRX command for reading. M1066 will be 1 when reading is complete; M1067 will be 1 if reading is successful, and M1067 will be 0 if an error has occurred.
- Write command: Use the CANTX command for writing. M1066 will be 1 when writing is complete; M1067 will be 1 if writing is successful, and M1067 will be 0 if an error has occurred.
- **Refresh command:** Use CANFLS command to refresh (if there are RW attributes, the master will write to the slave station; if there are RO attributes, the slave station will return the read values to the master); M1066 will be 1 if refresh has been completed; M1067 will be 1 if refresh is successful, and M1067 will be 0 if an error has occurred.

When using CANRX, CANTX or CANFLS, internal implementation commands will wait until M1066 is completed before executing the next CANRX, CANTX or CANFLS.


Afterwards, download program to the driver (Please note that the PLC's default communications format is ASCII 7N2 9600, and the station number is 2. The WPL must therefore be modified, and the WPL setting pathway is **settings** > **communications settings**)

Step 5: Set the slave stations' station numbers and communications speed

Slave station no. 1: 09-37 = 0(Speed 1M) 09-36=10(Node ID 10) Slave station no. 2: 09-37 = 0(Speed 1M) 09-36=10(Node ID 11)

Step 6: Connect hardware wiring

When performing wiring, note the head and tail terminal resistance; connection methods are as follows:

Step 7: Initiate control

After a program has been written and downloaded, switch the PLC mode to Run. Merely turn power to master and slave stations off and then on again.

Refer to CANMasterTest 1 vs. 2 driver.dvp

16-9 Explanation of various PLC mode controls (speed, torque,

homing, and position)

The torque mode and position mode are based on FOC vector control and speed mode also supports FOC vector control. Control therefore cannot be performed successfully unless you study motor parameters ahead of time for the torque mode and position mode, and the speed mode based on FOC.

In addition, motors are classified as two types: IM and PM. You therefore need to study IM motor parameters. For PM motors, after completing motor parameter study, you must also complete study of motor origin angle of deviation. Please refer to parameters 12-58 Pr. 05-00 detailed explanation.

If a PM motor belongs to Delta's ECMA series, motor parameters can be directly input from data in the servo motor catalog, and parameter study will not be needed.

Control methods and settings are explained as follows:

Speed control:

Register table for speed mode:

Control special M

Special	Description of Function	Attributes
М		
M1025	Driver frequency = set frequency (ON)/driver frequency =0 (OFF)	RW
M1026	Driver operating direction FWD(OFF)/REV(ON)	RW
M1040	Hardware power (Servo On)	RW
M1042	Quick stop	RW
M1044	Pause (Halt)	RW
M1052	Lock frequency (lock, frequency locked at the current operating frequency)	RW

Status special M

Special M	Description of Function	Attributes
M1015	Frequency attained (when used together with M1025)	RO
M1056	Servo On Ready	RO
M1058	On Quick Stopping	RO

Control special D

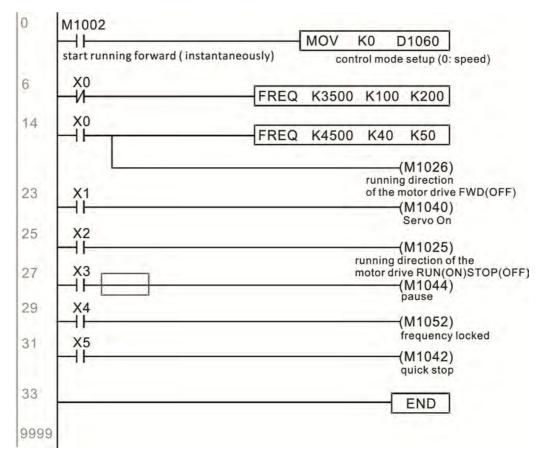
Special D	Description of Function	Attributes
D1060	Mode setting (speed mode is 0)	RW

Status special D

Special D	Description of Function	Attributes
D1037	Converter output frequency (0.00~600.00)	RO
D1050	Actual operating mode (speed mode is 0)	RO

Speed mode control commands:

Target speed The first acceleration time setting The first


S3

deceleration time setting

Example of speed mode control:

Before performing speed control, if the FOC (magnetic field orientation) control method is used, setting of electromechanical parameters must first be completed.

- 1. Setting D1060 = 0 will shift the converter to the speed mode (default).
- 2. Use the FREQ command to control frequency, acceleration time, and deceleration time.
- 3. Set M1040 = 1, the driver will now be excited, but the frequency will be 0.
- 4. Set M1025 = 1, the driver frequency command will now jump to the frequency designated by FREQ, and acceleration/deceleration will be controlled on the basis of the acceleration time and deceleration time specified by FREQ.
- 5. M1052 can be used to lock the current operating frequency.
- 6. M1044 can be used to temporarily pause operation, and the deceleration method will comply with deceleration settings.
- 7. M1042 can be used to perform quick stop, and deceleration will be as quick as possible without giving rise to an error. (There may still be a jump error if the load is too large.)
- 8. Control user rights: M1040(Servo ON) > M1042(Quick Stop) > M1044(Halt) > M1052(LOCK)

Torque control:

Register table for torque mode:

Control special M

Special M	Description of Function	Attributes
M1040	Servo On	RW

Status special M

Special M	Description of Function	Attributes
M1056	Servo On Ready	RO
M1063	Torque attained	RO

Control special D

Special	Description of Function	Attributes
D		
D1060	Operating mode setting (torque mode is 2)	RW

Status special D

Special	Description of Function	Attributes
D		
D1050	Actual operating mode (speed mode is 0)	RO
D1053	Actual torque	RO

Torque mode control commands:

TORQ(P)	S1	S2	
	Target to	rque (with numbers)	Frequency restrictions

Example of torque mode control:

The setting of electromechanical parameters involved in torque control must be completed before implementing torque control.

- 1. Set D1060 = 2 to change the converted to the torque mode.
- 2. Use the TORQ command to implement torque control and speed limits.
- 3. Set M1040 = 1; the driver will now be excited, and immediately jump to the target torque or speed limit. D1053 can be used to find out the current torque.

0	M1002	
	ON only for 1scan a	MOV K2 D1060 Set control mode (0:V)
6	M1000	TMR TO K30
	Normally open contact	Power on delay
	T0 H Power on delay	———(M0) Ready
13	X1 	- TORQ K100 K1000
19	Х1	TORQ K-200 K1000
25	Set Torque M0 X4	(M1040)
28	Ready	Power on END
9999		

Homing control/position control:

Register table in homing mode/position mode:

Control special M

Special M	Description of Function	Attributes
M1040	Servo On	RW
	Move to new position, must use control mode as position mode (D1060 = 1) and $M1040 = 1$	RW
M1050	Absolute position/relative position (0: relative/1: absolute)	RW
M1055	Search for origin (home start), must use control mode as position mode (D1060 = 3) and M1040 = 1	RW

Status special M

Special	Description of Function	Attributes
М		
M1064	Target reached	RO
M1070	Return home complete	RO
M1071	Homing error	RO

Control special D

Special D	Description of Function	Attributes
D1060	Operating mode setting (position mode is 1, homing mode is 3)	RW

Status special D

Special	Description of Function	Attributes
D		
D1050	Actual operating mode (speed mode is 0)	RO
D1051	Actual position (Low word)	RO
D1052	Actual position (High word)	RO

※ D1051 and D1052 must be combined to give the actual location, and it has a serial number.

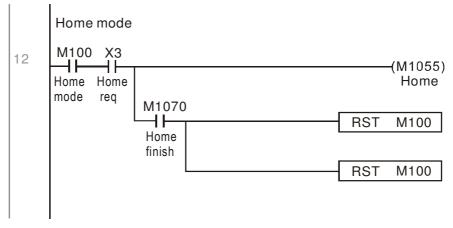
Position mode control commands:

DPOS(P) S1

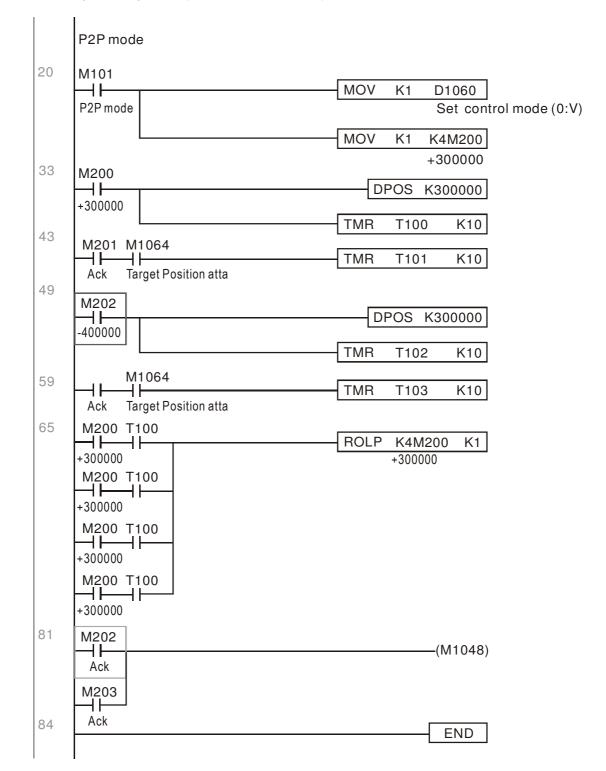
Target (with numbers)

Example of homing mode/position mode control:

First complete setting of electromechanical parameters connected with position before implementing homing control or position control.


- 1. Set 00-40 to select the homing method and the corresponding limit sensors and origin. (Setting the MI function gives a reverse rotation limit of 44, a forward rotation limit of 45, and an origin proximity of 46. Because the CH2000 current only supports a Z-phase origin, the encoder card must a provide Z-phase.)
- 2. Set D1060 = 3 to change the converter to the homing mode.

- Set M1040 = 1
 In the VF/SVC/VFPG mode, will enter the STANDBY mode (01-34 can be used to access the STANDBY mode's action options).
 In the FOC+PG mode, zero speed holding will occur
- 4. Set M1055 = 1, and the driver will now start to search for the origin.
- 5. When homing is complete, M1070 will change to ON. If you now set D1060 = 1, the control mode will switch to position mode (please note that M1040 will not change to off; this mechanical origin move).
- 6. The DPOS command can now be used to designate the driver's target location. M1050 or parameter 00-12 can be used to set a change in absolute or relative position.
- Implement M1048 Pulse ON once (must be more than 1 ms in duration), and the converter will begin to move toward the target (M1040 must be 1 to be effective). The current position can be obtained from D1051 and D1052.


Part 1: The initialization mode is defined as the "homing" mode from the beginning (set D1060 = 3). X2 is used to implement converter excitation.

Part 2—homing: Use X3 to trigger homing action; will automatically switch to position mode after completion.

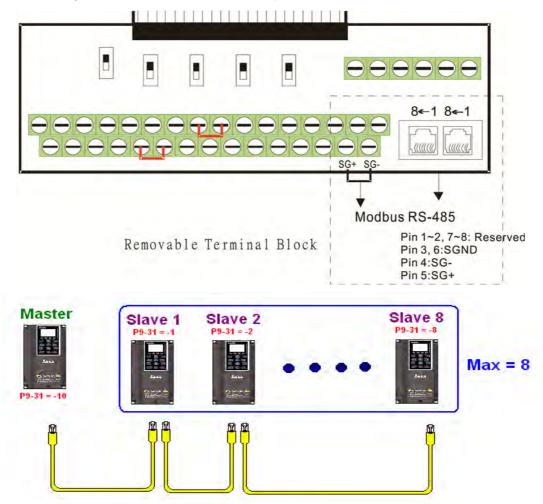
Part 3—point-to-point movement: Switch to position mode (set D1060 = 1), and move back and forth between position points. (+300000 ~ -300000)

If homing is not needed in an application, the first and second parts can be skipped. However, the M1040 condition from Part 1 must be included, and the writing method in Part 1 involve the use of X2 to achieve direct access. In addition, when M101 is used at the beginning of Part 3 to set the control mode, it can be rewritten as M1002, which will put the PLC immediately into the position mode when it starts running.

16-10 Internal communications main node control

The protocol has been developed in order to facilitate the use of 485 instead of CANopen in certain application situations. The 485 protocol offers similar real-time characteristics as CANopen; this protocol can only be used on the CH2000 and CT2000 devices. The maximum number of slave devices is 8.

Internal communications have a master-slave structure. The initiation method is very simple:


Slave device:

Set parameter 09-31 = -1 to -8 in order to access 8 nodes, and set parameter 00-20 = 1 to define the control source as 485 and access the reference sources that must be controlled, namely speed command (00-21 = 2), torque command (11-33 = 1), and position command (11-40=2). This will complete slave device settings. (PLC functions do not need to be activated)

System

Setting the master is even simpler; it is only necessary to set parameter 09-31 = -10, and enable the PLC.

Hardware wiring: The master and slave stations are connected via the 485 serial port. The CH2000 provide two types of 485 serial port interfaces, see the figure below: (please refer to 06 Control terminals concerning detailed terminal connections)

Master programming: In a program, D1110 can be used to define a slave station to be controlled (1-8, if set as 0, can jump between 8 stations). Afterwards, M1035 is set as 1, and the memory positions of the master and slave stations will correspond. At this time, it is only necessary to send commands to the correlation slave station address to control that station. The following is a register table connected with internal communications:

Control special M

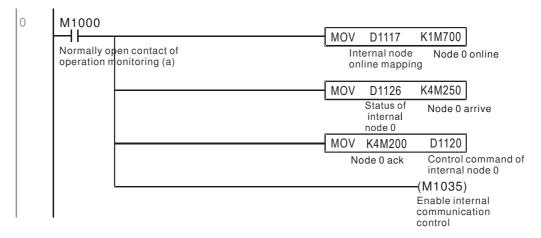
Special M	Description of Function	Attributes
M1035	Initiates internal communications control	RW

Control special D

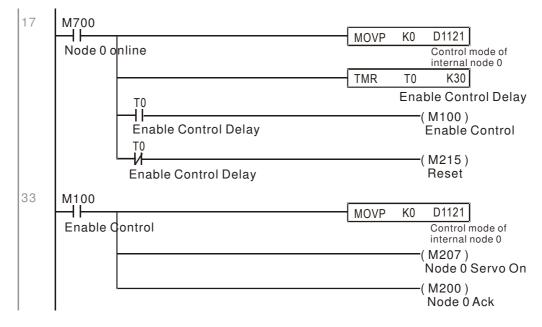
Special D	Description of Function	Attributes
	Internal node communications number 1-8 (set the station number of the slave station to be controlled)	RW

			De	scription of F	unction				
Special D	Definition	bit	User rights	Speed mode	Location mode	Torque mode	Homing mode	Attributes	
		0	4	Command functions	-	-	Homing Origin		
		1	4	Reverse rotation requirements	Immediate change	-	-		
		2	4	-	-	-	-		
		3	3	Temporary pause	Temporary pause	-	-		
	Internal node N control command	4	4	Frequency locking	-	-	Temporary pause		
D1120 + 10*N		5	4	JOG	-	-	-	RW	
		6	2	Quick Stop	Quick Stop	Quick Stop	Quick Stop		
		7	1	Servo ON	Servo ON	Servo ON	Servo ON		
			11~8	4	Speed interval switching	Speed interval switching	-	-	
		13~12	4	Deceleration time change	-	-	-		
		14	4	Enable Bit 13 ~ 8	Enable Bit 13 ~ 8	-	-		
		-	15	4	Clear error code	Clear error code	Clear error code	Clear error code	
D1121 + 10*N	Internal node N control mode			0	1	2	3	RW	
	Internal node N reference command L			Speed command (no number)	Position command (with numbers)	Torque command (with numbers)	-	RW	
D1123 + 10*N	Internal node N reference command H			-		Speed limit	-	RW	

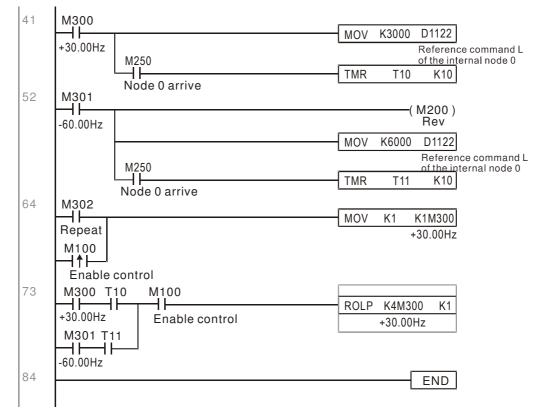
₩ N = 0 ~ 7


Status special D

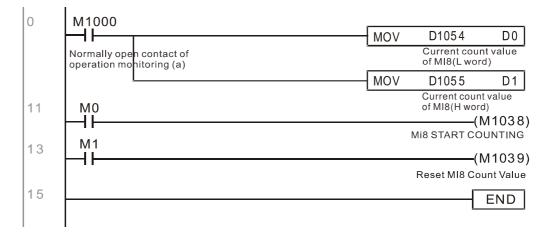
Special D	Description of Function	Attributes
D1115	Internal node synchronizing cycle (ms)	RO
1 1111n	Internal node error (bit0 = slave device 1, bit1 = slave device 2,bit7 = slave device 8)	RO
	Internal node online correspondence (bit0 = slave device 1, bit1 = slave device 2,bit7 = slave device 8)	RO


Special D	Description of Function						
Special D	bit	Speed mode	Location mode	Torque mode	Homing mode	Attributes	
	0	Frequency command	Position command	Torque command	Zero command		
	U	arrival	attained	attained	completed		
	4	Clockwise	Clockwise	Clockwise	Clockwise		
		Counterclockwise:	Counterclockwise:	Counterclockwise:	Counterclockwise:		
D1126 + 10*N	2	Warning	Warning	Warning	Warning	RO	
	3	Error	Error	Error	Error		
	5	JOG]	
	6	Quick Stop	Quick Stop	Quick Stop	Quick Stop		
	7	Servo ON	Servo ON	Servo ON	Servo ON		
D1127 + 10*N		Actual fraguanay	Actual position	Actual torque			
D 2 / + 0 N		Actual frequency	Actual position (with numbers)	(with numbers)	-	RO	
D1128 + 10*N		-	(with numbers)	-	-		

₩ N = 0 ~ 7


Example: Assume it is desired to control slave station 1 operation at frequencies of 30.00Hz and 60.00 Hz, status, and online node correspondences:

When it is judged that slave station 1 is online, delay 3 sec. and begin control


It is required slave station 1 maintain forward rotation at 30.00Hz for 1 sec., and maintain reverse rotation at 60.00 Hz for 1 sec., and repeat this cycle continuously.

16-11 Count function using MI8

16-11-1 High-speed count function

The CH2000's MI8 supports one-way pulse counting, and the maximum speed is 100K. The starting method is very simple, and only requires setting M1038 to begin counting. The 32 bit count value is stored on D1054 and D1055 in non-numerical form. M1039 can reset the count value to 0.

* When the PLC program defines MI8 for use as a high-speed counter, and also for use in PLC procedures, it must be written to M1038 or M1039, and the original MI8 functions will be disabled.

16-11-2 Frequency calculation function

Apart from high-speed counting, the CH2000's MI8 can also convert a received pulse to frequency. The following figure shows that there is no conflict between frequency conversion and count calculations, which can be performed simultaneously.

PLC speed calculation formula D1057 Speed D1058 Interval between calculations D1059 Decimal places Assuming that there are 5 input pulses each second, (see figure below) we set D1058=1000ms=1.0 sec. as the calculation interval. This enables five pulses to be sent to the converter each second.

Assuming that we wish to display numbers to two decimal places, we set D1059=2, which is also 1.00Hz. The numerical value displayed at D1056 is 100. For simplicity, the D1059 conversion formula can be expressed as in the following table:

D1058= $\frac{\text{Pulses per second}}{\text{D1057}} \times \frac{1000}{\text{D1057}} \times 10^{\text{D1059}}$

16-12 Modbus remote IO control applications (use MODRW)

The CH2000's internal PLC supports 485 read/write functions, which can be realized using the MODRW command. However, the 485 serial port must be defined as available for the PLC's 485 use before writing a program, and the parameter 09-31 must be set as -12. After completing settings, the standard functions defined by 485 can be used to implement read/write commands at other stations. Communications speed is defined by parameter 09-01, the communications format is defined by parameter 09-04, and the PLC's current station number is defined by parameter 09-35. The CH2000 currently supports the functions

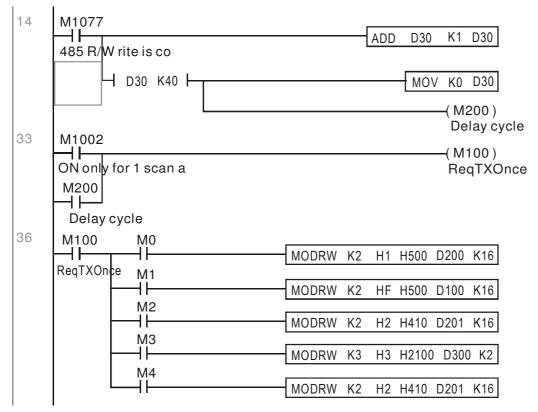
read coil (0x01), read input (0x02), read register (0x03), write to single register (0x06), write to several coils (0x0F), and write to several registers (0x10). Explanations and the usage of these functions are provided as follows:

	MODF	W com	mand				
S1	S2	S3	S4			Slave device is Delta's	
Node ID	Comman d	Address	Return: D area	Length :	meaning	meaning	converter meaning
КЗ	H01	H500	D0	K18	Read coil (Bit)	Read 18 bits of data corresponding to slave station 3 PLC Y0 to Y21. This data is stored by bit 0 to 15 of the this station's D0 and bit 0 to bit 3 of D1.	Does not support this function
КЗ	H02	H400	D10	K10	Read input (Bit)	Read 10 bits of data corresponding to slave station 3 PLC X0 to X11. This data is stored by bit 0 to 9 of this station's D10.	Does not support this function
КЗ	H03	H600	D20	K3	Read register (word)		Read 3 words of data corresponding to slave station 3 converter parameters 06-00 to 06-02. This data is stored by D20 to D22
K3	H06	H610	D30	XX	Write to single register (word)	Write slave station 3 PLC's T16 to this station's D30 value	Write slave station 3 converter 06 to 16 parameter to this station's D30 value
К3	H0F	H509	D40		Write to multiple coils (Bit)	Write slave station 3 PLC's Y11 to Y22 to bit 0 to 9 of D40.	Does not support this function
К3	H10	H602	D50	K4	Write to multiple registers (word)	Write slave station 3 PLC's T2 to T5 to D50 to D53	Write slave station 3 converter 06-02 to 06-05 parameters to this station's D50 to D53

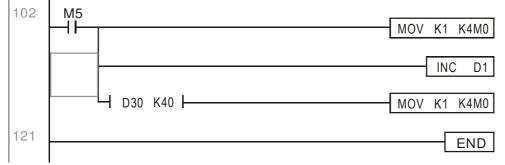
※ XX indicates doesn't matter

After implementing MODRW, the status will be displayed in M1077 (485 read/write complete), M1078 (485 read/write error), and M1079 (485 read/write time out). M1077 is defined so as to immediately revert to 0 after the MODRW command has been implemented. However, any of three situations—a report of no error, a data error report, or time out with no report—will cause the status of M1077 to change to On.

Example program: Testing of various functions


At the start, will cause the transmitted time sequence to switch to the first data unit.

l	0	M1002				
l		┝━┩┣━━━		MOV	K1	K4M0
l		On only	for 1 scan a			

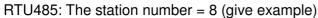

When the reported message indicates no error, it will switch to the next transmitted command

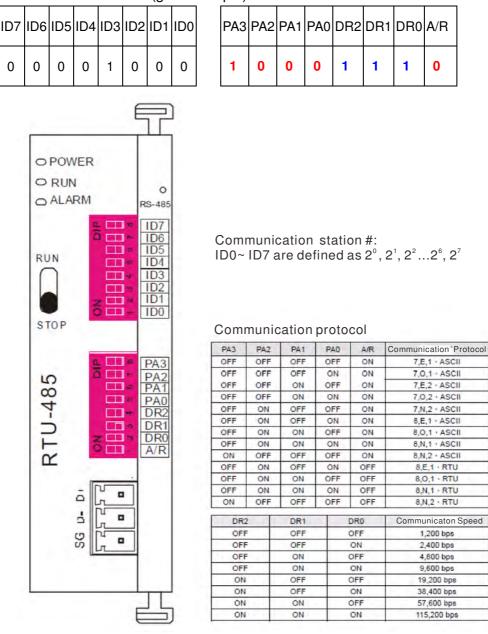
6	M1077 M1078 M1079			
		ROLP	K4M0	K1
	485 R/W 485 R/W 485 R/W			
	rite is co rite is fail rite is time 0			

If time out occurs or an error is reported, the M1077 will change to On. At this time, after a delay of 30 scanning cycles, it will re-issue the original command once

It will repeat after sending all commands

Practical applications:

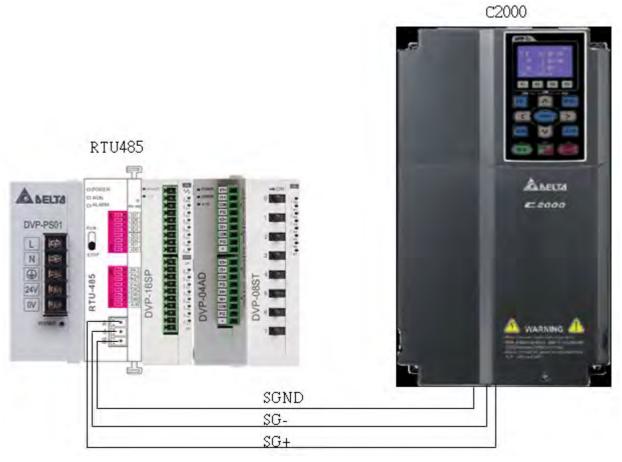

Actual use to control the RTU-485 module.


Step 1: Set the communications format. Assume that the communications format is 115200, 8,N,2, RTU

CH2000 : The default PLC station number is set as 2 (09-35)

09-31=-12(COM1 is controlled by the PLC), 09-01=115.2(The communications speed is 115200)

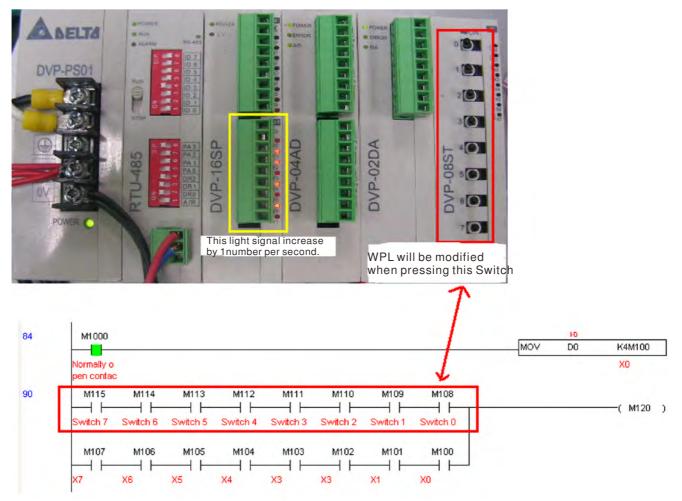
09-04=13(The format is 8,N,2, RTU)



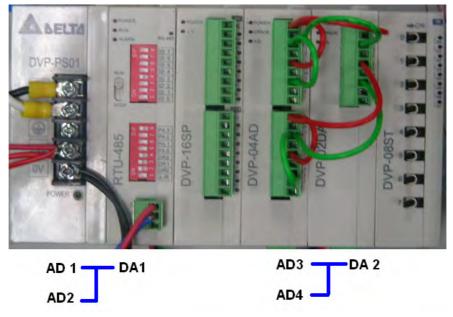
Step 2: Install control equipment. We sequentially connect a DVP16-SP (8 IN 8 OUT), DVP-04AD (4 channels AD), DVP02DA (2 channels DA), and DVP-08ST (8 switches) to the RTU485.

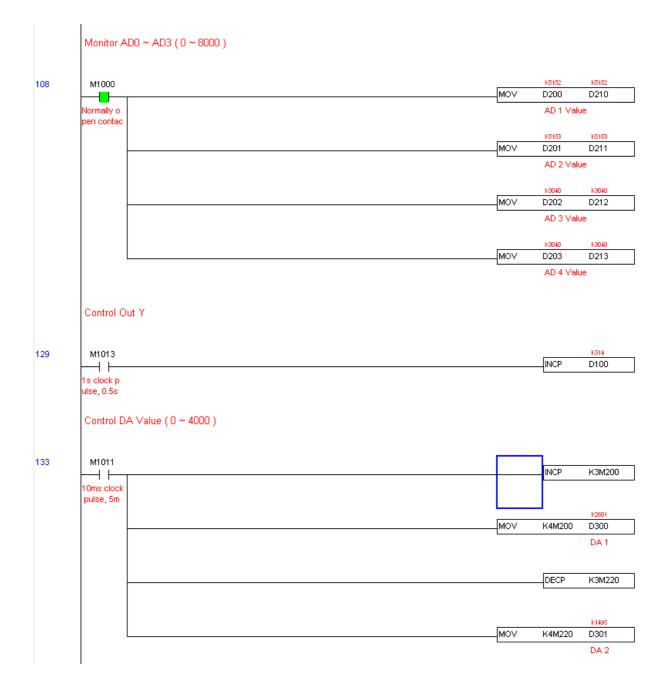
The following corresponding locations can be obtained from the RTU485's configuration definitions:

Module	Terminals	485 Address
DVP16-SP	X0 ~ X7	0400H ~ 0407H
DVF10-3F	Y0 ~ Y7	0500H ~ 0507H
DVP-04AD	AD0 ~ AD3	1600H ~ 1603H
DVP02DA	DA0 ~ DA1	1640H ~ 1641H
DVP-08ST	Switch 0 ~ 7	0408H ~ 040FH


Step 4: Write to PLC program

M1002				MOV	K1	K4M0
ON only fo r 1 scan a M3						X Input re ad
Multi-word write						
	MODRVV	K8	H2	H400	DO	K16
ON only fo X Input re r 1 scan a ad						
M50 M1	MODRVV	K8	HF	H500	D100	K8
Delay cycl Multi-Y ou e t write						
M2	MODRW	K8	НЗ	H1606	D200	K4
Word read					AD 1 Va	lue
M1077 M1078 M1079				ROLP	K4M0	К1
485 read/w 485 read/w 485 read/w rite is co rite fail rite timeo					X Input r ad	e
M1077					INC	D30
485 read/w rite is co						Delay cycl e times
Ц> D30 К10				MOV	KO	D30
Delay cycl e times						Delay cycl e times
						— (M50) Delay cycl e


71	M1000				MOV	DO	K4M100
	Normally o				- INC V	00	XO
7	pen contac M115 M114 M113 M112 M1	11 M110	M109	M108			
		\vdash	-1				—(M120
	Switch 7 Switch 6 Switch 5 Switch 4 Switc	sh 3 Switch 2	Switch 1	Switch 0			
		103 M102	M101	M100			
		×3	X1	xo			
	Monitor AD0 ~ AD3 (0 ~ 8000)						
5	M1000				MOV	D200	D210
	Normally o					AD 1 Val	ue
	pen contac				-	_	-
					MOV	D201 AD 2 Val	D211
						AD Z VA	ue
					MOV	D202	D212
					MOV	D202 AD 3 Val	A CONTRACT OF
						AD 3 Val	lue
	Control Out Y				MOV		ue D213
16	M1013					AD 3 Val D203 AD 4 Val	ue D213
16	M1013					AD 3 Val	D213 Ue
16	M1013					AD 3 Val D203 AD 4 Val	D213 Ue
16	M1013 I I 1s clock p ulse, 0.5s					AD 3 Val D203 AD 4 Val	D213 Ue
	M1013 I I 1s clock p ulse, 0.5s					AD 3 Val D203 AD 4 Val	D213 ue D100
	M1013 Is clock p ulse, 0.5s Control DA Value (0.~ 4000) M1011					AD 3 Val D203 AD 4 Val	D213 Ue
	M1013 H 1s clock p ulse, 0.5s Control DA Value (0 ~ 4000)					AD 3 Val D203 AD 4 Val	D213 ue D100
	M1013 Is clock p ulse, 0.5s Control DA Value (0 ~ 4000) M1011 It ims clock					AD 3 Val D203 AD 4 Val	D213 ue D100
	M1013 Is clock p ulse, 0.5s Control DA Value (0 ~ 4000) M1011 It ims clock				Mov	AD 3 Val D203 AD 4 Val	ULE D213 ULE D100 K3M200
	M1013 Is clock p ulse, 0.5s Control DA Value (0 ~ 4000) M1011 It ims clock				Mov	AD 3 Val D203 AD 4 Val	ue D213 ue D100 K3M200 D300
	M1013 Is clock p ulse, 0.5s Control DA Value (0 ~ 4000) M1011 It ims clock				Mov	AD 3 Val D203 AD 4 Val	ue D213 ue D100 K3M200 D300 D300 DA 1 K3M220
16	M1013 Is clock p ulse, 0.5s Control DA Value (0 ~ 4000) M1011 It ims clock				Mov	AD 3 Val D203 AD 4 Val	UUE D213 UUE D100 K3M200 K3M200 D300 D300 D301


Step 5: Actual testing situation:

I/O testing: When the switch is activated, it can be discovered that the display corresponds to M115 -M108. Furthermore, it can be seen that one output point light is added every 1 sec. (the display uses a binary format)

AD DA testing: It can be discovered that D200 and D201 are roughly twice the D300, and continue to increase progressively. For their part, the D202 and D203 are roughly twice the D301, and continue to decrease progressively.

16-13 Calendar functions

The CH2000's internal PLC includes calendar functions, but these may only be used when a keypad (KPC-CC01) is connected, and otherwise cannot be used. Currently-support commands include TCMP (comparison of calendar data), TZCP (calendar data range comparison), TADD (calendar data addition), TSUB (calendar data subtraction), and TRD (calendar reading). Please refer to the explanation of relevant commands and functions for the usage of these commands.

In real applications, the internal PLC can judge whether calendar function have been activated; if they have been activated, calendar warning codes may be displayed in some situations. The basis for whether a calendar function has been activated is whether the program has written the calendar time (D1063 to D1069) in connection with the foregoing calendar commands or programs.

Special D	Item	Content	Attributes
D1063	Year (Western)	20xx (2000~2099)	RO
D1064	Weeks	1~7	RO
D1065	Month	1~12	RO
D1066	Day	1~31	RO
D1067	Hour	0~23	RO
D1068	Minute	0~59	RO
D1069	Second	0~59	RO

The calendar's time display is currently assigned to D1063 to D1069, and is defined as follows:

Calendar-related special M items are defined as follows:

Special D	Item	Attributes
M1068	Calendar time error	RO
M1076	Calendar time error or refresh time out	RO
M1036	Ignore calendar warning	RW

*When a program writes to the commands TCMP, TZCP, TADD, or TSUB, if it is discovered that a value exceeds the reasonable range, M1026 will be 1.

*When the keypad display is PLra (RTC correction warning) or PLrt (RTC time out warning), M1076 will be ON.

*When M1036 is 1, the PLC will ignore the calendar warning.

Calendar trigger warning code is defined as follows:

Warning	Description	Reset approach	Whether it affects PLC operation
PLra	Calendar time correction	Requires power restart	Will not have any effect
PLrt	Calendar time refresh time out	Requires power restart	Will not have any effect

*When the PLC's calendar functions are operating, if the keypad is replaced with another keypad, it will jump to PLra.

*When it is discovered at startup that the keypad has not been powered for more than 7 days, or the time is wrong, PLra will be triggered.

*When it is discovered that the CH2000 has no keypad 10 sec. after startup, PLrt will be triggered.

*If the keypad is suddenly pulled out while the calendar is operating normally, and is not reconnected for more than 1 minute, PLrt will be triggered.

Practical applications:

We will perform a demo of simple applications.

We first correct the keypad time. After pressing Menu on the keypad, select the 9th time setting option. After selection, set the current time.

We set converter on during the period of 8:00-17:20, which allows us to write the following example

10 million		-		At K16	
TCMP	K8	KO	KO	D1067	MO
					_
TCMP	K17	K20	KO	D1067	M10
					<17:20
					M1040
					Servo o
				Motor dr	ive
					ive I)/ Stop(OF
				Run (ON	ive I)/ Stop(OF
		FREQ	K3000		ive
			K3000	Run (ON	ive I)/ Stop(OF
		FREQ	K3000	Run (ON	ive I)/ Stop(OF
		FREQ	K3000	Run (ON	ive I)/ Stop(OF
	TCMP TCMP			ТСМР К8 К0 К0	<u>At K16</u> ТСМР K17 K20 K0 D1067

Chapter 17 How to Select the Right AC Motor Drive

17-1 Capacity formula

17-2 General Precautions

17-3 How to choose a suitable motor

The choice of the right AC motor drive for the application is very important and has great influence on its lifetime. If the capacity of AC motor drive is too large, it cannot offer complete protection to the motor and motor maybe damaged. If the capacity of AC motor drive is too small, it cannot offer the required performance and the AC motor drive maybe damaged due to overloading.

But by simply selecting the AC motor drive of the same capacity as the motor, user application requirements cannot be met completely. Therefore, a designer should consider all the conditions, including load type, load speed, load characteristic, operation method, rated output, rated speed, power and the change of load capacity. The following table lists the factors you need to consider, depending on your requirements.

		Rel	ated Spec	ification	
	Item	Speed and torque	Time	Overload	Starting
		characteristics	ratings	capacity	torque
Load type	Friction load and weight load Liquid (viscous) load Inertia load Load with power transmission	•			•
Load speed and torque characteristics	Constant torque Constant output Decreasing torque Decreasing output	•	●		
Load characteristics	Constant load Shock load Repetitive load High starting torque Low starting torque	•	•	•	•
Long-time operation	on, Short-time operation at medium/low speeds			•	
Maximum output cu Constant output cur	rrent (instantaneous) rent (continuous)	•		•	
Maximum frequency	· · ·				
Power supply transformer capacity or percentage impedance Voltage fluctuations and unbalance Number of phases, single phase protection Frequency				•	•
Mechanical friction,	losses in wiring				
Duty cycle modificat	tion				

17-1 Capacity Formulas

1. When one AC motor drive operates one motor

The starting capacity should be less than 1.5x rated capacity of AC motor drive

The starting capacity=

 $\frac{k \times N}{973 \times \eta \times \cos \varphi} \left(T_{L} + \frac{GD^{2}}{375} \times \frac{N}{t_{A}} \right) \leq 1.5 \times the _capacity_of_AC_motor_drive(kVA)$

2. When one AC motor drive operates more than one motor

2.1 The starting capacity should be less than the rated capacity of AC motor drive

• Acceleration time ≤ 60 seconds

The starting capacity=

$$\frac{k \times N}{\eta \times \cos \varphi} [n_{\tau} + n_{s}(k_{s-1})] = P_{C1} \left[1 + \frac{n_{s}}{n_{\tau}} (k_{s-1}) \right] \leq 1.5 \times the _capacity_of_AC_motor_drive(kVA)$$

• Acceleration time \geq 60 seconds

The starting capacity=

$$\frac{k \times N}{\eta \times \cos \varphi} [n_{\tau} + n_{s}(k_{s-1})] = P_{C1} \left[1 + \frac{n_{s}}{n_{\tau}} (k_{s-1}) \right] \leq the _capacity_of_AC_motor_drive(kVA)$$

- 2.2 The current should be less than the rated current of AC motor drive(A)
 - Acceleration time ≤ 60 seconds

$$n_{\tau} + I_{M} \left[1 + \frac{n_{s}}{n_{\tau}} (k_{s} - 1) \right] \leq 1.5 \times the _rated _current_of_AC_motor_drive(A)$$

• Acceleration time \geq 60 seconds

$$n_{T} + I_{M} \Big[1 + \frac{n_{s}}{n_{T}} (k_{s} - 1) \Big] \leq the _rated _current_of _AC_motor_drive(A)$$

- 2.3 When it is running continuously
 - The requirement of load capacity should be less than the capacity of AC motor drive(kVA) The requirement of load capacity=

$$\frac{k \times P_M}{\eta \times \cos \varphi} \le the _capacity_of_AC_motor_drive(kVA)$$

■ The motor capacity should be less than the capacity of AC motor drive

 $k \times \sqrt{3} \times V_M \times I_M \times 10^{-3} \le the_capacity_of_AC_motor_drive(kVA)$

The current should be less than the rated current of AC motor drive(A)

 $k \times I_M \leq the_rated_current_of_AC_motor_drive(A)$

Symbol explanation

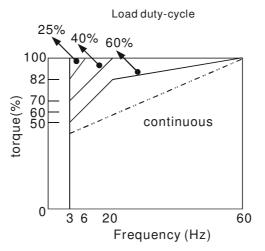
- P_M : Motor shaft output for load (kW)
- η : Motor efficiency (normally, approx. 0.85)
- $\cos \varphi$: Motor power factor (normally, approx. 0.75)
- *V_M* : Motor rated voltage(V)
- I_M : Motor rated current(A), for commercial power
- *k* : Correction factor calculated from current distortion factor (1.05-1.1, depending on PWM method)
- *P*_{C1} : Continuous motor capacity (kVA)
- *ks* : Starting current/rated current of motor
- n_T : Number of motors in parallel
- *ns* : Number of simultaneously started motors
- *GD*² : Total inertia (GD²) calculated back to motor shaft (kg m²)
- *T*^{*L*} : Load torque
- *t*_A : Motor acceleration time
- N : Motor speed

17-2 General Precaution

Selection Note

- When the AC Motor Drive is connected directly to a large-capacity power transformer (600kVA or above) or when a phase lead capacitor is switched, excess peak currents may occur in the power input circuit and the converter section may be damaged. To avoid this, use an AC input reactor (optional) before AC Motor Drive mains input to reduce the current and improve the input power efficiency.
- When a special motor is used or more than one motor is driven in parallel with a single AC Motor Drive, select the AC Motor Drive current ≥1.25x(Sum of the motor rated currents).
- 3. The starting and accel./decel. characteristics of a motor are limited by the rated current and the overload protection of the AC Motor Drive. Compared to running the motor D.O.L. (Direct On-Line), a lower starting torque output with AC Motor Drive can be expected. If higher starting torque is required (such as for elevators, mixers, tooling machines, etc.) use an AC Motor Drive of higher capacity or increase the capacities for both the motor and the AC Motor Drive.
- 4. When an error occurs on the drive, a protective circuit will be activated and the AC Motor Drive output is turned off. Then the motor will coast to stop. For an emergency stop, an external mechanical brake is needed to quickly stop the motor.

Parameter Settings Note


- 1. The AC Motor Drive can be driven at an output frequency up to 400Hz (less for some models) with the digital keypad. Setting errors may create a dangerous situation. For safety, the use of the upper limit frequency function is strongly recommended.
- 2. High DC brake operating voltages and long operation time (at low frequencies) may cause overheating of the motor. In that case, forced external motor cooling is recommended.
- 3. Motor accel./decel. time is determined by motor rated torque, load torque, and load inertia.
- 4. If the stall prevention function is activated, the accel./decel. time is automatically extended to a length that the AC Motor Drive can handle. If the motor needs to decelerate within a certain time with high load inertia that can't be handled by the AC Motor Drive in the required time, either use an external brake resistor and/or brake unit, depending on the model, (to shorten deceleration time only) or increase the capacity for both the motor and the AC Motor Drive.

17-3 How to Choose a Suitable Motor

Standard motor

When using the AC Motor Drive to operate a standard 3-phase induction motor, take the following precautions:

- 1. The energy loss is greater than for an inverter duty motor.
- 2. Avoid running motor at low speed for a long time. Under this condition, the motor temperature may rise above the motor rating due to limited airflow produced by the motor's fan. Consider external forced motor cooling.
- 3. When the standard motor operates at low speed for long time, the output load must be decreased.
- 4. The load tolerance of a standard motor is as follows:

- 5. If 100% continuous torque is required at low speed, it may be necessary to use a special inverter duty motor.
- 6. Motor dynamic balance and rotor endurance should be considered once the operating speed exceeds the rated speed (60Hz) of a standard motor.
- 7. Motor torque characteristics vary when an AC Motor Drive instead of commercial power supply drives the motor. Check the load torque characteristics of the machine to be connected.
- 8. Because of the high carrier frequency PWM control of the VFD series, pay attention to the following motor vibration problems:
 - Resonant mechanical vibration: anti-vibration (damping) rubbers should be used to mount equipment that runs at varying speed.
 - Motor imbalance: special care is required for operation at 50 or 60 Hz and higher frequency.
 - To avoid resonances, use the Skip frequencies.
- 9. The motor fan will be very noisy when the motor speed exceeds 50 or 60Hz.

Special motors:

1. Pole-changing (Dahlander) motor:

The rated current is differs from that of a standard motor. Please check before operation and select the capacity of the AC motor drive carefully. When changing the pole number the motor needs to be stopped first. If over current occurs during operation or regenerative voltage is too high, please let the motor free run to stop (coast).

2. Submersible motor:

The rated current is higher than that of a standard motor. Please check before operation and choose the capacity of the AC motor drive carefully. With long motor cable between AC motor drive and motor, available motor torque is reduced.

3. Explosion-proof (Ex) motor:

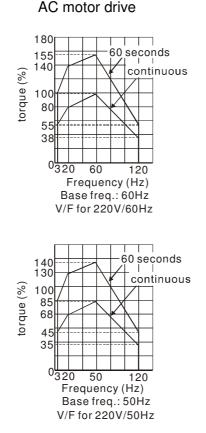
Needs to be installed in a safe place and the wiring should comply with the (Ex) requirements. Delta AC Motor Drives are not suitable for (Ex) areas with special precautions.

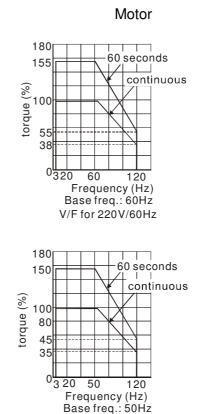
4. Gear reduction motor:

The lubricating method of reduction gearbox and speed range for continuous operation will be different and depending on brand. The lubricating function for operating long time at low speed and for high-speed operation needs to be considered carefully.

5. Synchronous motor:

The rated current and starting current are higher than for standard motors. Please check before operation and choose the capacity of the AC motor drive carefully. When the AC motor drive operates more than one motor, please pay attention to starting and changing the motor.


Power Transmission Mechanism


Pay attention to reduced lubrication when operating gear reduction motors, gearboxes, belts and chains, etc. over longer periods at low speeds. At high speeds of 50/60Hz and above, lifetime reducing noises and vibrations may occur.

Motor torque

The torque characteristics of a motor operated by an AC motor drive and commercial mains power are different.

Below you'll find the torque-speed characteristics of a standard motor (4-pole, 15kW):

V/F for 220V/50Hz

17-6

Chapter 18 Suggestions and Error Corrections for Standard AC Motor Drives

18-1 Maintenance and Inspections
18-2 Greasy Dirt Problem
18-3 Fiber Dust Problem
18-4 Erosion Problem
18-5 Industrial Dust Problem
18-6 Wiring and Installation Problem
18-7 Multi-function Input/Output Terminals Problem

The AC motor drive has a comprehensive fault diagnostic system that includes several different alarms and fault messages. Once a fault is detected, the corresponding protective functions will be activated. The following faults are displayed as shown on the AC motor drive digital keypad display. The six most recent faults can be read from the digital keypad or communication.

The AC motor drive is made up by numerous components, such as electronic components, including IC, resistor, capacity, transistor, and cooling fan, relay, etc. These components can't be used permanently. They have limited-life even under normal operation. Preventive maintenance is required to operate this AC motor drive in its optimal condition, and to ensure a long life.

Check your AC motor drive regularly to ensure there are no abnormalities during operation and follows the precautions:

	1	
	V	Wait 5 seconds after a fault has been cleared before performing reset via keypad of
		input terminal.
	☑	When the power is off after 5 minutes for \leq 22kW models and 10 minutes for \geq
CAUTION		30kW models, please confirm that the capacitors have fully discharged by
		measuring the voltage between + and The voltage between + and - should be less
		than 25VDC.
	☑	Only qualified personnel can install, wire and maintain drives. Please take off any
		metal objects, such as watches and rings, before operation. And only insulated tools
		are allowed.
	☑	Never reassemble internal components or wiring.
	☑	Make sure that installation environment comply with regulations without abnormal
		noise, vibration and smell.

18-1 Maintenance and Inspections

Before the check-up, always turn off the AC input power and remove the cover. Wait at least 10 minutes after all display lamps have gone out, and then confirm that the capacitors have fully discharged by measuring the voltage between DC+ and DC-. The voltage between DC+ and DC-should be less than 25VDC.

Ambient environment

Check Items	Methods and Criterion		aintenance Period	
		Daily	Half Year	One Year
Check the ambient temperature, humidity,	Visual inspection and			
vibration and see if there are any dust, gas,	measurement with equipment	0		
oil or water drops	with standard specification			
If there are any dangerous objects	Visual inspection	0		

Voltage

Check Items	Methods and Criterion		laintenance Period	
		Daily	Half Year	One Year
Check if the voltage of main circuit and	Measure with multimeter with	0		
control circuit is correct	standard specification			

Digital Keypad Display

Check Items	Methods and Criterion		laintenance Period	
		Daily	Half Year	One Year
Is the display clear for reading	Visual inspection	0		
Any missing characters	Visual inspection	0		

Mechanical parts

Check Items	Methods and Criterion		Maintenance Period	
		Daily	Half Year	One Year
If there is any abnormal sound or vibration	Visual and aural inspection		0	
If there are any loose screws	Tighten the screws		0	
If any part is deformed or damaged	Visual inspection		0	
If there is any color change by overheating	Visual inspection		0	
If there is any dust or dirt	Visual inspection		0	

Main circuit

		Ma	nce	
Check Items	Methods and Criterion	Period		
		Daily	Half Year	One Year
If there are any loose or missing screws	Tighten or replace the screw	0		
If machine or insulator is deformed, cracked,	Visual inspection			
damaged or with color change due to	NOTE: Please ignore the		\bigcirc	
	color change of copper		Û	
overheating or ageing	plate			
If there is any dust or dirt	Visual inspection		0	

Terminals and wiring of main circuit

Check Items	Methods and Criterion	-	aintenance Period	
		Daily	Half Year	One Year
If the terminal or the plate is color change or deformation due to overheat	Visual inspection		0	
If the insulator of wiring is damaged or color change	Visual inspection		0	
If there is any damage	Visual inspection	0		

DC capacity of main circuit

Check Items	Methods and Criterion	-	iintenance Period	
		Daily	Half Year	One Year
If there is any leak of liquid, color change, crack or deformation	Visual inspection	0		
If the safety valve is not removed? If valve is inflated?	Visual inspection	0		
Measure static capacity when required		0		

Resistor of main circuit

		Ма	ince	
Check Items	Methods and Criterion			
		Daily	Half Year	One Year
If there is any peculiar smell or insulator	Visual inspection, smell	0		
cracks due to overheat				
If there is any disconnection	Visual inspection	0		
If connection is domaged?	Measure with multimeter with	0		
If connection is damaged?	standard specification			

Transformer and reactor of main circuit

Check Items	Methods and Criterion	-	laintenance Period	
		Daily	Half Year	One Year
If there is any abnormal vibration or peculiar	Visual, aural inspection and			
smell	smell			

Magnetic contactor and relay of main circuit

Check Items	Methods and Criterion	_	aintenance Period	
		Daily	Half Year	One Year
If there are any loose screws	Visual and aural inspection	0		
If the contact works correctly	Visual inspection	0		

Printed circuit board and connector of main circuit

		Ma	nce		
Check Items	Methods and Criterion		Period		
		Daily	Half Year	One Year	
	Tighten the screws and		0		
If there are any loose screws and connectors	press the connectors firmly				
	in place.				
If there is any peculiar smell and color change	Visual and smell inspection		0		
If there is any crack, damage, deformation or	Visual inspection		0		
corrosion	visual inspection				
If there is any liquid is leaked or deformation in	Visual inspection		0		
capacity					

Cooling fan of cooling system

Check Items		Ма	intenar	nce
	Methods and Criterion	Period		
		Daily	Half Year	One Year
	Visual, aural inspection and			
	turn the fan with hand (turn			
If there is any abnormal sound or vibration	off the power before		0	
	operation) to see if it rotates			
	smoothly			
If there is any loose screw	Tighten the screw		0	
If there is any color change due to overheat	Change fan		0	

Ventilation channel of cooling system

		Maintenance			
Check Items	Methods and Criterion	Period			
		Daily	Half Year	One Year	
If there is any obstruction in the heat sink, air intake or air outlet	Visual inspection		0		

Please use the neutral cloth for clean and use dust cleaner to remove dust when necessary.

18-2 Greasy Dirt Problem

Serious greasy dirt problems generally occur in processing industries such as machine tools, punching machines and so on. Please be aware of the possible damages that greasy oil may cause to your drive:

- 1. Electronic components that silt up with greasy oil may cause the drive to burn out or even explode.
- 2. Most greasy dirt contains corrosive substances that may damage the drive.

Solution:

Install the AC motor drive in a standard cabinet to keep it away from dirt. Clean and remove greasy dirt regularly to prevent damage of the drive.

18-3 Fiber Dust Problem

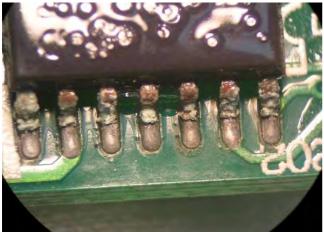
Serious fiber dust problems generally occur in the textile industry. Please be aware of the possible damages that fiber may cause to your drives:

- 1. Fiber that accumulates or adheres to the fans will lead to poor ventilation and cause overheating problems.
- 2. Plant environments in the textile industry have higher degrees of humidity that may cause the drive to burn out, become damaged or explode due to wet fiber dust adhering to the devices.

Solution:

Install the AC motor drive in a standard cabinet to keep it away from fiber dust. Clean and remove fiber dust regularly to prevent damage to the drive.

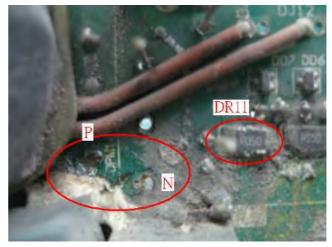
18-4 Erosion Problem


Erosion problems may occur if any fluids flow into the drives. Please be aware of the damages that erosion may cause to your drive.

1. Erosion of internal components may cause the drive to malfunction and possibility to explode. **Solution:**

Install the AC motor drive in a standard cabinet to keep it away from fluids. Clean the drive regularly to prevent erosion.

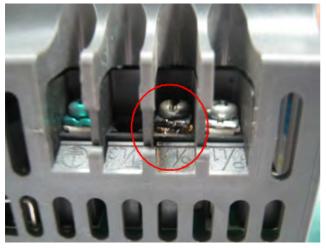
18-5 Industrial Dust Problem


Serious industrial dust pollution frequently occurs in stone processing plants, flour mills, cement plants, and so on. Please be aware of the possible damage that industrial dust may cause to your drives:

- 1. Dust accumulating on electronic components may cause overheating problem and shorten the service life of the drive.
- 2. Conductive dust may damage the circuit board and may even cause the drive to explode.

Solution:

Install the AC motor drive in a standard cabinet and cover the drive with a dust cover. Clean the cabinet and ventilation hole regularly for good ventilation.

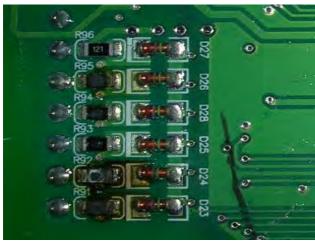

18-6 Wiring and Installation Problem

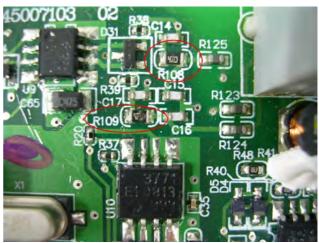
When wiring the drive, the most common problem is wrong wire installation or poor wiring. Please be aware of the possible damages that poor wiring may cause to your drives:

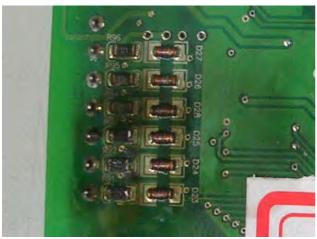
- 1. Screws are not fully fastened. Occurrence of sparks as impedance increases.
- 2. If a customer has opened the drive and modified the internal circuit board, the internal components may have been damaged.

Solution:

Ensure all screws are fastened when installing the AC motor drive. If the AC motor drive functions abnormally, send it back to the repair station. DO NOT try to reassemble the internal components or wire.


18-7 Multi-function Input/Output Terminals Problem


Multi-function input/output terminal errors are generally caused by over usage of terminals and not following specifications. Please be aware of the possible damages that errors on multi-function input/output terminals may cause to your drives:


1. Input/output circuit may burns out when the terminal usage exceeds its limit.

Solution:

Refer to the user manual for multi-function input output terminals usage and follow the specified voltage and current. DO NOT exceed the specification limits.

AC Motor Drives

EMC Standard Installation Guide

Preface

When an AC motor drive is installed in a noisy environment, radiated and/or conducted noise via signal and power cables can interfere with the correct functioning, cause errors or even damage to the drive. To prevent this, some AC motor drives have an enhanced noise resistance but the results are limited and it is not economical. Therefore, an effective method would be finding the cause of the noise and use the right solution to achieve "no emission, no transmission and no reception of noise". All three solutions should be applied.

Finding the Noise

- Ascertain whether the error is caused by noise.
- Find the source of the noise and its transmission path.
- Confirm the signal and the source of noise

Solutions

- Grounding
- Shielding
- Filtering

Table of Contents

Preface Table of Contents	i ii
Chapter 1 Introduction	
1.1 What is EMC	
1.2 EMC for AC Motor Drive	. 1
Chapter 2 How to prevent EMI	
2.1 Types of EMI: common-mode and differential mode noise	
2.2 How does EMI transmit? (Noise transmission)	. 2
Chapter 3 Solution to EMI: Grounding	. 4
3.1 Protective Grounding & Functional Grounding	. 4
3.2 Ground Loops	. 5
3.3 Earthing Systems	. 5
Chapter 4 Solution to EMI: Shielding	
4.1 What is Shielding?	. 9
4.2 How to Reduce EMI by Shieldina?	10
Chapter 5 Solution to EMI: Filter	12
5.1 Filter	12
5.2 Harmonic Interference	14

Chapter 1 Introduction

1.1 What is EMC?

Electromagnetic Compatibility (EMC) is the ability of an electrical device to function properly in electromagnetic environments. It does not emit electromagnetic noise to surrounding equipment and is immune to interference from surrounding equipment. The goal is to achieve high immunity and low emission; these two properties define the quality of EMC. In general, electrical devices react to high and low frequency phenomena. High frequency phenomena are electrostatic discharge (ESD); pulse interference; radiated electromagnetic field; and conducted high frequency electrical surge. Low frequency phenomena refer to mains power harmonics and imbalance.

The standard emission and immunity levels for compliance depend on the installation location of the drive. A Power Drive System (PDS) is installed in an industrial or domestic environment. A PDS in a domestic environment must have lower emission levels and is allowed to have lower immunity levels. A PDS in an industrial environment is allowed to have higher emission levels but must have more severe immunity levels.

1.2 EMC for AC Motor Drive

When an AC motor drive is put into operation, harmonic signal will occur at the AC drive's power input and output side. It creates a certain level of electromagnetic interference to the surrounding electrical devices and the mains power network. An AC motor dive is usually applied in industrial environments with a strong electromagnetic interference. Under such conditions, an AC drive could disturb or be disturbed.

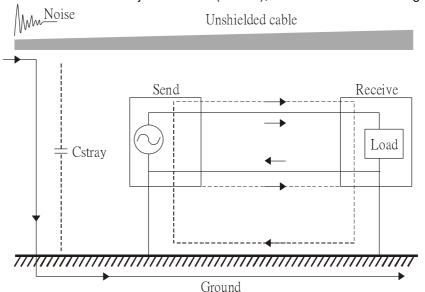
Delta's AC motor drives are designed for EMC and comply with EMC standard EN61800-3 2004. Installing the AC motor drive accurately will decrease EMI influences and ensure long term stability of the electricity system. It is strongly suggested to follow Delta's user manual for wiring and grounding. If any difficulties or problems arise, please follow the instructions and measures as indicated in this EMC Standard Installation Guide.

Chapter 2 How to prevent EMI

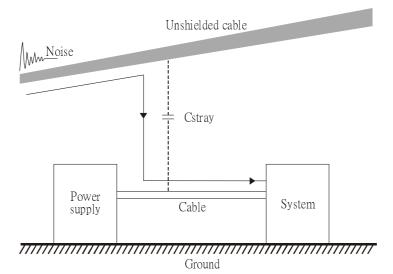
2.1 Types of EMI: Common-mode and differential-mode noise

The electromagnetic noise of an AC motor drive can be distinguished into common-mode and differential-mode noise. Differential-mode noise is caused by the stray capacitance between the conducting wires and common-mode noise is caused by the common-mode coupling current path created by the stray capacitance between the conducting wires and ground.

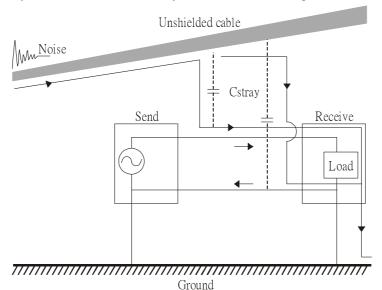
Basically, differential-mode noise has a greater impact to the AC motor drive and common-mode noise has a greater impact to high-sensitivity electronic devices. An excessive amount of differential-mode noise may trigger the circuit protection system of the AC motor drive. Common-mode noise affects peripheral electronic devices via the common ground connection.

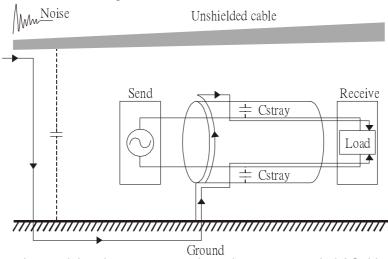

EMC problems can be more serious when the following conditions apply:

- When a large horsepower AC motor drive is connected to a large horsepower motor.
- The AC motor drive's operation voltage increases.
- Fast switching of the IGBTs.
- When a long cable is used to connect the motor to the AC motor drive.


2.2 How does EMI transmit? (Noise transmission path)

Noise disturbs peripheral high-sensitivity electrical devices/systems via conduction and radiation, their transmission paths are shown hereafter:


1. Noise current in the unshielded power cable is conducted to ground via stray capacitances into a common-mode voltage. Whether or not other modules are capable to resist this common-mode noise depends on their Common-Mode Rejection Ratio (CMRR), as shown in the following figure.


2. Common-mode noise in the power cable is transmitted through the stray capacitance and coupled into the adjacent signal cable, as shown in Figure 2. Several methods can be applied to reduce the effect of this common-mode noise; for example, shield the power cable and/or the signal cables, separate the power and signal cables, take the input and output side of the signal cable and twist them together to balance out the stray capacitance, let power cables and signal cables cross at 90°, etc.

3. Common-mode noise is coupled via the power cable to other power systems then the cable of such a power system is coupled to the transmission system, as shown in Figure 3.

4. The common-mode noise of an unshielded power cable is transmitted to the ground via the stray capacitance. Since both shielded wire and unshielded wire are connected to a common ground, other systems can be interfered with by the common-mode noise that is transmitted from the ground back to the system via the shield. See Figure 4.

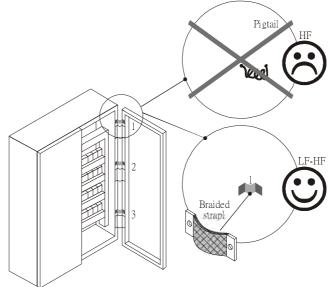
5. When excessive pulse modulated currents pass through an un-grounded AC drive cable, it acts as an antenna and creates radiated interference.

Chapter 3 Solution to EMI: Grounding

The leakage current of an electronic equipment is conducted to ground via the grounding wire and the ground electrode. According to Ohm's law, potential differences may arise when the electrode's ground and the ground's ground resistance are different.

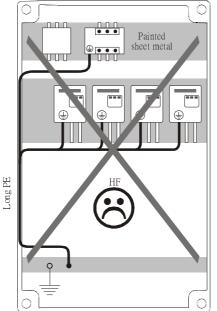
According to Ohm's law, the earth resistance for electrode and the ground are different, in this case potential differences may arise.

3.1 Protective Grounding & Functional Grounding


Please carefully read the following instruction if two types of grounding are applied at the same time.

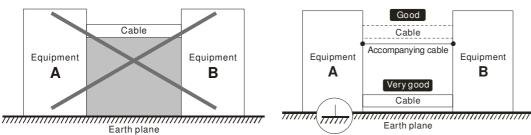
Protective grounding is applied outside buildings and must have low resistance. On the other hand, functional grounding can be applied inside buildings and must have low impedance.

The goal of EMC is to avoid any interference effects. Grounding for EMC can be distinguished by frequency. For frequencies lower than 10kHz, a *single-point ground* system should be used and for frequencies higher than 10 kHz, a *multiple point ground* system should be used.


- Single Point Grounding: all signal grounds of all IT equipment are connected in series to form a single reference point. This point can be grounded directly to earth; to the designated grounding point or to the safety point that is already grounded.
- *Multiple Point Grounding:* all signals of all IT equipment are grounded independently.
- Hybrid Grounding: this type of grounding behaves differently for low and high frequencies. When two
 pieces of IT equipment (A and B) are connected via a shielded cable, one end is connected directly to
 ground while the other end is connected to ground via a capacitor. This type of grounding system
 fulfils the criteria for high and low frequency grounding.
- Floating grounding: the signals of all IT equipment are isolated from each other and are not grounded.

DC current flows evenly throughout the conductor section. But AC current flows towards the conductor's surface as frequency increases; this is called the "skin effect". It causes the effective cross-section area to be reduced with increasing frequency. Therefore it is suggested to increase the effective ground cross-section area for high frequencies by replacing pigtail grounding by braided conductors or strip conductors. Refer to the following figure.

This is why a thick short ground wire must be implemented for connecting to the common grounding path or the ground busbar. Especially when a controller (e.g. PLC) is connected to an AC motor drive, it must be grounded by a short and thick conducting wire. It is suggested to use a flat braided conductor (ex: metal mesh) with a lower impedance at high frequencies.


If the grounding wire is too long, its inductance may interfere structure of the building or the control cabinet and form mutual inductance and stray capacitance. As shown in the following figure, a long grounding wire could become a vertical antenna and turn into a source of noise.

3.2 Ground Loops

A ground loop occurs when the pieces of equipment are connected to more than one grounding path. In this case, the ground current may return to the grounding electrode via more than one path. There are three methods to prevent ground loops

- 1. Use a common power circuit
- 2. Single point grounding
- 3. Isolate signals, e.g. by photocouplers

In order to avoid "Common Mode Noise", please use parallel wires or twisted pair wiring. Follow this rule and also avoid long wires, it is suggested to place the two wires as close to each other as possible.

3.3 Earthing Systems

The international standard IEC60364 distinguishes three different earthing system categories, using the two-letter codes TN, TT, IT.

• The *first letter* indicates the type of earthing for the power supply equipment (generator or transformer).

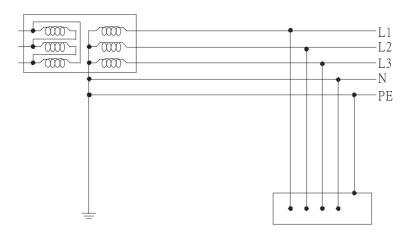
T: One or more points of the power supply equipment are connected directly to the same earthing point.

I: Either no point is connected to earth (isolated) or it is connected to earth via a high impedance.

The *second letter* indicates the connection between earth and the power supply equipment.
 T: Connected directly to earth (This earthing point is separate from other earthing points in the power supply system.)

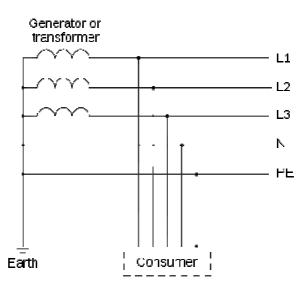
N: Connected to earth via the conductor that is provided by the power supply system

The *third and forth letter* indicate the location of the earth conductor.
 S: Neutral and earth conductors are separate
 S: Neutral and earth are combined into a single conductor.

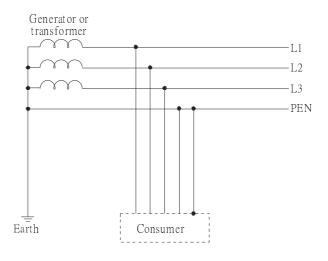

 $\ensuremath{\textbf{C}}$: Neutral and earth are combined into a single conductor

Chapter 19 EMC Standard Installation Guide

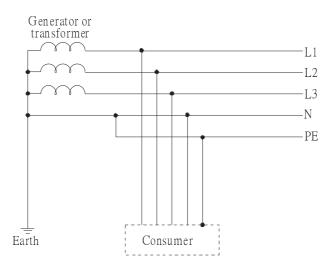
TN system


TN: The neutral point of the low voltage transformer or generator is earthed, usually the star point in a three-phase system. The body of the electrical device is connected to earth via this earth connection at the transformer.

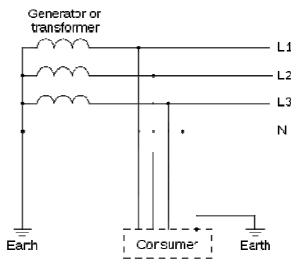
protective earth (PE): The conductor that connects the exposed metallic parts of the consumer. neutral (N): The conductor that connects to the start point in a 3-phase system or that carries the return current in a single phase system.


TN-S system

TN-S: PE and N are two separate conductors that are combined together only near the power source (transformer or generator). It is the same as a three-phase 5-wire system.

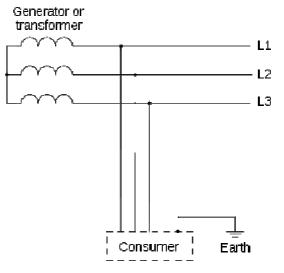

TN-C system

TN-C: PE and N are two separate conductors in an electrical installation similar to a three-phase 5wire system, but near the power side, PE and N are combined into a PEN conductor similar to a three-phase 4 wire system.


TN-C-S system

TN-C-S: A combined earth and neutral system (PEN conductor) is used in certain systems but eventually split up into two separate conductors PE and N. A typical application of combined PEN conductor is from the substation to the building but within the building PEN is separated into the PE and N conductors. Direct connection of PE and N conductors to many earthing points at different locations in the field will reduce the risk of broken neutrals. Therefore this application is also known as *protective multiple earthing (PME)* in the UK or as *multiple earthed neutral (MEN)* in Australia

TT system


TT: The neutral point (N) of the low voltage transformer and the equipment frames (PE) are connected to a separate earthing point. The Neutral (N) of the transformer and electrical equipment are connected.

IT system

IT: The neutral point of the transformer and electrical equipment are not earthed, only the equipment frames PE are earthed.

In the IT network, the power distribution system Neutral is either not connected to earth or is earthed via a high impedance. In such a system, an insulated monitoring device is used for impedance monitoring. A built-in filter should be disconnected by the RFI-jumper and an external filter should not be installed

when the AC motor drive or the AC servo motor drive is connected to an IT system.

Criteria for earthing system and EMC

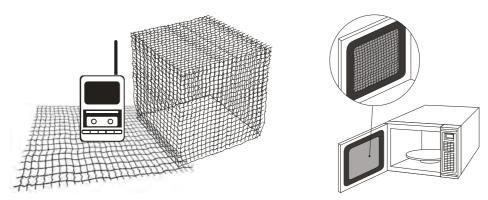
	TN-S	TN-C	TT	IT
Safety of	Good	Good	Good	Good
Personnel				
	Continuity of the	Continuity of the	RCD is mandatory	Continuity of the
	PE conductor must	PE conductor must	-	PE conductor must
	be ensured	be ensured		be ensured
	throughout the	throughout the		throughout the
	installation	installation		installation

Chapter 19 EMC Standard Installation Guide

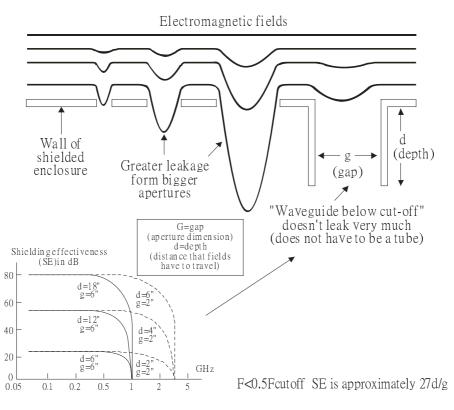
Safety of property	Poor	Poor	Good	Good
	High fault current (around 1kA)	High fault current (around 1kA)	Medium fault current (< a few dozen amperes)	Low current at the first fault (< a few dozen mA) but high current at the second fault
Availability of energy	Good	Good	Good	Excellent
EMC behavior	Excellent	Poor (prohibited)	Good	Poor (should be avoided)
	Few equipotential Problems:	- Neutral and PE are the same	 Over-voltage risk Equipotential 	- Over-voltage risk
	 Need to handle the high leaking currents problem of the device High fault current 	- Circulation of disturbance currents in exposed conductive parts (high magnetic-	Problems: - Need to handle the high leaking currents problem of the device	- Common–mode filters and surge arrestors must handle the phase to phase voltage.
	(transient disturbances)	field radiation) - High fault currents (transient disturbances)	- RCD (Residual- current device)	- RCDs subject to nuisance tripping when common- mode capacitors are present
		,		- Equivalent to TN system for second fault

Chapter 4 Solution to EMI: Shielding

4.1 What is Shielding?


Electrostatic shielding is used to isolate equipment so that it will not create electromagnetic field interference or be influenced by an external electromagnetic field. A conductive material is used for electrostatic shielding to achieve this isolation.

A *Faraday cage* can be made from a mesh of metal or a conductive material. One characteristic of metal is that it is highly conductive and not electrostatic,, which offers shielding and prevents interference by external electrical fields. Metal with its high conductivity protects the internal devices from high voltages—no voltage will enter the cage even when the cage is experiencing a high current. In addition, electromagnetic fields can also pass through the Faraday cage without causing any disturbance.


Electromagnetic shielding is applied to some electrical devices and measurement equipment for the purpose of blocking interference. Examples of shielding include:

- earth high-voltage indoor equipment using a metal frame or a high-density metal mesh
- shielding a power transformer is achieved by wrapping a metal sheet between the primary and secondary windings or by adding an enamel wire to the winding wire which is then earthed.
- a shielding coating, which is made of metal mesh or conductive fibres to provide effective protection for the workers who work in a high-voltage environment.

In the picture below, the radio appears to be not fully covered by metal but if the conductivity of the metal is high, radio waves are completely blocked and the radio will not receive any signal.

Mobile phone connections are also established through the transmission of radio waves. This is why the mobile phone reception is often cut off when we walk into an elevator. The metal walls of the elevator create the same shielding effect just as if we had entered a metal cage. Another example is a microwave oven. The microwave door may seem transparent in visible light, but the density of the metal mesh in the microwave door blocks the electromagnetic waves. A higher density of the metal mesh offers better shielding.

4.2 How to reduce EMI by Shielding?

Iron and other metals are high conductivity materials that provide effective shielding at extremely low frequencies. But conductivity will decrease as:

- 1. High frequency signals are applied to the conductor.
- 2. Equipment is located in a strong magnetic field
- 3. The shielding frame is forced into a specific form by machines.

It is difficult to select a suitable high-conductivity material for shielding without the help from a shielding material supplier or a related EMI institution.

Metallic Shielding Effectiveness

Shielding Effectiveness (SE) is used to assess the applicability of the shielding shell. The formula is:

SEdB=A+R+B (Measures in dB)	where	A= Absorption loss (dB)
		R= Reflection loss (dB)
		B= Correction factor (dB) (for multiple reflections in thin
		shields)

The absorption loss refers to the amount of energy loss as the electromagnetic wave travels through the shield. The formula is:

AdB=1.314(fσμ)1/2t	where	f= frequency (MHz)
		µ= permeability relative to copper
		σ= conductivity relative to copper
		t= thickness of the shield in centimetres

The reflection loss depends on the source of the electromagnetic wave and the distance from that source. For a rod or straight wire antenna, the wave impedance increases as it moves closer to the source and decreases as it moves away from the source until it reaches the plane wave impedance (377) and shows no change. If the wave source is a small wire loop, the magnetic field is dominant and the wave impedance decreases as it moves closer to the source and increases as it moves away from the source; but it levels out at 377 when the distance exceeds one-sixth of the wavelength.

Electrical Cabinet Design

In a high frequency electric field, shielding can be achieved by painting a thin layer of conductive metal on the enclosure or on the internal lining material. However, the coating must be thorough and all parts should be properly covered without any seams or gaps (just like a Faraday cage). That is only the ideal. Making a seamless shielding shell is practically impossible since the cage is composed of metal parts. In some conditions, it is necessary to drill holes in the shielding enclosure for installation of accessories (like optional cards and other devices).

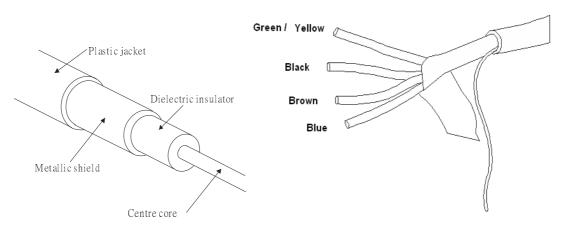
- 1. If the metallic components are properly welded using sophisticated welding technology to form an electrical cabinet, deformation during usage is unlikely to occur. But if the electrical cabinet is assembled with screws, the protective insulating layer under the screw must be properly removed before assembly to achieve the greatest conductivity and best shielding.
- 2. Drilling holes for the installation of wires in the electrical cabinet lowers the shielding effectiveness and increases the chance of electric waves leaking through the openings and emitting interference. We recommend that the drilled holes are as narrow as possible. When the wiring holes are not used, properly cover the holes with metal plates or metal covers. The paint or the coating of the metal plate and metal cover should be thoroughly removed to ensure a metal-to-metal contact or a conductive gasket should be installed.
- Install industrial conductive gaskets to completely seal the electrical cabinet and the cabinet door without gaps. If conductive gaskets are too costly, please screw the cabinet door to the electrical cabinet with a short distance between the screws.
- 4. Reserve a grounding terminal on the electrical cabinet door. This grounding terminal shall not be painted. If the paint already exists, please remove the paint before grounding.

Electrical wires and cables

Shielded Twisted Pair (STP) is a type of cable where two insulated copper wires are twisted together with a metal mesh surrounding the twisted pair that forms the electromagnetic shielding and can also be used for grounding.

The individual electrical wires and complete cable are surrounded by (synthetic) rubber, that provides insulation and also protects against damage.

There are two types of electrical cables: high voltage and low voltage. The high voltage cable differs from the low voltage cable in that it has an additional insulation layer called the dielectric insulator within the plastic sleeve. The dielectric insulator is the most important component in insulation. The low voltage cable is usually only filled with a soft polymer material for keeping the internal copper wire in place.

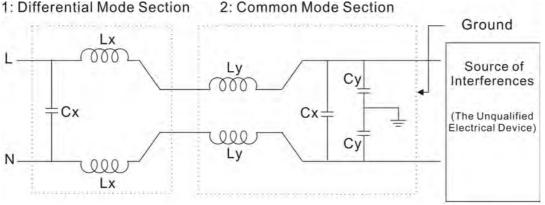

The shield has two functions.

1. To shield the electrical wire and cable.

A. Electric currents increase as power flows through the power cable and generate an electrical field. Such interference can be suppressed inside the cable by shielding the power cables or the electrical wires.

B. To form a protective earthing. When the cable core is damaged, the leakage current will flow via the shield to ground

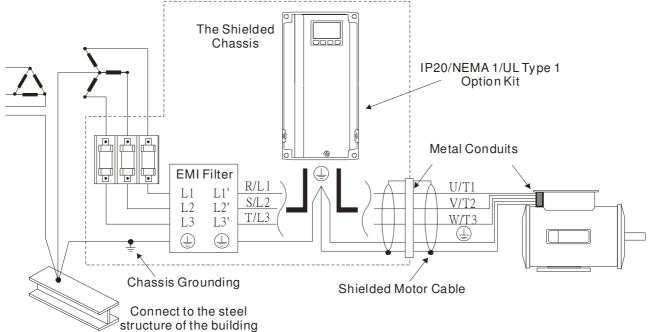
2. To protect the cable. A power cable used for the computer control purpose generates only relatively low amount of current inside the cable. Such power cable will not become the source of interferences but has great possibility to be interfered by the surrounding electrical devices.


Chapter 5 Solution to EMI: Filter

5.1 Filter

Electromagnetic interference is transmitted in two ways, by radiation and by conduction. The most effective and economical method of reducing radiated interference is to use shielding and of reducing conducted interference is to use an electromagnetic filter.

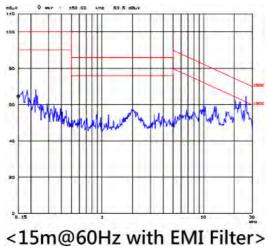
Noise interference can be divided into two categories: high frequency (150kHz~300MHz) and low frequency (100Hz~3000Hz). High-frequency noise fades more over distance and has a shorter wave-length, while low-frequency noise fades less over distance and has a longer wave-length.. Both types of interference are transmitted through power cables and power leads, affecting the power supply side.

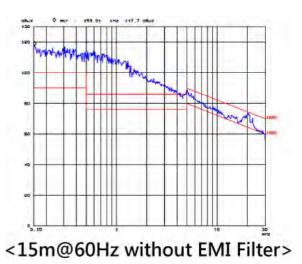

High-frequency interference at the power side can be eliminated or attenuated by mounting a filter. The filter consists of coils and capacitors. Some drives do not have a built-in filter, in which case the installation of an external option filter is required. The drawing below shows a standard filter diagram:

A filter is composed of a Differential Mode section (to eliminate noise below 150kHz) and a Common Mode section (to eliminate noise above 150kHz). For high-frequency noise, the inductor acts as a high impedance to form an open circuit and the capacitor acts as a low impedance to form a short circuit. Proper design and dimensioning of inductors and capacitors give a resonant circuit to absorb harmonic currents. Capacitor Cy is earthed to lead the harmonic currents to the ground.

External Filter

The filter and the AC drive should be installed in the control cabinet or on the mounting plate that is earthed to ground. The motor cable must be shielded and as short as possible. Please use the filters recommended by Delta to ensure compliance with EMC standards.

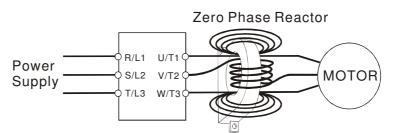



Chapter 19 EMC Standard Installation Guide

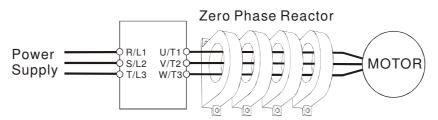
AC Motor Drives with Built-in Filter

- 1. Since interferences are suppressed by installing an earthed capacitor in the filter, the amount of current to ground (leakage current) could result in electric shocks to personnel or the power system. Please be aware of this problem.
- 2. Since the leakage current to ground can be high, it is crucial to implement protective earthing to prevent electrical shocks.

Filter Installation (With and Without)

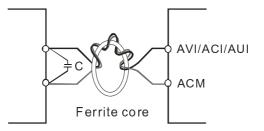

Zero Phase Reactor (Choke)

Interferences can also be suppressed by installing a zero phase reactor at the power supply side and/or the AC Motor Drive's output, depending on where the interference is. Since currents are large at the power input and the AC Motor Drive's output, please carefully select the magnetic core with suitable current handling capability. An ideal magnetic material for large currents is compound magnetic powder. It has a higher current handling capability and higher impedance compared to pure metallic magnetic cores. It is therefore suitable to implement in a high frequency environment. The impedance can also be enhanced by increasing the turn ratio.


Zero Phase Reactor Installation

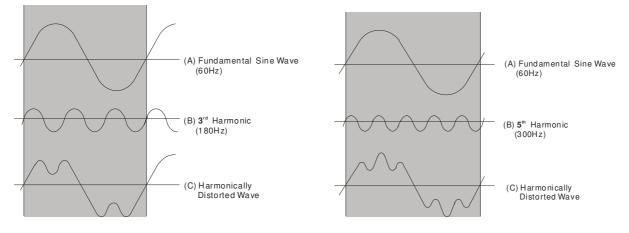
There are two installation methods, depending on the size of the zero phase reactor and the motor cable length.

1. Wind the motor cable through the middle of a zero-phase reactor 4 times. Place the reactor and the AC Motor Drive as close to each other as possible.

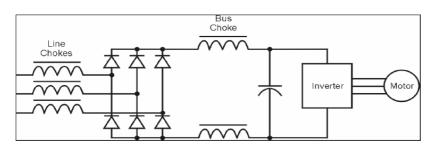

2. Place all wires through the middle of four zero-phase reactors without winding.

Analog Input Signals

If the analog input signals are affected by noise from the AC motor drive, please connect a capacitor and a ferrite core as indicated in the following diagram.


Wind the wires around the core in same direction for 3 times or more.

5.2 Harmonic Interference

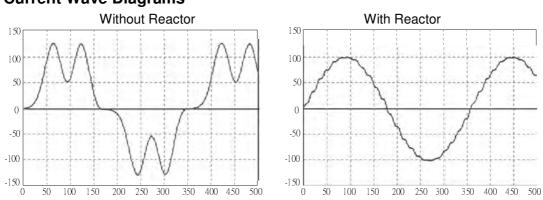

The AC motor drive's input current is non-linear, the input rectifier generates harmonics. Harmonics must be limited to within a certain range to avoid impact the mains power and to avoid current distortion to ensure surrounding devices are not influenced. An AC Motor Drive with built-in DC reactor suppresses harmonic currents (Total Harmonic Current Distortion THID) effectively and therefore reduces the harmonic voltage peaks (Total Harmonic Voltage Distortion).

Harmonic Current at the Power Supply Side

Suppression of Harmonic Currents

When a large portion of lower order harmonic currents (5th, 7th, 11th etc) occur at the power input, surrounding devices will be disturbed and the power factor will be low as a result of reactive power. Installing a reactor at the AC Motor Drive's input effectively suppresses lower order harmonic currents.

AC Reactor


Installed in series with the power supply and is effective in reducing low order current harmonics. Features of an AC reactor include:

- 1. Reduces the harmonic currents to the AC Motor Drive and increases the impedance of the power supply.
- 2. Absorbs interferences generated by surrounding devices (such as surge voltages, currents, and mains surge voltages) and reduce their effect on the AC Motor Drive.
- 3. Increases the power factor.

Chapter 19 EMC Standard Installation Guide

DC Reactor

A DC-Reactor is installed between the rectifier and the DC-bus capacitor to suppress harmonic currents and to achieve a higher power factor.

Current Wave Diagrams

Chapter 20 Safety Torque Off Function

- 20-1 The drive safety function failure rate
- 20-2 Safety torque off terminal function description
- 20-3 Wiring diagram
- 20-4 Parameter
- 20-5 Operating sequence description
- 20-6 New error code for STO function

Item	Definition	Standard	Performance
SFF	Safe Torque Off	IEC61508	Channel 1: 80.08% Channel 2: 68.91%
HFT (Type A subsystem)	Hardware Fault Tolerance	IEC61508	1
SIL	Safety Integrity Level	IEC61508	SIL 2
SIL			SILCL 2
PFH	Average frequency of dangerous failure [h-1]	IEC61508	9.56×10 ⁻¹⁰
PFD _{av}	Probability of Dangerous Failure on Demand	IEC61508	4.18×10 ⁻⁶
Category	Category	ISO13849-1	Category 3
PL	Performance level	ISO13849-1	d
MTTF _d	Mean time to dangerous failure	ISO13849-1	High
DC	Diagnostic coverage	ISO13849-1	Low

20-1 The drive safety function failure rate

20-2 Safety Torque Off terminal function description

The safety Torque Off function is to cut off the power supply to motor through the hardware, thereby the motor couldn't produce torque.

The safety Torque Off function is respectively by two independent hardware to control the motor current drive signal, and thus cut off the inverter power module output in order to achieve the status of safety stop.

Operation principle Description as below table 1:

Table 1: Terminal operation description

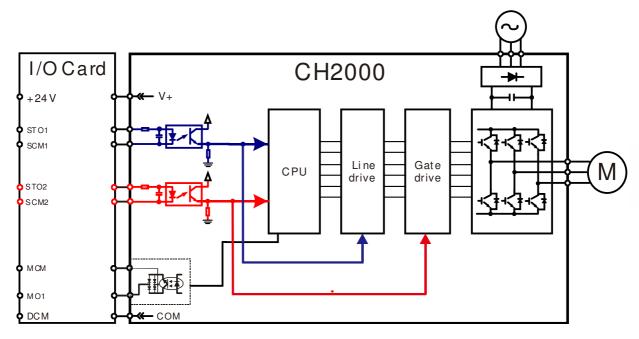
Signal	Channel	Photo-coupler status					
STO	STO1~SCM1	ON(High)	ON(High)	OFF(Low)	OFF(Low)		
signal	STO2~SCM2	ON(High)	OFF(Low)	ON(High)	OFF(Low)		
Driver Output status		Ready	STL2 mode (Torque output off)	STL1 mode (Ttorque output off)	STO mode (Torque output off)		

STO mode means Safe Torque Off

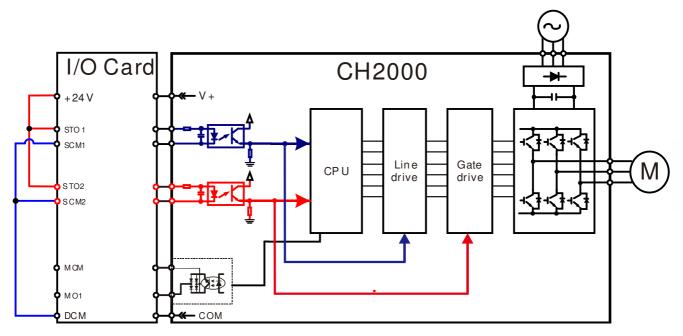
STL1~STL3 means Safety Torque Off hardware abnormal.

STL3 means STO1~SCM1 and STO2~SCM2 internal circuit detected abnormal.

STO1~SCM1 ON(High): means STO1~SCM1has connect to a +24VDC power supply.

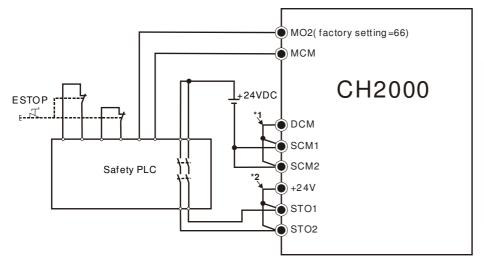

STO2~SCM2 ON(High): means STO2~SCM2 has connect to a +24V power supply.

STO1~SCM1 OFF(Low): means STO1~SCM1hasn't connect to a +24VDC power supply.


STO2~SCM2 OFF(Low): means STO2~SCM2hasn't connect to a +24VDC power supply.

20-3 Wiring diagram

20-3-1Internal STO circuit as below:



20-3-2 In the figure below, the factory setting for +24V-STO1-STO2 and SCM1-SCM2-DCM is short circuit:

20-3-3 The control loop wiring diagram:

- 1. Remove the shot-circuit of +24V-STO1-STO2 and DCM-SCM1-SCM2.
- 2. The wiring as below diagram. The ESTOP switch must at Close status in normal situation and drive will be able to Run.
- 3. STO mode, switch ESTOP open. Drive output stop and keypad display STO.

*1: factory short circuit of DCM-SCM1-SCM2. To use the Safety function, please remove this short circuit *2: factory short circuit of +24V-STO1-STO2. to use the Safety function, please remove this short circuit.

20-4 Parameter

×	06-44	응동 - 부부 STO Alarm Latch							
							Factory setting: 0		
		Settings	0 : S) : STO Alarm Latch					
			1 : S	: STO Alarm no Latch					

Pr06-44=0 STO Alarm Latch: after the reason of STO Alarm is cleared, a Reset command is need to clear STO Alarm.

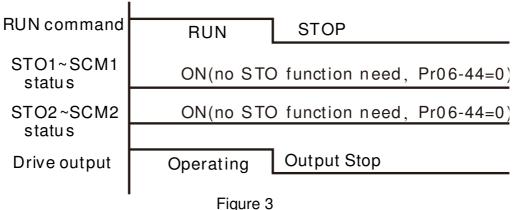
- Pr06-44=1 STO Alarm no Latch: after the reason of STO Alarm is cleared, the STO Alarm will be cleared automatically.
- All of STL1~STL3 error are "Alarm latch" mode (in STL1~STL3 mode, the Pr06-44 function is no effective).

×	82-13	Multi-function Output 1 (Relay1)					
					Factor	y Setti	ng:11
×	82-14	Multi-function Output 2 (Relay2)					
					Factor	'y Setti	ng:1
~	82 - 18	Multi-function Output 3 (MO1)					
					Factor	y Setti	ng:0
~	02-17	Multi-function Output 4 (MO2)					
					Factor	y Setti	ng:66
		Settings					
		66: SO N.O. output					
		68: SO N.C. output					

Settings	Functions	Descriptions	
66	SO Logic A output	Safety Output Normal Open	
68	SO Logic B output	Safety Output Normal Close	

CH2000 factory setting Pr02-17(MO2)=66(N.O.) and Multi-function Output setting item has add 2 new function: 66 and 68.

	Safety Out	put status
Drive status	N.O.	N.C.
	(MO=66)	(MO=68)
Normal run	Open	Close
STO	Close	Open
STL1~STL3	Close	Open


~	00-04	Content of Multi-function Display					
							Factory setting: 3
		Settings		45: Hardware version		ersion	

00-	04=45	Hardware version

20-5 Operating sequence description

20-5-1Normal operation status

As shown in Figure 3: When the STO1~SCM1 and STO2~SCM2=ON (no STO function is need), the drive will execute "Operating" or "Output Stop" according to RUN/STOP command.

20-5-2-1 STO , Pr06-44=0 , Pr02-35=0

As shown in Figure 4: When both of STO1~SCM1 and STO2~SCM2 channel has turn off during operating, the STO function enabling and the drive will stop output regardless of Run command is ON or OFF status.

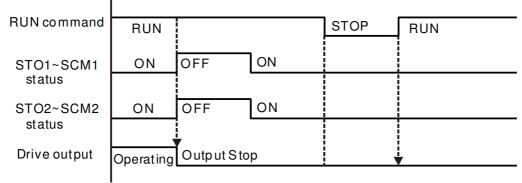
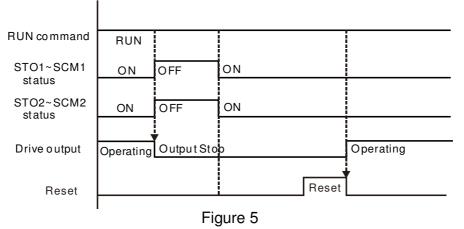



Figure 4

20-5-2-2 STO , Pr06-44=0 , Pr02-35=1

As shown in Figure 5: As same as the figure 4. But, because the Pr02-35=1, therefore, after the Reset command, if the operating command still exists, then the drive will immediately execute the run command again.

20-5-3 STO , Pr06-44=1

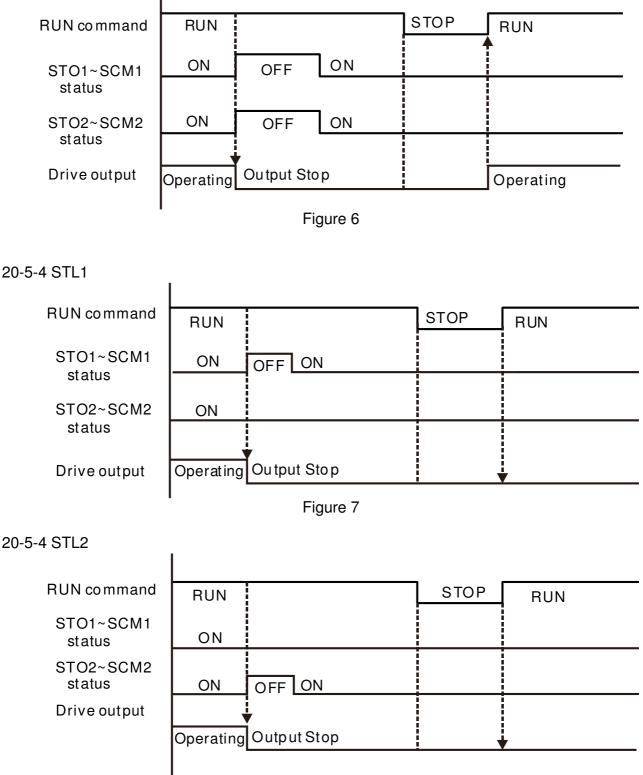


Figure 8

20-6 New Error code for STO function

88-17	Present Fault Record			
86-18	Second Most Recent Fault Record			
86-19	Third Most Recent Fault Record			
06-20	Fourth Most Recent Fault Record			
08-21	Fifth Most Recent Fault Record			
55-30	Sixth Most Recent Fault Record			
	Settings			
	72 : Channel 1(STO1~SCM1)internal hardware error			
	76 : STO(Safety Torque Off			
	77 : Channel 2(STO2~SCM2)internal hardware error			
	78 : Channel 1 and Channel 2 internal hardware error			

Error code	Name	Description	
76	STO	Safety Torque Off function active	
72	STL1 (STO1~SCM1)	STO1~SCM1 internal hardware detect error	
77 STL2 (STO2~SCM2)		STO2~SCM2 internal hardware detect error	
78	STL3	STO1~SCM1 and STO2~SCM2 internal hardware detect error	

The Old/New control board and Old/New I/O card: :

CH2000	v1.12 firmware	v1.20 firmware
v1.12 control board + old I/O card(no STO function)	OK	OK
v1.12 control board + new I/O card(with STO function)	Error	Error
v1.20 control board + old I/O card(no STO function)	Error	Error
v1.20 control board + new I/O card(with STO function)	Error	OK

Appendix A. Publication History

V1	.20			
Explanations	Coverage			
Add				
STO (Safety Torque Off) Functions	Chapter 4 – Wiring			
	Chapter 5 – Main Circuit Terminals			
	Chapter 6 – Control Terminals			
	Group 02 Parameters			
	Group 06 Parameters			
	Chapter 14 – Fault Codes and Descriptions			
	Chapter 20 – Safety Torque Off Function			
Control of Speed Mode	Group 00 Parameters (00-11)			
Setting Options of Output Terminals Function	Group 02 Parameters (02-13~02-17, 02-36~02-46)			
IO Card Type	Group 02 Parameters (02-70)			
MO Function Settings	Group 03 Parameters (03-44~03-46)			
PLC Buffer	Group 04 Parameters (04-60~04-69)			
Command of PLC set as 0	Group 09 Parameters (09-33)			
Zero Voltage Time while Start Up	Group 10 Parameters (10-49)			
Reverse Angle Limit (Electrical angle)	Group 10 Parameters (10-50)			
Injection Frequency	Group 10 Parameters (10-51)			
Injection Magnitude	Group 10 Parameters (10-52)			
Revise				
Ambient Temperature and Control Derating Curve	Chapter 2, Chapter 9, Group 06 Parameters			
The Factory Setting Value of Multi-function Output	Group 02 Parameters (02-16, 02-17)			
The Settings of Decel. Time at Momentary Power Loss	Group 07 Parameters (07-13)			
(dEb function)				