Амперметры переменного тока

Руководство по эксплуатации

Руководство распространяется на следующие модели:	
SI120	
SI96	
SI83	
SI74	
SI50	
S3I120	
S3I96	
S3183	
S3I74	
S3I50	

JIANGSU SFERE ELECTRIC CO., LTD.

Содержание

1. Техника безопасности1
2. Описание изделия
2.1 Описание изделия 2
2.2 Выбор модели 2
3. Установка и подключение 3
3.1 Габаритные размеры 3
3.2 Способ установки 3
3.3 Схема подключения4
4. Управление
4.1 Передняя панель 5
4.2 Дисплей6
5.Настройки
5.1 Режим только для чтения7
5.2 Режим программирования10
5.3 Системные настройки14
5.4 Настройка входного сигнала15
5.5 Настройки релейных выходов15
5.6 Настройка аналогового выхода17
5.7 Настройка порта связи18
6. Возможные проблемы и способы их устранения 19
6.1 Проблемы со связью 19
6.2 Измеренные данные не верны 20
6.3 Прибор не работает 20
6.4 Другие проблемы 20
7. Техническая спецификация 20
Приложение 1. Параметры сигнализации и единицы порога
тревоги
Приложение 2. Таблица адресов регистров связи
Modbus-RTU

1. Техника безопасности

- Установка и обслуживание должно выполняться только квалифицированными специалистами.
- Перед выполнением электромонтажных работ выключите питание системы и все входные сигналы и замкните вторичные обмотки измерительных трансформаторов тока.
- Убедитесь в отсутствии напряжений на выводах при помощи подходящего измерительного прибора.
- Параметры входных сигналов должны находиться в допустимых пределах.

<u>Следующие причины могут привести к поломке или неправильной работе:</u>

- Выход частоты и напряжения питания за пределы рабочего диапазона.
- Неправильная полярность подачи входного тока или напряжения.
- Другие ошибки подключения.
- Отключение проводов от порта связи или их подключение во время работы.

Запрещается прикасаться к клеммам работающего прибора!

2. Описание изделия

2.1 Описание изделия

Амперметры переменного тока используются для измерения трехфазного или однофазного тока в электросети. Приборы поддерживают функцию настройки коэффициента трансформации в зависимости, могут быть оснащены интерфейсом связи RS-485 (протокол Modbus-RTU), аналоговыми выходами, дискретными входами и релейными выходами.

2.2 Выбор модели

Примечание:

1. Приборы в габаритном размере 83х83 мм могут иметь только светодиодный индикатор (LED).

3. Установка и подключение

3.1 Габаритные размеры

Код габаритного	Передняя панель		Установочная
размера	(MM)	вырез в щите (мм)	глубина (мм)
120	120×120	111×111	55.5/76
83	83×83	76×76	75
96	96×96	91×91	75/98
74	74×74	67×67	75/90
50	96×48	91×44	68.5/82

3.2 Способ установки

- 1) На панели шкафа выберите подходящее место для выреза;
- 2) Снимите прижимные фиксаторы с прибора.
- 3) Вставьте прибор в вырез.
- 4) Наденьте фиксаторы и прижмите прибор к панели.

3.3 Схема подключения

Примечание: на схеме приведены устройства с максимальным набором функций. Если прибор имеет только некоторые функции, показанные на рисунках, обратитесь к электрической схеме на корпусе прибора.

Инструкция по подключению:

1. Входной ток: убедитесь, что входной ток не превышает номинальное значение на входе прибора, в противном случае, необходимо использовать трансформаторы тока.

2. Убедитесь, что токи по трем фазам соответствует друг другу, последовательность и направление фаз должны быть одинаковы.

3. Фактический метод подключения должен совпадать со схемой подключения прибора.

4. Источник питания: АС/DC (80~270)В. Пользователь может выбрать предохранитель с макс. номинальным током 0,25 А.

4. Управление

4.1 Передняя панель

Передняя панель приборов SI/S3I

- 1. Модель;
- 2. Единицы измерения;
- 3. Дисплей;
- 4. Левая кнопка (для выбора функции или ввода значений);
- 5. Правая кнопка (для выбора функции или ввода значений);

6. Кнопка «Меню» (для входа в режим настройки, возврата в предыдущее меню и выхода без сохранения изменений);

7. Кнопка подтверждения (для подтверждения операции настройки параметров).

4.2 Дисплей

Интерфейс отображения результатов измерений прибора включает в себя такие параметры, как ток, частота, дискретные входы, релейный выход и т.д. Нажмите "—" или "— " для переключения основного интерфейса измерения.

Основной интерфейс отображения результатов измерений описан ниже:

Интерфейс отображения информации однофазного амперметра	Интерфейс отображения информации трехфазного амперметра	Описание		
		Отображение измерений		
		Одна фаза:		
		I=300.0A		
3000		Три фазы:		
	5.001^	la=5.002A		
		lb=5.003A		
		Ic=5.001A		
		Нажмите "🖛 🗆 "		
		или "🍑" для		
	וערכי	переключения		
מי יכשי	1634	между		
		дискретными		
		входами.		

Примечание:

1. если нет соответствующей информации при переключении дисплея (или соответствующая информация на дисплее не работает), это указывает на то, что прибор, выбранный пользователем, не имеет этой функции.

5.Настройки

Прибор имеет два режима в меню настройки: режим только для чтения и режим программирования.

5.1 Режим только для чтения

На экране просмотра измерений длительно нажмите кнопку "Menu" (более 3 секунд), на дисплее прибора отобразится "rEAd", нажмите кнопку " - ", чтобы войти в интерфейс просмотра параметров устройства, параметры в этом интерфейсе доступны только для чтения. Интерфейс просмотра параметров амперметра переменного тока работает следующим образом:

Меню режима только для чтения однофазного амперметра.

Меню режима только для чтения трехфазного амперметра.

Примечание: Приведенное выше меню включает в себя все функции. В зависимости от модификации могут быть доступны не все пункты меню.

5.2 Режим программирования

На экране просмотра измерений длительно нажмите кнопку "Мепи" (более 3 секунд), на дисплее прибора отобразится "*г*[Яd", нажмите кнопку "←" или "→", выберите "*Рг*о[" нажмите "←", чтобы ввести пароль для входа в меню программирования, нажмите клавишу "←" или "→", чтобы ввести пароль (пароль по умолчанию 0001), а затем нажмите клавишу "←" (Примечание: Если после ввода пароля на экране появилась надпись "*Еггг*", это указывает что пароль не верен и через 5 секунд произойдет возврат к вводу пароля).

Вход в меню программирования на трехфазном амперметре:

Вход в меню программирования на однофазном амперметре:

Выход из меню программирования:

После изменения данных (или параметров) меню третьего уровня вам необходимо нажать кнопку " - для возврата в меню второго уровня с применением изменений, либо нажать кнопку "Menu" для возврата в меню второго уровня без применения изменений (то есть изменений не будет). Если нужно выйти из интерфейса настройки прибора, вернитесь на первый уровень интерфейса настройки программы, затем нажмите кнопку "Menu", чтобы увидеть "5ЯШЕ-ла". Далее доступны два варианта:

(1)Если нажать " — " произойдет выход из интерфейса настройки без сохранения изменений;

(2) Если нажать "←" или "→" то появится надпись "5₽ШЕ□--□УЕ5", при нажатии "←" произойдет выход из интерфейса настройки с сохранением измененных данных.

Выход из меню программирования трехфазного амперметра с сохранением изменений:

Выход из меню программирования однофазного амперметра с сохранением изменений:

Описание символов меню программирования:

Первый уровень			Вто	рой уровень	Третий уровень			
Симв ол	Описан	ие Симв ол		Симв Описание Символ/знач		Описание		
			in I	Первичное значение	0000~ 9999	0~9999		
l nPE	Входн ые сигна лы	Одно фазн ый	Unt. I	Первичная единица	оFF или оп	Единица: <i>Б F F -</i> это А <i>Б п -</i> это КА		
			, n 2	Вторичное значение	0000~9999	0 ~ 9999 (пользователь не может изменить)		

			Unt.2	Вторичная единица	oFF или on	Единица (пользователь не может изменить): <i>БFF</i> - это А <i>П</i> - это mA		
		Трех	[E.	Первичное значение	0000~9999	Единица: kA		
		фазн ый	E.E. 2	Вторичное значение	0000~9999	Единица: А (пользователь не может изменить)		
			Addr	Адрес прибора	000 1~0247	1~247		
			БЯШИ Скорость передачи 2400~96		2400~9600	2400~9600 бод/с		
r - 1			nB l		nB l	Без проверки ,1 стоп-бит		
20111	Порт связи		J0.C		nB2.	Без проверки , 2 стоп-бита		
					DNCC	Формат данных	aB l	Проверка нечетности ,1 стоп-бит
					EB l	Проверка четности ,1 стоп-бит		
					Alr	Сигнализация		
		подЕ Режим работ		реле	rEñ	Удаленное управление		
d = = !				polic	o F F	Выключено		
do-1 do-2 do-3	Релейні выходы	Релейные		ые ЕГ ПЕ Время импульса		Время импульса	0000~9999	Единица 0.1 с
			Гераме Параме сигнализ		Un-H. IL	См. приложение		
				dELY		Время задержки	0000~9999	Единица 0.1 с

		⊔RLE	Значение сигнализации	0000~9999	Установите предельное значение сигнала тревоги (квадратичное значение)
		HY5	Гистерезис	0000~9999	Установите гистерезис (квадратичное значение)
				0-20	0~20мА
				4-20	4∼20мА
		J-JE		0-5	0∼5мА
		nooc	тип выхода	0-50	0∼5B
				1-50	1~5B
8o-1				0.100	0~10B
Ro-2 Ro-3	Аналоговые выходы	IEEñ	Значение аналогового выхода	UR, I Я ит.д.	Установка значения сигнала
		d5	Нижний предел сигнала	0000~9999	0≤DS≤0.5*а а: вторичное значение (FS-DS)≥500
		F5	Верхний предел сигнала	0000~9999	0.5*а≤FS≤1.2*а а: вторичное значение (FS-DS)≥500
	Cuerounus	Е УС	Время цикличности	0000~9999	0~60c
SEŁ	Системные настройки	EodE	Пароль	0000~9999	
	Пастройки	LIGH	Яркость	L 1~L5	L1~L5, уровни яркости от меньшего к большему

		ALr	Визуальная сигнализация	0000~1200	Установка сигнализации 30,0~120,0% дл индикации, 0,0 выключения	предела пя % для
--	--	-----	----------------------------	-----------	---	------------------------

5.3 Системные настройки

Например: установим пароль 2, цикличность отображения страниц 3 с, яркость индикатора уровня L5, когда входящий сигнал составит 120% от номинального значения, индикатор прибора начнет мигать (визуальная сигнализация).

Действия: после входа в меню программирования, нажмите "←□" или "→□" ѕдля выбора "5*EL*□", нажмите "←]" для входа в меню системных настроек, нажмите "←" или "→ " для выбора необходимых пунктов, нажмите "←]□" и далее:

5EE

CodE

5EE LIGH

※ Установка пароля

Однофазный амперметр:

※ Настройка яркости индикатора:

Однофазный амперметр:

→ <u>5EL</u> CodE 0001 5EL CodE 0002 5EL CodE 0002

Трехфазный амперметр:

Трехфазный амперметр:

※ Настройка цикличности отображения:

Трехфазный амперметр:

※ Настройка визуальной сигнализации:

14

Однофазный амперметр:

Трехфазный амперметр:

SEE - SEE + SEE - SEE

5.4 Настройка входного сигнала

В соответствии с фактическими условиями использования устройства пользователи могут изменять настройки входного сигнала, единицей измерения основного сигнала является А. Пример: установим входной сигнал 50А/5А (вторичное значение 5А пользователь не может изменить). При входе в состояние настройки нажмите "**—**" или "**—**" выберите "/ n^pt", нажмите "**—**", чтобы войти в меню настройки входного сигнала, а затем нажмите "**—**" или "**—** " выберите пункты подменю для установки " *Et.* /" (трехфазный) или ", n /" (однофазный), нажмите "**—**", как показано ниже:

Трехфазный амперметр:

Однофазный амперметр:

5.5 Настройки релейных выходов

Пример 1: Первое реле переведем из режима "выключено" в режим сигнализации, действующую после того, как фазный ток А превысит 6000 А, задержка 5,0 секунд, время импульса 5,0 секунд, гистерезис 0,005 А. После входа в режим настройки нажмите "←" или "→" выберите "do- ^I", нажмите "←"", чтобы войти в меню настройки

выходного сигнала, затем нажмите "←" или "→", чтобы выбрать элементы подменю, которые необходимо установить, нажмите "-", как показано ниже:

Установка режима сигнализации

Однофазный амперметр:

ñodE RI, ñodE

Установка времени импульса Ж

Однофазный амперметр:

※ Установка параметра сигнализации

Однофазный амперметр:

※ Установка порогового значения сигнализации

Однофазный амперметр:

JAL	E	ب	4000	•/•	6.000	+	JRLE
-----	---	---	------	-----	-------	---	------

※ Установка времени задержки

Однофазный амперметр:

Трехфазный амперметр:

Трехфазный амперметр:

Трехфазный амперметр:

do - 1 E 1 n E	. do - 1 E 1 nE 0000	+/+ do - 1 £ 1 nE 0050		do-l E InE
-------------------	----------------------------	------------------------------	--	---------------

do - 1 đo do - 1 do - I nodE ngdĖ AlñodĖ

Трехфазный амперметр:

Установка гистерезиса Однофазный амперметр:

ну5	٠	0.000	* /+	0.005	+	ну5	6	46-1 HY5	+	do-1 HY5 nnnn	+/+	do-1 H95	+	do- НУ

Пример 2: Второе реле переведем из режима "выключено" в режим дистанционного управления с временем импульса дистанционного управления 5,0 секунд. После входа в режим настройки нажмите "←" или "→" выберите "do-?", нажмите "←"", чтобы войти в меню настройки выходного сигнала, затем нажмите "←" или "→", чтобы выбрать элементы подменю, которые необходимо установить, нажмите "←", как показано ниже:

ЖУстановка режима дистанционного управления

Однофазный амперметр:

Трехфазный амперметр:

Трехфазный амперметр:

※ Установка времени импульса

Однофазный амперметр:

Трехфазный амперметр:

EI ⊼E = 0000 +/+ 0050 = EI ⊼E	
-------------------------------	--

5.6 Настройка аналогового выхода

Например: установим первый аналоговый выход на 4-20 мА, когда ток фазы А составляет 0-5А. После входа в режим настройки нажмите "←" или "→" выберите "Ао-1", нажмите "←"", чтобы войти в меню настройки выходного сигнала, затем нажмите "←" или "→", чтобы выбрать элементы подменю, которые необходимо установить, нажмите "←", как показано ниже: ※Установка значения аналогового выхода

Трехфазный амперметр:

※ Установка нижнего предела значения

Однофазный амперметр:

Трехфазный амперметр:

※ Установка верхнего предела значения

Однофазный амперметр:

Трехфазный амперметр:

Описание аналогового выхода:

1) тип выхода (4-20 мА и т.д.) пользователь не может изменять;

2) в однофазном амперметре аналоговый выход по умолчанию соответствует току и не может быть изменен.

5.7 Настройка порта связи

Например: Установим адрес прибора 3, скорость передачи 9600 бод/с, формат данных «без проверки». После входа в режим настройки нажмите "—" или "—" выберите "[onn", нажмите "—"", чтобы войти в меню настройки выходного сигнала, затем нажмите "—" или "—", чтобы выбрать элементы подменю, которые необходимо установить, нажмите "—", как показано ниже:

※ Установка адреса прибора

Однофазный амперметр:

Установка формата данныхОднофазный амперметр:

Установка скорости передачиОднофазный амперметр:

Трехфазный амперметр:

Трехфазный амперметр:

Трехфазный амперметр:

6. Возможные проблемы и способы их устранения

6.1 Проблемы со связью

Прибор не отправляет данные

Сначала убедитесь, что настройки порта связи прибора, такие как адрес, скорость передачи данных в бодах и режим проверки, соответствует требованиям главного компьютера. Если несколько приборов на местах не отправляют данные обратно, пожалуйста, проверьте, правильно ли подключена шина связи на местах и нормально ли работает преобразователь RS485.

Если только один прибор или несколько приборов взаимодействуют неправильно, также необходимо проверить соответствующую шину связи. Вы можете проверить, нет ли ошибки на главном компьютере, поменяв местами адреса корректно работающего прибора и прибора, работающего не правильно. Кроме того, вы можете проверить, есть ли неисправность в приборе, поменяв местами корректно работающий прибор и прибор, работающий не правильно.

Данные, отправленные прибором, неверны

Передаваемые прибором данные типа int/long включают первичное значение сети с плавающей запятой и данные вторичного значения сети. Пожалуйста, внимательно прочитайте инструкцию по адресу и формату хранения данных в таблице адресов связи и убедитесь, что данные передаются в соответствии с соответствующим форматом.

Предлагается загрузить программное обеспечение для MODSCAN32 для проверки тестирования протокола СВЯЗИ MODBUS-RTU с нашей домашней страницы. Это программное обеспечение использует стандартный протокол MODBUS-RTU, который может отображать данные в таких форматах, как целое число, с плавающей запятой и шестнадцатеричное число, чтобы вы могли сравнивать данные с измеренными данными, отображаемыми непосредственно на приборе.

<u>Значок индикации связи</u>

На экране прибора имеется знак индикации связи. Если прибор получает данные во время процесса тестирования связи, этот значок будет мигать.

6.2 Измеренные данные не верны

Сначала убедитесь, что подключение к измерительным входам прибора выполнено верно. Значение, отображаемое на экране прибора, является значением первичной сети; показания прибора могут быть не верны, если выбран внешний трансформатор с не правильным коэффициентом трансформации. Номинальное значение на входах прибора не может быть изменено. Первичные значения сети подключения могут быть изменены в соответствии с фактической ситуацией, но необходимо удостовериться, что выбранные трансформаторы соответствуют настройкам прибора. В противном случае, возможно неверное отображение измеренных данных.

6.3 Прибор не работает

Убедитесь, питание соответствует необходимым параметрам (AC/DC80-270B) и верно подключено к клеммам. Прибор может быть поврежден напряжением питания, которое выходит за пределы номинального диапазона и не может быть восстановлен. Используйте мультиметр для измерения напряжения источника питания во избежание поломки прибора.

6.4 Другие проблемы

Пожалуйста, свяжитесь с нашим отделом технического обслуживания, чтобы дать подробное описание условий использования оборудования. Наши специалисты проанализируют возможные причины в соответствии с вашим описанием. Компания назначит технических специалистов для решения проблем на месте как можно скорее, если проблема не может быть решена после устного общения.

7. Техническая спецификация

20

Электрически	е характе	ристики		
Класс точност	и		0.2%、0.5% (по умолчанию)	
Частота обнов	зления		1c	
		Номина		
		льные	AC 1A、5A	
		значения		
Вход	Ток	Диапазо н	(0.005 \sim 1.2)Ін	
		Перегру зка	Длительная: 1.2Ін, кратковременная: 10Ін/5с	
	Частота		45~65Гц	
Питание	Рабочее напряжение		AC 80~270B (50/60Γμ)、DC 80~270B、DC 24B	
	Потребление		≤5BA	
Дискретные входы			Типа «сухой контакт»	
Релейные выходы			AC 5A/250B、DC 5A/30B	
Аналоговые выходы напряжения		ы тока	DC 4∼20мА、0∼20мА и пр., сопротивление ≤350Ω	
		и INN	DC 0∼5VB、1∼5В и пр., сопротивление ≥20kΩ	
Порт связи			RS485 (протокол Modbus-RTU), макс. скорость 9600 бод/с	
Условия окру	ужающей	среды		
Степень зац	циты		Передняя панель IP64, корпус IP20	
Рабочая температура		3	-40~70°C (LED) , -25~70°C (LCD)	
Температура хранения		1Я	-40~85°C	
Относительная влажность		ЮСТЬ	≤93%	
Сопротивле	ние изопя	лии	Между питанием и входом или выходом≥AC2kV;	
			Между входом и выходом≥AC1kV	
Высота над	уровнем	моря	2500м	
Электромагн	итная сов	зместимос	сть	

Устойчивость к электростатическому разряду	IEC 61000-4-2-III
Излучаемая, радиочастотная, электромагнитная помехоустойчивость	IEC 61000-4-3-III
Устойчивость к электрическим быстрым переходным процессам/всплескам	IEC 61000-4-4-IV
Устойчивость к перенапряжениям	IEC 61000-4-5- IV
Устойчивость к кондуктивным помехам, наведенным радиочастотным полям	IEC 61000-4-6-III 级
Устойчивость к магнитному полю промышленной частоты	IEC 61000-4-8-III 级
Устойчивость к провалам напряжения, коротким прерываниям и колебаниям напряжения	IEC 61000-4-11-III 级

Приложение 1. Параметры сигнализации и единицы порога тревоги

Трехфазный амперметр

No.	Параметр сигнализации	Единицы
0	ІА-Н (высокий ток по фазе А)	
1	IA-L (низкий ток по фазе A)	
2	Ib-H (высокий ток по фазе В)	
3	lb-L (низкий ток по фазе В)	
4	IC-H (высокий ток по фазе C)	0.001A
5	IC-L (низкий ток по фазе C)	
6	3I-Н (высокий ток в одной из фаз A、B、C)	
7	3I-L (низкий ток в одной из фаз A、B、C)	
8	F -H (высокое значение частоты)	0.0150
9	F -L (низкое значение частоты)	0.011 ц
10	dl1.Н (Реле активируется, когда первый дискретный вход замкнут)	Значение
11	dl1.L (Реле активируется, когда первый дискретный вход разомкнут)	сигнала тревоги не
12	dl2.Н (Реле активируется, когда второй дискретный вход замкнут)	требуется
13	dl2.L(Реле активируется, когда второй дискретный вход разомкнут)	устанавливат ь.

Однофазный амперметр

No.	Параметр сигнализации	Единицы
0	IН (высокий ток по фазе А)	0.001 0
1	IL (низкий ток по фазе А)	0.00TA
2	F -H (высокое значение частоты)	0.01Гц

3	F -L (низкое значение частоты)	
4	dl1.Н (Реле активируется, когда первый дискретный вход замкнут)	Значение
5	dI1.L (Реле активируется, когда первый дискретный вход разомкнут)	сигнала
6	dl2.Н (Реле активируется, когда второй дискретный вход замкнут)	тревоги не
7	dl2.L (Реле активируется, когда второй дискретный вход разомкнут)	устанавливат ь.

Приложение 2. Таблица адресов регистров связи Modbus-RTU

	0x04)	/нкции 0х03	(код функ	сети	э данных	Считывание	•
--	-------	-------------	-----------	------	----------	------------	---

Адрес	Форма	Содержание	Единицы	R/W		
	т					
	1	Данные первичной сети				
0x12	float	Ток фазы А	А	R		
0x14	float	Ток фазы В	А	R		
0x16	float	Ток фазы С	А	R		
0x18~0x2A	float	Зарезервировано				
0x2C	float	Частота	Гц	R		
0x2E~0x32	float	Зарезервировано				
0v24	float	Среднее значение	٥	R		
0,34	noat	тока по трем фазам	~			
Данные вторичной сети						
Адрес	Форма т	Содержание	Описание/еди ницы	R/W		
0x100~0x101	Bit[32]	Состояние релейных	0: разомкнут	R		
		выходов	1: замкнут			

		Bit[0]-Bit[2]		
0x102~0x103	Bit[32]	Состояние дискретных входов Bit[0]-Bit[3]	0: разомкнут 1: замкнут	R
0x104~0x10B	int	Зарезере	вировано	
0x10C	int	Ток фазы А	0.001A	R
0x10D	int	Ток фазы В	0.001A	R
0x10E	int	Ток фазы С	0.001A	R
0x10F~0x11F	int	Зарезервировано		
0x120	int	Частота	0.01Гц	R

 Считывание информации о состоянии реле (код функции 0x01) и управления реле (код функции 0x05, 0x0F).

Адрес	Формат	Содержание	Описание	R/W
0000	Bit	Реле №1	0: выкл. 1: замкнуто	R/W
(фиксирован	Bit	Реле №2	0: выкл. 1: замкнуто	R/W
ный адрес)	Bit	Реле №3	0: выкл. 1: замкнуто	R/W

Дистанционное управление реле (код функции 0x05, 0x0F)

Адрес	Форм ат	Содержание	Описание	R/W
0000	Bit	Реле №1	0: выкл. 1: замкнуто	R/W
0001	Bit	Реле №2	0: выкл. 1: замкнуто	R/W
0002	Bit	Реле №3	0: выкл. 1: замкнуто	R/W

Считывание состояния дискретных входов (код функции 0х02)

Адрес	Фор мат	Содержание	Описание	R/W
	Bit	Дискретный вход №1	0: выкл. 1: замкнуто	R
0000	Bit	Дискретный вход №2	0: выкл. 1: замкнуто	R

(фиксирован	Bit	Дискретный вход №3	0: выкл. 1: замкнуто	R
ный адрес)	Bit	Дискретный вход №4	0: выкл. 1: замкнуто	R

Описание формата сообщений Modbus-RTU

Считывание информации о состоянии реле (код функции 0х01)

	0			Код	Kon		
Запр ос	струк тура фрейма	Код адреса	Код функции	Начальн ый адрес реле	Количес тво реле	код проверк и CRC	
	Кол-в о байт	1 байт	1 байт	2 байта	2 байта	2 байта	
	Диапа зон данных	1~247	0x01	0x0000 (фиксиров ано)	0x0001 ~0x0004	CRC16	
	Прим ер сообщен ия	<u>0x01</u>	<u>0x01</u>	<u>0x00 0x00</u>	<u>0x00 0x02</u>	<u>0xBD</u> <u>0xCB</u>	
	Струк тура фрейма		Код функции	Код	Kan		
Ответ		Код адреса		Кол-во байтов регистра	Значени е регистра	Код проверк и CRC	
	Кол-в о байт	1 байт	1 байт	1 байт	1 байт	2 байта	
	Пример сообщен ия	<u>0x01</u>	<u>0x01</u>	<u>0x01</u>	<u>0x03</u>	<u>0x11</u> <u>0x89</u>	

Примечание: значение регистра в ответе указывает на состояние ретранслятора. Начиная с младшего бита байта, каждое число соответствует состоянию цикла релейного выхода. "1" означает, что реле замкнуто, в то время как "0" означает, что реле отключено. В верхнем списке значение регистра "0х03" соответствует "0000 0011" в двоичной системе, что означает, что первый и второй контуры реле замкнуты.

				Код	16	
Запр ос	Структ ура фрейма	Код адреса	Код функции	Начальны й адрес дискр.вх.	Количество дискр.вх	код проверки CRC
	Кол-во байт	1 байт	1 байт	2 байта	2 байта	2 байта
	Диапа зон данных	1~247	0x02	0x0000	0x0001~ 0x000C	CRC16
	Приме р сообщен ия	<u>0x01</u>	<u>0x02</u>	<u>0x00 0x00</u>	<u>0x00 0x04</u>	<u>0x79</u> <u>0xC9</u>
	0		Код функции	Код данных		Кол
Ответ	структ ура фрейма	Код адреса		Кол-во байтов регистра	Значение регистра	код проверки CRC
	Кол-во байт	1 байт	1 байт	1 байт	1 байт	2 байта
	Пример сообщен ия	<u>0x01</u>	<u>0x02</u>	<u>0x01</u>	<u>0x02</u>	<u>0x20</u> <u>0x49</u>

Считывание состояния дискретных входов (код функции 0х02)

Примечание: значение регистра в ответе ведомого устройства указывает на состояние цифрового ввода. Начиная с младшего бита байта, каждое число соответствует состоянию цикла цифрового ввода. "1" означает, что дискретный вход закрыт, в то время как "0" означает, что дискретный вход выключен. В верхнем списке значение регистра "0х02" равно "0000 0010" в двоичной системе, что означает, что второй дискретный вход закрыт.

	Структ	Kan	Kon	Код	Кол		
	ура алре	адреса	код функции	Начальный	Количество	код проверки CRC	
	фрейма		÷)····	адрес данных	регистров	··· • • • • • • • • • • • • • • • • • •	
Запрос	Кол-во байт	1 байт	1 байт	2 байта	2 байта	2 байта	
	Диапаз	1~247	0x03/		Marc 48		
	он данных	11 - 247	0x04		Marc. 40		
	Приме						
	р	<u>0x01</u>	<u>0x03</u>	<u>0x00 0x06</u>	<u>0x00 0x06</u>	<u>0Xe4 0x36</u>	
	сообщени						
	Я						
Ответ	Структ Код ура алг	Кол	Кол	Код	Кол		
		алреса	функции	Количество	Значение	порерки СРС	
	фрейма	адреса	функции	байтов регистра	регистра	проверки отсо	
	Кол-во	1 байт	1	1 байт	12 Б айт		
	байт	ТОайн	байт	ТОАИТ	12 0001		
	Пример				(12-байтные		
	сообщени	<u>0x01</u>	<u>0x03</u>	<u>0x0C</u>	данные)	(CRC16)	
	я						

Считывание измеренных данных (код функции 0х03/0х04)

Примечание: начальный адрес регистра в запросе хоста - это начальный адрес данных, собранных из первичной или вторичной сети. Номер регистра указывает на длину данных. В верхнем списке адрес регистра "0х00 0х06" указывает начальный адрес данных с плавающей точкой напряжения фазы трех фаз, а номер регистра "0х00 0х06" указывает, что длина данных включает в себя данные из трех слов и три данных с плавающей точкой. Пожалуйста, обратитесь к таблице информации об адресах связи MODBUS-RTU приложения 1.

Запр ос	Струк тура фрейма		Kon	К	од данных	Код провер ки CRC	
		Код адреса	код функци и	Началь ный адрес реле	Значение действия реле		
	Кол-в о байт	1 байт	1 байт	2 байта	2 байта	2 байта	
	Диап азон данных	1~247	0x05	0x0000 ~0x0003	0xFF00/0x00 00	CRC 16	
	Прим ер сообщен ия	<u>0x01</u>	<u>0x05</u>	<u>0x00</u> <u>0x00</u>	<u>0xFF 0x00</u>	<u>0x8</u> <u>C 0x3A</u>	
Ответ	Струк тура фрейма		Код функци и	К	IC.		
		Код адреса		Началь ный адрес реле	Значение действия реле	код провер ки CRC	
	Кол-в о байт	1 байт	1 байт	2 байта	2 байта	2 байта	
	Пример сообщен ия	<u>0x01</u>	<u>0x05</u>	<u>0x00</u> <u>0x00</u>	<u>0xFF 0x00</u>	<u>0x8C</u> 0x3A	

Дистанционное управление одним реле (код функции 0х05)

Примечание: в запросе хоста значение действия реле "0xFF00" указывает, что реле закрыто, в то время как "0x0000" указывает, что реле отключено. Если вы хотите выполнить удаленное управление, пожалуйста, убедитесь, что реле работает в режиме "удаленное управление".

	•				• •			,
		Код адреса	Код функци и					
	Струк тура фрейма			Начальн ый адрес реле	Количе ство реле	количе ство байтов данных	Значе ние дейст вия реле	Код провер ки CRC
Запр ос	Кол-в о байт	1 байт	1 байт	2 байта	2 байта	1 байт	1 байт	2 байта
	Диап азон данных	1~247	0x0F	0x0000	0x0001 \sim 0x0002	0x01		CRC16
	Прим ер сообщен ия	<u>0x01</u>	<u>0x0F</u>	<u>0x00</u> <u>0x00</u>	<u>0x00</u> <u>0x02</u>	<u>0x01</u>	<u>0x03</u>	<u>0x5F</u> <u>0x56</u>
	Струк	Струк		Код данных				Код
Ответ	тура фрейма	код адреса	функци и	Начальный адрес реле		Количество реле		провер ки CRC
	Кол-в о байт	1 байт	1 байт	2 байта		2 байта		2 байта
	Пример сообщен ия	<u>0x01</u>	<u>0x0F</u>	<u>0x0</u>	00 0x00	<u>0x00</u>	0x02	<u>0XD4</u> <u>0x0A</u>

Дистанционное управление несколькими реле (код функции 0x0F)

Примечание: в запросе хоста, начиная с самого низкого бита значения действия реле, каждый бит соответствует циклу релейного вывода. "1" означает, что реле замкнуто, в то время как "0" означает, что реле отключено. В верхнем списке значение действия реле "0х07" равно "0000 0111" в двоичной системе, что означает, что первый, второй и третий контуры реле закрыты.

Информация, содержащаяся в этом документе, может быть изменена

без уведомления.

JIANGSU SFERE ELECTRIC CO., LTD

Add: 1 Dongding R., Jiangyin, Jiangsu, China. P.C: 214437 Tel: +86-510-86199063 +86-510-86199069 +86-510-86199073 Email: export@sfere-elec.com Website: www.sfere-elecnova.com